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Abstract

The Differentiable Neural Computer (DNC), a
neural network model with an addressable ex-
ternal memory, can solve algorithmic and ques-
tion answering tasks. There are various im-
proved versions of DNC, such as rsDNC and
DNC-DMS. However, how to integrate struc-
tured knowledge into these DNC models re-
mains a challenging research question. We in-
corporate an architecture for knowledge into
such DNC models, i.e. DNC, rsDNC and
DNC-DMS, to improve the ability to gener-
ate correct responses using both contextual in-
formation and structured knowledge. Our im-
proved rsDNC model improves the mean ac-
curacy by approximately 20% to the original
rsDNC on tasks requiring knowledge in the di-
alog bAbI tasks. In addition, our improved rs-
DNC and DNC-DMS models also yield better
performance than their original models in the
Movie Dialog dataset.

1 Introduction

Recently, deep neural networks have made sig-
nificant progress in complex pattern matching of
various tasks such as computer vision and natural
language processing. However, these models are
limited in their ability to represent data structures
such as graphs and trees, to use variables, and to
handle representations over long sequences. Re-
current neural networks (RNNs) can capture the
long-range dependencies of sequential data and
are also known as Turing-Complete (Siegelmann
and Sontag, 1995) and therefore are capable of
simulating arbitrary procedures, if properly wired.
However, RNNs struggled with the vanishing gra-
dients problem (Bengio et al., 1994). The long
short-term memory (LSTM) architecture addressed
this problem by taking gating mechanisms into
RNN architectures and calculating the gradients
by element-wise multiplication with the gate value

at every time-step (Hochreiter and Schmidhuber,
1997). LSTMs became quite successful and helped
to outperform traditional models because of the se-
quence to sequence model (Sutskever et al., 2014)
and attention mechanisms (Bahdanau et al., 2014;
Luong et al., 2015). Yet LSTM based models have
not reached a real solution to the problems men-
tioned as the limitations of deep neural networks.

On the other hand, in the von Neumann archi-
tecture, programs can be run by three fundamental
mechanisms: a processing unit that performs sim-
ple arithmetic operations and logic ones, a control
unit that takes control flow instructions such as se-
quential execution, conditional branch and loop,
and a memory unit that data and instructions are
written to and read from during computation (Neu-
mann, 1945). This architecture can represent com-
plex data structures and learn to perform algorith-
mic tasks. It separates computation by a processor
(i.e. a processing unit and a control one) and mem-
ory, whereas neural networks mix computation and
memory into the network weights. To improve the
performance of standard neural networks, Graves
et al. (2014) proposed a neural network model with
an addressable external memory called Neural Tur-
ing Machine (NTM). The whole architecture of
NTM is differentiable, therefore can be trained
end-to-end including how to access to the mem-
ory. Further, Graves et al. (2016) improved the
memory access mechanism and proposed Differ-
entiable Neural Computer (DNC). It solved algo-
rithmic tasks over structured data such as traversal
and shortest-path tasks of a route map and an in-
ference task of a family tree. In the experiment on
question answering with premises, input sequences
were written to the memory and necessary informa-
tion to infer the answer was read from the memory,
hence representing variables. DNC was also able
to learn long sequences by the dynamic memory
access mechanism. There are various improved
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versions of DNC, such as rsDNC (Franke et al.,
2018) and DNC-DMS (Csordás and Schmidhuber,
2019).

However, how to integrate structured knowledge
into these DNC models remains a challenging re-
search question. This paper investigates how to
incorporate structured knowledge into DNC mod-
els. We extend single-memory unit DNC models
to a multiple-memory architecture that leverages
both contextual and structured knowledge informa-
tion. We add an extra memory unit that encodes
knowledge from knowledge bases. In contrast with
RNNs, the memory-augmentation of DNC allows
an explicit storage and manipulation of complex
data structures over a long time-scale (Franke et al.,
2018). Our main contributions are as follows:

• We incorporate a knowledge memory archi-
tecture into DNC models, i.e. DNC, rsDNC
and DNC-DMS, to improve the ability to gen-
erate correct responses using both contextual
information and structured knowledge.

• Our improved rsDNC model improves the
mean accuracy by approximately 20% to the
original rsDNC on tasks requiring knowledge
in the dialog bAbI tasks (Bordes and Weston,
2016).

