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Abstract

Recently, several studies have investigated ac-
tive learning (AL) for natural language pro-
cessing tasks to alleviate data dependency.
However, for query selection, most of these
studies mainly rely on uncertainty-based sam-
pling, which generally does not exploit the
structural information of the unlabeled data.
This leads to a sampling bias in the batch
active learning setting, which selects several
samples at once. In this work, we demon-
strate that the amount of labeled training data
can be reduced using active learning when
it incorporates both uncertainty and diversity
in the sequence labeling task. We exam-
ined the effects of our sequence-based ap-
proach by selecting weighted diverse in the
gradient embedding approach across multiple
tasks, datasets, models, and consistently out-
perform classic uncertainty-based sampling
and diversity-based sampling.

1 Introduction

Sequence labeling is one of the commonly used
techniques for solving natural language under-
standing (NLP) tasks such as named-entity recog-
nition (NER) and slot filling. Furthermore, for
these tasks, the state-of-the-art results are typ-
ically based on deep neural networks (Kurata
et al., 2016; Liu and Lane, 2016; Ma and Hovy,
2016). However, the performance of these mod-
els is highly dependent on the availability of large
amounts of annotated data. Moreover, compared
with classification tasks, which require only one
label for a sample, the sequence learning tasks re-
quire a series of token-level labels for an entire se-
quence, which makes them time-consuming and a
costly annotation process.
This problem can be mitigated using active learn-
ing (AL), which achieves improved performance

with fewer annotations by strategically select-
ing the examples to annotate (Cohn et al., 1996;
Settles and Craven, 2008; Siddhant and Lipton,
2018; Shen et al., 2018). There are two major
strategies for active learning, namely, diversity-
based sampling and uncertainty-based sampling
(Muthakana, 2019; Ash et al., 2020). Tradition-
ally, uncertainty-based sampling is the most com-
mon pool-based AL approach. However, previ-
ous work pointed out that focusing only on the
uncertainty leads to a sampling bias (Dasgupta,
2011). It creates a pathological scenario where
selected samples are highly similar to each other,
which clearly indicates inefficiency. This may
cause problems, especially in the case of noisy and
redundant real-world datasets. Another approach
is diversity-based sampling, wherein the model se-
lects a diverse set such that it represent the in-
put space without adding considerable redundancy
(Sener and Savarese, 2018). This approach can
select samples while ensuring a maximum batch
diversity. However, this approach might select
points that provide little new information, thereby
reducing the uncertainty of the model. Certain re-
cent studies for classification tasks implemented
an algorithm named Batch Active learning by Di-
verse Gradient Embeddings (BADGE). This al-
gorithm first computes embedding for each unla-
beled sample based on induced gradients, and then
geometrically picks the instances from the space
to ensure their diversity (Ash et al., 2020). Al-
though it proves to be a robust improvement when
performing an image classification task, its perfor-
mance in sequence labeling tasks is yet unproven.
In this study, we investigated some practical ac-
tive learning algorithms that consider uncertainty
and diversity in sequence labeling tasks over dif-
ferent datasets and models. Moreover, we sug-
gested a method to expand BADGE with weighted
sampling based on the sequence length to ensure
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Utterance show me flight from Boston to Denver
Slot label O O O O B-fromloc O B-toloc

Entity label O O O O B-Location O B-Location

Table 1: An example of utterance and the annotation

cost-effective labeling. This simple modification
in it has a positive implication that it tends to select
cost-effective samples. The proposed model trades
off between uncertainty and diversity by selecting
diverse samples in the gradient space depending
on the parameters in the final layer, for which, the
currently available models focus only on uncer-
tainty. To the best of our knowledge, our study is
the first to apply diverse gradient embedding to a
sequence labeling task. We experimented with the
CoNLL 2003 English, ATIS, and Facebook Mul-
tilingual Task Oriented Dataset (FMTOD). Ac-
cordingly, it was empirically demonstrated that
the proposed method consistently outperformed
the baseline method including Bayesian AL by
disagreement (BALD), which shows state-of-the-
art performance in NER task, across the datasets,
tasks and model architectures.

