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Abstract

In this work we addressed the problem of
capturing sequential information contained in
longitudinal electronic health records (EHRs).
Clinical notes, which is a particular type of
EHR data, are a rich source of information
and practitioners often develop clever solu-
tions how to maximise the sequential infor-
mation contained in free-texts. We proposed
a systematic methodology for learning from
chronological events available in clinical notes.
The proposed methodological path signature
framework creates a non-parametric hierarchi-
cal representation of sequential events of any
type and can be used as features for down-
stream statistical learning tasks. The method-
ology was developed and externally validated
using the largest in the UK secondary care
mental health EHR data on a specific task of
predicting survival risk of patients diagnosed
with Alzheimer’s disease. The signature-based
model was compared to a common survival
random forest model. Our results showed a
15.4% increase of risk prediction AUC at the
time point of 20 months after the first ad-
mission to a specialist memory clinic and the
signature method outperformed the baseline
mixed-effects model by 13.2 %.

1 Introduction

Electronic health records (EHRs) have now become
ubiquitous and offer novel opportunities for clinical
research by supporting the development of intel-
ligent decision support systems and improvement
of patients’ care. One of the distinct features of
EHR is that the data are being collected over time
and might be seen as health data streams, allow-
ing research to study longitudinal trends and make
inference about the progression of disease, treat-
ments and outcomes. However, the proper repre-
sentation of sequential medical events still remains

1Equal contribution.

a challenge. Moreover, longitudinal clinical notes
exhibit a multi-level hierarchical structure, where
events are described and embedded in sentences,
sentences in paragraphs and eventually resulting
in chronologically ordered documents. Recent
works have addressed the problem of capturing
this information directly from raw texts by intro-
ducing novel neural network architectures, such
as attention-based recurrent neural networks (Bai
et al., 2018) and time-aware Transformers (Zhang
et al., 2020). When dealing with chronological clin-
ical notes, practitioners make multiple decisions
on how to structure and transform these sequential
events, which are often simplifications of medical
histories. In this work we proposed a different
methodology to address the problem of learning
from events found in clinical notes, by first extract-
ing them using natural language processing and
then representing the sequential order by means of
the path signatures. The signature (Lyons, 2014) is
a non-parametric representation of heterogeneous
sequential data, offers a feature extraction method
from longitudinal events and can naturally be inte-
grated within a general data mining pipeline. To
demonstrate the methodology, we used the largest
secondary care mental health EHR data in the UK
to develop a survival prognostic model for patients
diagnosed with Alzheimer’s disease.

2 Method

2.1 Data

The data in this study were sourced from the
UK-Clinical Record Interactive Search system
(UK-CRIS), which provides a research platform
(https://crisnetwork.co/) for data mining and anal-
ysis using de-identified real-world observational
electronic patients records from twelve secondary
care UK Mental Health NHS Trusts (Goodday
et al., 2020). UK-CRIS provides access to struc-
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tured information, such as ICD-10 coded diagnoses,
quality of life scales and demographic informa-
tion, as well as various unstructured texts, such as
clinical summaries, discharge letters and progress
notes. The study cohort jointly comprised records
from 24,108 patients diagnosed with Alzheimer’s
disease and various types of dementia, containing
more than 3.7 million individual clinical documents
from two centres: Oxford and Southern Health
Foundation NHS Trusts. The field of clinical NLP
in general, and of mental health and Alzheimer’s re-
search in particular, largely suffers from the dearth
of gold-annotated data. The reason is due to the
shortage of trained annotators with clinical back-
ground who are also authorised to access sensitive
patient-level data. Therefore, to develop a robust
information extraction (IE) model from an insuffi-
cient amount of data, we leveraged the idea of trans-
fer learning using the publicly available MIMIC-III
corpus (Johnson et al., 2016) comprising informa-
tion relating to patients admitted to intensive care
units (ICU) with more than 2.1 million clinical
notes as well as 505 gold-annotated by clinical
experts discharge summaries from the 2018 n2c2
challenge (Henry et al., 2020). We assert that the
study was independently approved and granted by
the Oxfordshire and Southern Health NHS Founda-
tion Trust Research Ethics Committees.