• In addition, our improved rsDNC and DNC-
DMS models also yield better performance
than their original models in the Movie Dialog
dataset (Dodge et al., 2016).

The whole paper is organized as follows. Sec-
tion 2 briefly introduces the DNC, rsDNC and
DNC-DMS models. We describe our proposed
model in Section 3 and our experiments and de-
tailed analysis in Section 4. Section 5 introduces
related works. Finally, we conclude this paper and
explore the future work in Section 6.

2 Differentiable Neural Computer

The Differentiable Neural Computer (DNC) is a
neural network coupled to an external memory ma-
trix M ∈ RN×W , as shown in Figure 1. It uses
attention mechanisms to define weightings over N
locations of the memory matrix M that represent
which locations should be read or written mainly.

For the read operation, the read vector r is com-
puted as a weighted sum over the memory locations
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Figure 1: Overview of DNC

by applying a read weighting wr over memory M :

r =

N∑
i=1

M [i, ·]wr[i]

where the ‘·’ denotes all j = 1, ...,W .
For the write operation, the memory M is mod-

ified by using a write weighting ww to first erase
with an erase vector e, then add a write vector v:

M [i, j]←M [i, j](1−ww[i]e[j]) +ww[i]v[j]

The weightings are defined by the following
three attention mechanisms:

• Content-based addressing: compares a key
vector to the content of each location in mem-
ory and calculates similarity scores to define
a read weighting for associative recall or a
write weighting to modify a relevant vector in
memory.

• Temporal memory linkage: records tracks of
consecutively written memory locations to be
able to read sequences in the order of which
locations were written to.

• Dynamic memory allocation: frees and allo-
cates memory as needed for writing by rep-
resenting the degree of each location usage
which can be increased with each write and de-
creased after each read and reallocating mem-
ory with a low degree of usage.

The whole system is differentiable and can be
learned with gradient descent.

Recently, variations of the DNC model have
been proposed, such as the robust and scalable
DNC (rsDNC) (Franke et al., 2018) and the DNC-
DMS (Csordás and Schmidhuber, 2019).
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Robust and Scalable DNC : Focusing on QA
tasks, Franke et al. (2018) extended the DNC to
be more robust and scalable (rsDNC), with the
following four improvements: (1) using only the
content-based memory unit to reduce memory con-
sumption and training time, (2) applying layer nor-
malization to lower the variance in performance
between different runs, (3) using bypass dropout
to make the memory unit’s effect stronger, and (4)
introducing a bidirectional architecture to encode
input sequences in a more informative way.

DNC-DMS : Csordás and Schmidhuber (2019)
tackled three problems of vanilla DNC and pro-
posed an improved model called DNC-DMS. First,
the lack of key-value separation makes the content-
based address distribution flat and prevents the
model from accessing specific parts of a mem-
ory. By masking improper parts of both look-
up key and memory content, the key-value sep-
aration can be controlled dynamically. Second,
memory de-allocation mechanisms do not affect
memory content which is crucial to content-based
addressing and result in memory aliasing. Thus,
DNC-DMS proposed to erase memory content
completely. Lastly, chaining multiple reads with
the temporal linkage matrix exponentially blurs
the address distribution. Exponentiation and re-
normalization of the distribution reduced the effect
of exponential blurring and improved sharpness of
the link distribution.

Although these methods lead to good improve-
ments over the original DNC model, none of them
addressed how to incorporate structured knowledge
into the DNC explicitly.

3 Proposed Method

We expand three models, DNC, rsDNC, and DNC-
DMS, by adding an extra memory architecture to
store structured knowledge. Therefore, our pro-
posed model consists of a control unit and two
memory units. One memory unit stores contextual
information in the dialogue and we call it “context
memory”. The other memory unit stores knowl-
edge information and we call it “knowledge mem-
ory”. The differences from the original DNC mod-
els are to introduce the knowledge memory and add
the operation for it. Figure 2 shows the overview
of our proposed model based on DNC.