2 Related Work

Several recent papers investigated AL to alleviate
the data dependency of deep learning for NLP. A
different query criterion based on expected gradi-
ent length (EGL) has been proposed (Settles and
Craven, 2008). Furthermore, Zhang et al. (2017)
who addressed text classification, proposed select-
ing the examples according to the expected gradi-
ent length of the word embedding layer. Siddhant
and Lipton (2018); Shen et al. (2018) addressed
Deep Bayesian Active Learning for NER task and
proved that BALD exhibits a state-of-the-arts per-
formance. However, those works do not consider
the diversity of the examples.
Shen et al. (2018) attempted solving this prob-
lem through a hybrid AL method that performed
a representativeness-based sampling weighted by
uncertainty. However, it could not outperform the
uncertainty-based methods. For the slot filling
task, researchers proposed adversarial AL for se-
quence learning with an additional discriminator
network (Deng et al., 2018) and submodularity-
inspired data ranking function (Dimovski et al.,
2018) to select low-data regime. Some stud-
ies have explored hybrid methods that incorpo-
rate both diversity and uncertainty in classifica-

tion. Zhdanov (2019) takes into account both
the informativeness of the examples for the model
as well as their diversity in a mini-batch during
classification; moreover, it considers uncertainty
as a scalar value similar to works discussed ear-
lier herein. Ash et al. (2020) also designed a
BADGE method to incorporate both predictive un-
certainty and sample diversity. This method ex-
hibits a robust performance in different environ-
mental settings while performing an image classi-
fication task. In this work, we have provided an
empirical evaluation of diverse gradient embed-
dings for NLP tasks using different models, and
explored a different method to consider variable-
length input.

3 Background

3.1 Sequence labeling

Slot-filling and NER are the fundamental tasks for
building spoken language understanding systems.
Both of these utilize sequence labeling as an ap-
proach and serve different purposes. The slot-
filling task finds relevant information in a query
and tags each token with the corresponding slot la-
bels. Comparatively, NER is more generic and is
likely to have fewer labels than slot-filling. A ex-
ample of this alignment comparison is provided in
Table 1. In sequence labeling, the training exam-
ples map an input sequence, x, to the correspond-
ing label sequence, y. The input of this sequence
is comprised of a sequence of words, denoted as
x = (w1, w2, ..., wt). Moreover, the input and la-
bel sequences have identical lengths. Therefore,
there is an explicit alignment at each time step
of the sentence. We used two architectures for
training: the bidirectional long short- term mem-
ory (BiLSTM) tagger and the BiLSTM encoder-
decoder, as described in Figure 1.

3.2 AL for sequence

There are some existing active learning ap-
proaches that already show promising perfor-
mance for sequence labeling. Among these
approaches, we considered two uncertainty-based
methods and one diversity-based method as
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(a) BiLSTM tagger with-
out neural decoder layer

(b) BiLSTM Encoder-
Decoder

Figure 1: recurrent neural network (RNN)-based archi-
tecture for sequence labeling

baseline. Specifically, the uncertainty based
methods we reviewed are: Maximum normalized
log-probability (MNLP) and BALD, which ex-
hibit a state-of-the-art performance (Shen et al.,
2018; Siddhant and Lipton, 2018). In addition,
the diversity-based method we considered herein
adopts a coreset algorithm, instead of performing
a direct evaluation of the classification task (Sener
and Savarese, 2018).
Maximum normalized log-probability
(MNLP): MNLP extends the least confidence
(LC) method used for sequence selection using
log probability normalized by sequence length
and removing the bias observed in the LC model,
which preferentially selects longer sentences
(Shen et al., 2018). Let n be the length of the
sequence of xi. Then,