2.2 Information extraction model

The information extraction model was developed
to identify diagnosis, medications and cognitive
health assessment Mini-Mental State Examination
score (MMSE) (Pangman et al., 2000). Addition-
ally, the identified entities were classified accord-
ing to several attributes, such as the ’experiencer’
modality (i.e., whether the MMSE was actually re-
ferring to a patient or to a family member), tempo-
ral information (i.e the date of diagnosis or MMSE
score) and negations (i.e. discontinued medica-
tions) (Harkema et al., 2009). Such drug mentions
were discarded in order to extract the most accu-
rate information. Generic and brand drug names
were normalised using the British National For-
mulary, the core pharmaceutical reference book
(Committee et al., 2019). The architecture of the
named entity recognition model comprised a hy-
brid approach of an ontology-based fuzzy pattern
matching and a bi-directional LSTM neural net-
work architecture with the attention mechanism
(Bahdanau et al., 2014) for sequence classification.

The GloVE word embedding (Pennington et al.,
2014) were fine-tuned on both MIMIC-III and UK-
CRIS data (Vaci et al., 2020; Kormilitzin et al.,
2020). The developed IE model was trained only
on data from the Oxford Health NHS Trust instance
and externally validated on a sample of data from
a regionally different Southern Health NHS Foun-
dation Trust.

2.3 The signature of a path

Repeated measurements, speech, text, time-series
or any other sequential data might be seen as a
path-valued random variable. Formally, a path X
of finite length in d dimensions can be described
by the mapping X : [a, b] → Rd, or in terms of
co-ordinates X = (X1

t , X
2
t , ..., X

d
t ), where each

coordinate Xi
t is real-valued and parametrised by

t ∈ [a, b]. The signature representation S of a path
X is defined as an infinite series:

S(X)a,b = (1,S(X)1a,b, S(X)2a,b, ..., S(X)da,b,

S(X)1,1a,b, S(X)1,2a,b, ...),

(1)

where each term is a k-fold iterated integral of the
path X labelled by multi-index i1, ..., ik:

S(X)i1,...,ika,b =

∫
a<tk<b

...

∫
a<t1<t2

dXi1
t1
...dXik

tk
.

(2)
However, in many real-life applications the first
k-terms of the truncated signature at level L give
a satisfying approximation. Intuitively, it is anal-
ogous to statistical moments of a d-dimensional
vector-valued random variable, such as mean, vari-
ance or higher moments. One can define statistical
moments of a path-valued random variable, which
are essentially the signature moments (Chevyrev
and Oberhauser, 2018) defined in Eq. (2). The sig-
nature S(X) completely characterises a path X up
to tree-like equivalence and is invariant to reparam-
eterisation (Hambly and Lyons, 2010). The signa-
ture can also be expressed in a more compact form
known as log-signature (Liao et al., 2019; Morrill
et al., 2020a), which is the formal power series
of logS(X), while carrying the same information.
Informally, the path signature captures the order
of events. For example, consider two sequences
X1 = aabba and X2 = baaab consisting of a sim-
ple vocabulary with only two letters {a, b}. The
sequences might be presented as paths in 2d space
as shown in Fig. 1. Each linear segment between
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Figure 1: Two paths X1 = aabba and X2=baaab.

two points (Fig. 1) corresponds to a single letter
in the sequence and the arrows denote the tempo-
ral direction of the sequence. Despite the same

Level 1 2 3 4
S(X1) 3 2 1 -0.5 -1 -1/3 -0.5 0
S(X2) 3 2 0 1.5 0.5 0 0 0

Table 1: The first k = 8 terms of the log signature
expansion up to level L = 4. The difference between
two sequences X1 and X2 is apparent starting from the
second level.

number of letters in the sequences {a = 3, b = 2},
the order of letters matters. The signature easily
picks the differences and the first four levels of the
log-signatures of paths are shown in Table 1. The
lower order signature terms S(i) are the increments
along the i-th direction (i.e. the distance between
the endpoints), for example, S(1) = 3− 0 = 3 and
S(2) = 2− 0 = 2 as can be seen in Figure 1. The
second order corresponds to the area enclosed by a
path and a chord connecting endpoints (Chevyrev
and Kormilitzin, 2016).

The usefulness of a path signature as a feature
map of sequential data was demonstrated theoret-
ically (Chevyrev and Oberhauser, 2018) as well
as in numerous machine learning applications in
healthcare (Morrill et al., 2019; Kormilitzin et al.,
2016; Arribas et al., 2018; Morrill et al., 2020b; Ko-
rmilitzin et al., 2017), finance (Arribas, 2018), com-
puter vision (Yang et al., 2017; Xie et al., 2017),
topological data analysis (Chevyrev et al., 2018)
and deep learning (Kidger et al., 2019).