The procedures at every time-step t are described
as follows:
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Figure 2: Overview of our proposed model based on
DNC

1. The controller (RNN) receives an input vec-
tor xt, a set of R read vectors rct−1 =

[rc,1t−1; ...; r
c,R
t−1] (rct−1 is a concatenation of

rc,1t−1, ..., r
c,R
t−1) from the context memory ma-

trix M c
t−1 ∈ RN×W at the previous time-

step and a set of R read vectors rkt−1 =

[rk,1t−1; ...; r
k,R
t−1] from the knowledge memory

matrix Mk
t−1 ∈ RN ′×W ′

at the previous time-
step. It then emits an hidden vector ht.

2. By linear transformation of ht, an output vec-
tor υt = Wyht, an interface vector ξt =
Wξht that parameterizes the context memory
interactions at the current time-step and an in-
terface vector ζt = Wζht for the knowledge
memory are obtained. The W terms denote
learnable weight matrices.

3. The write operation to the context memory is
performed using ξt and its state is updated.
The write operation to the knowledge memory
is not performed.

4. Finally, the output vector yt is calculated by
adding υt to a vector obtained by multiplying
the concatenation of the current read vectors
rct from the context memory and W c

r and a
vector obtained by multiplying the concatena-
tion of the current read vectors rkt from the
knowledge memory and W k

r .

yt = υt +W c
r r

c
t +W k

r r
k
t

The read vectors rct and rkt are appended to
the controller input at the next time-step.
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The read and write operations to two memories are
performed by repeating the above procedures.

To build the knowledge memory unit used in
our models, we first run the original DNC model
on a knowledge base (KB). We then use the pre-
trained memory unit as the knowledge memory
unit in our proposed models. The process to build
this knowledge memory is described in the next
section.

Knowledge Memory Building We built a
knowledge memory unit with a knowledge base
(KB). Facts in the KB have a Resource Descrip-
tion Framework (RDF)1 triple structure “(sub-
ject, relation, object)”. For example, information
such as “Washington, D.C. is the capital of the
U.S.” is expressed as (the U.S., capital,
Washington, D.C.).

We applied the original DNC model, which has
a single memory, to learn KB facts by giving the
model all three components of a triple and any
two of a triple and then making the model learn
to return the other of a triple. For instance, when
inputs for the model are ‘‘ the U.S.’’, ‘‘
capital’’, ‘‘ Washington, D.C.’’, ‘‘
the U.S.’’, and ‘‘capital’’, the output
is ‘‘ Washington, D.C.’’. The model was
trained using all triples of the KB and produced
a memory unit which stores the whole KB. We
used this pre-trained memory unit as the knowledge
memory unit in our proposed models.

We trained the DNC model using memory di-
mensions of 512× 128 because the results of our
proposed models were better than when we also
trained using memory dimensions of 256 × 64
which were the same as context memory dimen-
sions in our proposed method. Whereas the context
memory just stores each dialogue content in the
dataset, the knowledge memory stores the whole
content of the KB and thus it is reasonable that
the knowledge memory needs to be larger than the
context memory. We evaluated the model with the
accuracy and used TransE (Bordes et al., 2013) for
KB’s word embeddings.

4 Experiments

We evaluated our approach on two dialogue
datasets, the (6) dialog bAbI tasks (Bordes and We-
ston, 2016) and the Movie Dialog dataset (Dodge
et al., 2016). Both datasets require context compre-

1https://www.w3.org/TR/rdf11-primer/

hension and knowledge background, and provide
dialogue data on a specific domain and RDF triple
data to answer questions in the dialogue.

4.1 Implementation Details

The hyperparameters of all models are mainly
based on the original DNC paper (Graves et al.,
2016). We trained all models using one layer
LSTM (Hochreiter and Schmidhuber, 1997) with
a hidden layer of size 256 , a batch of size 32, a
learning rate of 1× 10−4, context memory dimen-
sions of 256× 64, knowledge memory dimensions
of 512 × 128, four read heads, one write head.
We used the RMSProp optimizer (Tieleman and
Hinton, 2012) with a momentum of 0.9. rsDNC
models have a dropout probability of 10%, follow-
ing (Franke et al., 2018). We used TransE (Bordes
et al., 2013) for KB’s word embeddings and GloVe
embeddings (Pennington et al., 2014) for words
that do not appear in the KB but appear in the dia-
logue such as “the” and “what” referring to (Saha
et al., 2018). The dimension of each word embed-
ding vector is 200. We stopped training if the result
of a validation set drops ten epochs in a row and the
model repeats this five times during training. We
run every model three times under different random
initializations and report the averaged results.