1

n

n∑
i=1

max
yi,..yn

logP (yi|y1, .., yn, {xi}) (1)

Bayesian AL by disagreement (BALD): The
Monte Carlo (MC) variant of BALD exploits
an interpretation of dropout regularization as a
Bayesian approximation to a Gaussian process
(Gal et al., 2017; Siddhant and Lipton, 2018). Dur-
ing inference, a fixed number of forward passes is
executed with a dropout. The measure of uncer-
tainty is the fraction of models across MC dropout
samples from the network that disagree with the
most popular choice. Let ỹ1j represent the predic-
tion of tags applied to the tth forward pass on jth
sample, and T be the number of forward passes.

Then,

argmin
j

(
1−

count(mode(ỹ1j , ..., ỹ
T
j ))

T

)
(2)

In this paper, we considered T = 100 independent
dropout masks.

Core-set: Core-set is a pure diversity-based ap-
proach to find a subset of points, which is termed
core-set, such that for all points, the maximum dis-
tance to the closest selected point is minimized us-
ing core-set selection (Sener and Savarese, 2018).
While the core-set is proposed for the convolu-
tional neural network in the classification task,
we adopted it for sequence labeling tasks with an
RNN network. We leveraged the greedy furthest-
first traversal condition on all labeled examples
within the embedding; moreover, each example
was computed by the encoder layer.

4 Diverse Gradient Embedding for
Sequences

In this section, we introduce a method that si-
multaneously captures both uncertainty and di-
versity for active learning with sequence tagging.
BADGE only addresses the image classification
task. Moreover, it does not consider tasks that
have sequences. In this section, first, we discuss
how the gradient embedding of the last layer is re-
lated to the representation information. Second,
we propose a simple modified sampling algorithm
with length-normalized weight for improved sam-
pling efficiency.

Algorithm 1 Active learning with diverse gradient
embeddings for sequence labeling tasks.
Input: Unlabeled dataset U, sequence length of
example L, number of budgets in query K.

1. For all samples in U
1. Compute the hypothesis label ŷ
2. Compute the gradient embedding gx of the

last layer

2. Select data using weighted k-means++ seeding
algorithm with L on gx until getting K number of
samples.

Similar to Ash et al. (2020), our method, de-
scribed in Algorithm 1, performs two main com-
putations at each AL round: (i) extracting gradient
embeddings with respect to the parameters of final



4

layers for all the unlabeled samples, and (ii) sam-
pling a batch of query points based on these gra-
dient embeddings using the weighted k-means++
initialization. It selects sentences for which the
diversity and uncertainty are high when consider-
ing its length. The details of each computation to
adapt it to the sequence labeling task is descried as
follows:

4.1 Gradient Embedding

Here, we describe the gradient embedding of
the penultimate layer in the sequence tagging
task. Deep neural networks are optimized us-
ing gradient-based methods; therefore, training the
gradient, back-propagated to a set of model pa-
rameters, captures the uncertainty of an example
x, which is labeled with y. This may be viewed as
a measure of change.

As the true label in the AL setting is unknown,
Zhang et al. (2017) investigated AL for sentence
classification with expected gradient length over
all possible classes. We computed the gradient as-
suming that the model’s current prediction on the
example is its true label because its norm provides
a lower bound on the gradient norm for the true
label (Ash et al., 2020).

For given labels y and sample sequence x, this
can minimize the negative log-likelihood of the
objective function LNL(x, y) for the sequential la-
beling neural network. We denoted the nonlinear
function that maps an input x to output ht of the
network’s penultimate layer that has a hidden state
of current observation at time t as zt. In the last
layer, at = Whzht + bz where Whz is the weights
of the layer and bz is bias. zt = softmax(at) is
the nonlinearity softmax that predicts the proba-
bility assigned to the K classes.