2.4 Independent and outcome variables
The independent variables used in the prognostic
model were medications and the MMSE scores col-
lected over time. The dependent outcome variable
was right-censored time to death data in months.
A synthetic example of the patient’s records (Ta-
ble 2) and the corresponding algorithmically ex-
tracted longitudinal data is presented in Table 3.

The outcome variable was encoded as a tuple:
(True, 34.17) indicating that a person has died
after 34.17 months since the very first visit to a
specialist memory clinic. The patient was treated
by two different medications with a changing pat-
tern and eventually was tapered off medication due
to no further expected improvement.

2.5 Baseline longitudinal data summarisation

The signature transformation might be seen as a
hierarchical statistical summarisation (“feature ex-
traction”) of the longitudinal data along the tempo-
ral dimension. In order to benchmark the proposed
method, we used a time-honoured linear mixed-
effects regression as a baseline model for longitudi-
nal summarisation. Specifically, each patient-level
longitudinal MMSE scores were modelled using
a linear regression and the resulting coefficients,
such as an intercept and a slope, were used as fea-
tures representing the progression of the MMSE
over time. The median number of medication cate-
gories was used as an additional feature, resulting
in three features for each patient.

2.6 Survival random forests

The common statistical approach to analyse the
time-to-event survival data is based on the linear
Cox model (Collett, 2015). However, Miao et al.
(2015) showed that a survival random forest (SRF)
approach (Ishwaran et al., 2008) outperformed lin-
ear Cox model, based on the Harrell’s concordance
index (C-index) (Harrell et al., 1982), and was un-
derstandably capable of identifying non-linear ef-
fects of the input variables as opposed to linear
Cox model. Therefore, we chose the SRF as the
preferred method. The SRF approach was imple-
mented in Python using “scikit-survival” package
(Pölsterl et al., 2015). The Harell’s C-index (the
concordance index) is a goodness of fit measure for
risk scores models. It is a common statistical ap-
proach to evaluate risk models in survival analysis,
where data may be right-censored and corresponds
to rank correlation between predicted risk scores
and observed time points, similarly to Kendall’s τ .

3 Results

3.1 Information extraction model

We used a hybrid approach to developing an IE
model consisting of training a baseline model us-
ing MIMIC-III and n2c2 annotated data. Specifi-
cally, the named-entity recognition (NER) model
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Doc date Text

05-Oct-2016
Today I saw a patient diagnosed with Alzheimer’s, who deteriorated: MMSE 23/30 as compared to 25/30
from 1st January. Started on Rivastigmine.

12-Feb-2017 Today MMSE 19, the patient didn’t respond to Rivastigmine and was changed to Donepezil.
03-Feb-2018 Great response to new treatment (MMSE 23/30), continue on Donepezil.
01-Apr-2019 The patient stopped responding to Donepezil and severely deteriorated (MMSE 14/30), stop Donepezil.

Table 2: A synthetic example of chronological medical records.

Date Medication MMSE
01-Jan-2016 NoMed 25/30
05-Oct-2016 Rivastigmine 22/30
12-Feb-2017 Donepezil 19/30
03-Feb-2018 Donepezil 23/30
01-Apr-2019 Discontinued 14/30

Table 3: Extracted and chronologically structured data
from Table 2.

comprised a transition-based system based on the
chunking model (Lample et al., 2016) where to-
kens were represented as hashed and embedded
representations of the prefix, suffix, shape and lem-
matised features of words, followed by the rule-
based matching using the BNF vocabulary. The
IE model was implemented using “spaCy” python
library1, including negations and temporal infor-
mation identification as well as relationships classi-
fication between the word-tokens using linguistic
features, such as part-of-speech and dependencies.
Finally, the active learning tool “Prodigy”2 was
used for iterative model improvement. Target do-
main training, validation and external validation
data contained a collection of gold-annotated drug
names, diagnosis and cognitive health assessment
MMSE scores as shown in Table 4. The IE model

Concept Training Validation External val. Total
Drug 216 153 30 399
MMSE 169 87 23 279
Diagnosis 570 352 26 948

Table 4: The number of gold-annotated instances in the
training, validation and external validation data sets.

achieved a good and consistent performance on
both validation and external validation data sets
(Table 5). The annotation schema was developed
following the recommendations of Pustejovsky and
Stubbs (2012). The token-level performance met-
rics were evaluated using the SemEval schema (Se-
gura Bedmar et al., 2013) and the inter-annotator
agreement (IAA) of two clinical annotators was

1https://spacy.io
2https://prodi.gy

computed using F1 score.