4.2 Dialog bAbI tasks

The (6) dialog bAbI tasks (Bordes and Weston,
2016) are a set of six dialogue tasks within the
goal-oriented context of restaurant reservation.
Among them, we focus on Task 5, which combines
Tasks 1-4 to generate full dialogs. We also
removed sentences starting with the special token
“api call” from it in our work. Training, validation
and test sets hold 1,000 examples, respectively. It
also includes an Out-Of-Vocabulary (OOV) test
set of 1,000 examples that include entities unseen
in training and validation sets. The KB contains
8,400 facts in the restaurant domain such as
‘‘resto seoul cheap korean 1stars,
R cuisine, korean’’. The number of
entities is 3,635, the number of relations is 7, and
the vocabulary size of the dialog is 2,043.

Results In Table 1, we present the mean per-
response accuracy over three different runs for all
models. For clarity, we use the following nota-
tion: DNC is the original DNC model, rsDNC
refers to the robust and scalable DNC model pro-
posed by Franke et al. (2018), DNC-DMS (Csordás
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Task DNC DNC+KM rsDNC rsDNC+KM DNC-DMS DNC-DMS DNC-MD DNC-MD
+KM +KM

Full dialogs 83.04% 86.52% 87.77% 92.46% 84.48% 83.83% 82.50% 84.30%
Full dialogs (OOV) 73.06% 74.60% 76.11% 75.90% 73.57% 71.83% 72.33% 72.52%

Table 1: Mean per-response accuracy of different models and our proposed models in the dialog bAbI tasks (Task
5).

Task DNC DNC+KM rsDNC rsDNC+KM DNC-DMS DNC-DMS DNC-MD DNC-MD
+KM +KM

w/o KB facts 99.99% 99.99% 100.00% 100.00% 100.00% 100.00% 99.99% 100.00%
w/ KB facts 29.53% 43.98% 49.14% 68.66% 35.49% 32.78% 27.28% 34.73%
w/o KB facts (OOV) 95.98% 98.01% 99.99% 99.72% 96.65% 94.37% 95.03% 95.27%

Table 2: Detailed results in the dialog bAbI tasks (Task 5). w/o KB facts denotes tasks that can be answered
without KB facts and w/ KB facts denotes tasks that need KB facts to answer questions. The results of w/ KB facts
(OOV) are omitted since they are all 0.00%.

and Schmidhuber, 2019) has three modifications
(i.e. de-allocation mechanisms, masked content
based addressing, and sharpness enhancement),
and DNC-MD (a variant of the DNC-DMS model)
is with only masking and de-allocation modifica-
tions. Models with “+KM” notation are our pro-
posed DNC models with the added knowledge
memory unit.

DNC+KM outperformed the original DNC on
both Full dialogs and OOV tasks. Table 2 shows
the results in detail separating tasks that can be an-
swered without KB facts and tasks that require KB
facts to answer questions. The w/o KB facts task
has 12,351 sentences and the w/ KB facts task con-
tains 3,912 sentences in the test set. Though DNC
and DNC+KM were the same on the w/o KB facts
task (99.9%), there was a significant improvement
of 14.45% on the w/ KB facts task, where the DNC
and DNC+KM models obtained accuracy scores of
29.53% and 43.98%, respectively.

rsDNC+KM achieved the best performance over-
all and also improved the results on the w/ KB facts
task by 19.52%, where the rsDNC and rsDNC+KM
models obtained accuracy scores of 68.66% and
49.14%, respectively. Focusing on the rsDNC+KM
model, we visualized the results of read/write atten-
tion weights from/to memories at every time-step
to investigate what the model wrote to memories
and what it read from memories. Figure 3, Figure 4,
and Figure 5 shows the attention weights visualiza-
tion on a successful example where the outputs of
the model are all correct, as presented in Table 3. In
Figure 3, the horizontal axis represents locations in
the context memory and the vertical axis represents
inputs of data, or user’s utterances and outputs of
the model at every time-step. While the model