LNL(x, y) =
∑
t

ytlogzt (3)

Note that the weight of the last layer, Whz is
shared across all time sequences; consequently,
we can differentiate Whz at each time step. If
gixt

is defined as the derivative of the last layer
weight, Whz , for LNL(x, y), and the hypothesis
label ŷt = argmax(zt) is assumed, then the ith
block gradient corresponding to label i is

(gx)i =
∂

∂Whz
LNL(x, ŷ) =

∑
t

−(ŷti − pti)ht

(4)

Based on Equation 4, each block of gx is the
sum of the product of the output of the penulti-
mate layer and the probability vector at each time
step. Although traditional representation learning
in RNN uses only the final hidden state in the last
step, the summation of each hidden state retains
the property of representation information. In this
respect, gx captures sample x’s representation and
has the probability scaling. It measures uncer-
tainty as the gradient magnitude with respect to
the parameters in the final layer.

4.2 Diversity Based Sampling
To capture diversity, BADGE uses k-means++
initialization sampling (Arthur and Vassilvitskii,
2007) that favors both high magnitude and geo-
metrical diversity based on gradient embeddings
gx. In particular, it performs sequential sampling
of k centers, where each new center is sampled
from the ground set with probability proportional
to the squared distance d(x) to its nearest cen-
ter. Moreover, each sentence has the same weight
for classification tasks because we measured the
budget in sentences. In sequence labeling tasks,
however, we considered that the cost of annotat-
ing is proportional to the number of words be-
cause the annotator must provide one tag per word
and that every word in the selected sentence must
be annotated at once (Shen et al., 2018). There-
fore, it is important to select representative sam-
ples while considering the length of the sentence.
Accordingly, we modified k-means++ initializa-
tion to weight the length of each sample.

Weighted K-means++: We modified the prob-
ability to sample the new center by weighted prob-
ability with the weight of the sentence length
w(x) of x data. Denoting the length of x data
as l(x), w(x) can be expressed as w(x) =
l(x)2/

∑
x l(x)

2. In other words,

p(x) =
w(x)d(x)2∑
xw(x)d(x)

2
. (5)

We abbreviated AL for diverse gradient embed-
dings with weighted k-means++ as W-BADGE.

5 Experimental Setting

5.1 Datasets
For the experiments, we used three publicly
available datasets: CoNLL 2003 (Sang and
Meulder, 2003) for the named entity recogni-
tion task, ATIS (Hemphill et al., 1990) and
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Facebook Multilingual Task Oriented Dataset
(Schuster et al., 2019) dataset for the slot-filling
task. We followed the standard splits dataset
train/validation/test. CoNLL 2003 English NER
data contains 14,041/3,250/3,453 samples for the
trainvalidation/test sets. This dataset contains four
different types of named entities: PERSON, LO-
CATION, ORGANIZATION, and MISC. ATIS
comprises conversations from the airline do-
mains. It contains 4,478/500/893 utterances for
train/validation/test sets with 11 types of slots.
The FMTOD dataset comprises multiple domains
including alarm, reminder, and weather. We
used the English data in FMTOD, which have
30,521/4,181/8,621 datasets and 11 types of slots.

5.2 Model and Hyperparameter
The two architectures used for training were the
BiLSTM tagger (BiLSTM for word-level encod-
ing) and BiLSTM encoder-decoder (BiLSTM for
word-level encoding, and LSTM for decoding)
(Zhu and Yu, 2017) for both NER and slot-filling
tasks, as shown in Figure 2. For the encoder,
BiLSTM for word-level encoding contained 200
hidden units for ATIS and CoNLL, whereas it
had 256 hidden units for FMTOD. Our model
was comprised of 400-dimension word embed-
dings and utilized pre-trained GloVe and Kazuma
(Hashimoto et al., 2017). Furthermore, we com-
prised a BiLSTM decoder with 100 dimensions
for all datasets and utilized the greedy search for
decoding. An Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001 and a dropout
rate of 0.5 were used to train our entire deep learn-
ing system. Additionally, we used 20, 16, and
32 batches for ATIS, CoNLL, and FMTOD, re-
spectively. We trained model for 50 epochs for
ATIS and FMTOD, whereas this number was 25
for CoNLL.