Validation External val. IAA
Concept Pr Re F1 Pr Re F1 F1
Diagnosis 89.6 96.3 92.8 84.1 86.3 84.8 95
Drug 98 98 98.1 92.4 68.4 78.3 96
MMSE 92.6 74.7 82.8 85.6 81.2 82.6 100

Table 5: Performance (shown in %) of the information
extraction model. IAA - inter annotator agreement.

n male female survival time
died 1962 841 1121 52.2(22.8)

censored 1500 529 971 28.4(16.6)

Table 6: Summary statistics of the extracted data for
survival analysis. Survival time is shown as mean(std)
in months. The MMSE scores were not observed for
censored people later in time, while date of death was
recorded in hospital.

3.2 Prognostic model
Four prognostic models were developed and com-
pared to each other. All models estimated the
survival probability of a patient diagnosed with
Alzheimer’s disease since their first admission to
a memory clinic. We compared signature (“Sig”,
Sec. 2.3) versus non-signature (“Non-sig”, Sec.
2.5) models. We also estimated the added value of
the sequential information contained in the treat-
ment course with medications. Specifically, we
used two sets of input variables: {time, MMSE}
and {time, MMSE, medications}, where time cor-
responds to the date of MMSE score or prescribed
medication as presented in Table 3. For the “Sig”
model, the input variable were first transformed
into signatures, where the categorical medication
names were one-hot encoded and augmented with
numerical MMSE scores to create a path. For the
“Non-sig” model, the longitudinal MMSE scores
were summarised by means of linear models ad-
justing for each patients and the median number of
distinct medications were computed. Both models
were trained and validated using the same folds
of stratified 5-fold cross validation (with fixed ran-
dom seed). The quality of predictions was assessed
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using the Harell’s C-index and the results are sum-
marised in Table 7. The signatures were computed
using the “esig” Python library3, however, alter-
native libraries are also available (Reizenstein and
Graham, 2018; Kidger and Lyons, 2020).

Features Sig Non-sig
{time, MMSE} 0.626(0.009) 0.574(0.022)
{time, MMSE, meds} 0.621(0.011) 0.571(0.019)

Table 7: Harell’s C-index measure of four models. Val-
ues reported as mean(std) over 5-fold cross validation.

We also estimated the time-dependent area un-
der the curve of receiver operating characteristics
(Lambert and Chevret, 2016). It is a natural exten-
sion of a common AUC ROC analysis to possibly
censored survival times where the patients’ cogni-
tive health is usually better at the very first visit to
a memory clinic, while their condition may dete-
riorate later. The time-dependent cumulative dy-
namic AUC ROC of all four models are presented
in Fig. 2. The signature features outperformed the
non-signature ones at all times and the inclusion
of sequential information from switching medica-
tions improved AUC ROC at later times. However,
both models struggle to reliably predict the future
outcomes further than 3 years. This is due to the
limitation of predictors and the available number
of patients after 3 years rather than the capacity of
our model.
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Figure 2: Time-dependent AUC of risk prediction over
time since the first admission to a memory clinic.

4 Discussion and future direction

Unstructured longitudinal electronic health records,
such as free-text clinical notes, inherently contain
rich information about patients’ health and out-
comes over time. The right analytical tools capable

3https://esig.readthedocs.io/

of capturing sequential information can therefore
maximise utilisation of longitudinal EHRs and can
be valuable for supporting clinical decisions and
prognostic models. In this work we implemented a
signature-based approach to represent chronologi-
cal events extracted using natural language process-
ing from clinical notes. Extracted chronological
events can be seen as a trajectory (path) embedded
in a high-dimensional multi-modal space of events
(i.e. different medications, interventions, measures,
etc) and the signature uniquely characterises the
path in the most succinct way. The signature-based
feature extraction approach was compared to hand-
crafted features, comprising a slope and an inter-
cept of MMSE scores over time and the median
number of medications for each patient. The signa-
tures represent a hierarchical collection of features,
where the first order is proportional to linear statis-
tical moments (i.e. mean) and is not sensitive to the
order of data points, as illustrated in Table 1. We
demonstrated that the sequential information about
medications has significantly improved the time-
demented AUC as captured by the signatures (Fig-
ure 2). In future works we will extend the proposed
framework to include the structured information
available in EHR (i.e. lab results, coded procedures
or clinical encounters) and will develop an inter-
pretability framework to make the signature-based
models explainable.
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