5.3 Training Configuration
The AL process begins with initial samples ran-
domly selected from the training dataset. We
trained the initial model using this data. The learn-
ing process, which follows subsequently, consists
of multiple rounds. At the beginning of each
round, the AL algorithm selects sentences from
the remaining training data to be annotated up to
the predefined budget. After labeling the anno-
tations, they are added to the training data. Ac-
cordingly, the model parameters were updated by

training it on the new training dataset before pro-
ceeding to the next iteration. In each round, we
trained the model from scratch to prevent over-
fitting (Hu et al., 2019). We began our experi-
ments with an initial labeled pool with 2% labels
of original training data for the CoNLL and ATIS
datasets, and 1% labels of those for the FMTOD.
Further, we added the same number of labels at
each iteration of active learning and evaluated the
performance of the algorithm by its F1 score on
the test dataset. We also reported the performance
achieved after the full training of our model. All
experiments were repeated five times and the av-
erage F-scores with their standard deviations are
reported.

6 Results

We evaluated the performances of various AL
methods with different models for the slot-filling
and NER tasks and plotted them in Figures 2 and
3, respectively. The x-axis represents the per-
cent of words annotated and used for training and
the y-axis indicates the best F1 scores obtained.
Moreover, standard errors are indicated by shaded
regions. In all cases, we observed that the W-
BADGE method indicated a significant improve-
ment or over the baseline AL methods. It con-
sistently outperforms those employing either pure
uncertainty or diversity-based sampling in both the
earlier and latter rounds. The performance gap is
clearer, especially in the earlier rounds of training.
Although BADGE is comparable with other meth-
ods, W-BADGE performs as well as or better than
BADGE.
More specifically, as can be observed from Figure
2, W-BADGE performs satisfactorily in both the
ATIS and FMTOD datasets and shows significant
improvement in all baselines when performing the
slot-filling task. While BADGE also shows the
similar performance in FMTOD dataset with BiL-
STM tagger, W-BADGE slightly outperformed
in BiLSTM Encoder-Decoder model. Moreover,
classic uncertainty-based sampling MNLP outper-
forms BALD and Coreset in both datasets. We
suppose that the slot-filling task is relatively com-
plex and sparse because it has more classes than
the NER task; therefore, uncertainty-based sam-
pling methods have an advantage when perform-
ing such a task.
Figure 3 graphs the learning curves of the AL al-
gorithms on CoNLL 2003 dataset for NER task.
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Figure 2: Performance comparison of different datasets and various AL sampling methods used for the slot-filling
task

Figure 3: Performance comparison of CoNLL2003 dataset and various AL sampling methods in the case of NER
task

We observed that W-BADGE presented significant improvement over BALD, which shows the best
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performance in NER tasks (Siddhant and Lipton,
2018) and BADGE. As W-BADGE outperformed
the Coreset, it appears that W-BADGE can be ad-
vantageous not only over purely diversity-based
approaches but also over classic uncertainty-based
approaches in NER task.
Overall, the advantages of weighted diverse gradi-
ent embeddings can be substantial. For example,
We find that active learning algorithms achieve 98-
99% deep model trained on full data using only
15% of samples in ATIS dataset. The relative im-
provement remains significant over baselines.

7 Conclusion

In this study, we explored the empirical study on
AL utilizing the advantages of both uncertainty
and diversity by selecting weighted diverse gra-
dient embeddings to perform a sequence labeling
task. We proposed an efficient method and em-
pirically demonstrated that it could consistently
achieve a superior performance while consuming
much less data. It adds robustness to the dataset
and the architecture, thus proving to be a useful
option for solving real-world active learning prob-
lems
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