takes input sequences, it returns nothing, and while
there is no input, it generates responses, in other
words, when input sequences are “can, you, make,
a, restaurant, reservation, in, paris, -, -, -”, the out-
put sequences are “-, -, -, -, -, -, -, -, i’m, on, it” (‘-’
is a padding word). Figure 3 shows write attention
weights to the context memory corresponding to
turn 2 to turn 6 in the example shown in Table 3.
There are strong attentions on KB words such as
“paris” and it is interesting that there are also at-
tentions on words used to change the conditions
of a restaurant such as “actually” and “instead”.
Figure 4 shows read attention weights from the
context memory corresponding to turn 8 to 14 in
the example shown in Table 3. The model’s mem-
ory uses four read heads and we show one of them.
The slot where “indian” was strongly written to
has an attention when the model outputs restaurant
information. The correct answer is an indian restau-
rant and therefore read information of “indian” is
thought to be useful. Figure 5 presents read atten-
tion weights from the knowledge memory. There
are attentions before the model answers restaurant
information and distinctive features are not found
compared to the context memory.

We also examined a poor performance exam-
ple where the model made mistakes in all w/ KB
facts tasks, as shown in Table 4. Figure 6 shows
a part of the results of write attention weights to
the context memory between turn 2 and 8 in Ta-
ble 4. KB words such as “moderate” and “british”
have strong attentions. Figure 7 presents a part of
read attention weights from the context memory
between turn 10 and 14 in Table 4. There are atten-
tions on a slot where “british” was written to and
on another slot where “with” was written to when
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Turn User’s utterance Outputs of rsDNC+KM Target
1 good morning hello what can i help you with today 3 hello what can i help you with today
2 can you make a restaurant reservation in paris i’m on it 3 i’m on it

for six with indian cuisine
3 <silence> which price range are looking for 3 which price range are looking for
4 i am looking for a expensive restaurant ok let me look into some options for you 3 ok let me look into some options for you
5 actually i would prefer in madrid sure is there anything else to update 3 sure is there anything else to update
6 instead could it be in a moderate price range sure is there anything else to update 3 sure is there anything else to update
7 no ok let me look into some options for you 3 ok let me look into some options for you
8 <silence> what do you think of this option: what do you think of this option:

resto madrid moderate indian 7stars 3 resto madrid moderate indian 7stars
9 no i don’t like that sure let me find an other option for you 3 sure let me find an other option for you
10 <silence> what do you think of this option: what do you think of this option:

resto madrid moderate indian 5stars3 resto madrid moderate indian 5stars
11 no i don’t like that sure let me find an other option for you 3 sure let me find an other option for you
12 <silence> what do you think of this option: what do you think of this option:

resto madrid moderate indian 2stars 3 resto madrid moderate indian 2stars
13 let’s do it great let me do the reservation 3 great let me do the reservation
14 may i have the phone number of the restaurant here it is here it is

resto madrid moderate indian 2stars phone 3 resto madrid moderate indian 2stars phone
15 you rock is there anything i can help you with3 is there anything i can help you with
16 no thanks you’re welcome 3 you’re welcome

Table 3: Outputs of rsDNC+KM on a successful example on the dialog bAbI tasks

Figure 3: Visualized result of write attention weights
to the context memory in a rsDNC+KM’s successful
example on the dialog bAbI tasks. The horizontal axis
represents locations in the context memory and the ver-
tical axis represents inputs of data and outputs of the
model at every time-step.

the model outputs restaurant information. Unnec-
essary information of “with” may be a negative
influence on the outputs of the model. Figure 8
shows read attention weights from the knowledge
memory. There are attentions before the model
answers restaurant information and it shows a sim-
ilar behavior to read attention weights from the
knowledge memory in the good example. Con-
sidering the visualized results, the contributions
of the knowledge memory appear blurry (it might
give the model some information about when to
answer KB entities), however, the performance of
rsDNC improves by adding the knowledge mem-

Figure 4: Visualized result of read attention weights
from the context memory in the rsDNC+KM’s success-
ful example on the dialog bAbI tasks

ory architecture and therefore it is our future work
to investigate the knowledge memory behavior in
more detail.

Regarding DNC-DMS models, the scores of
DNC-DMS+KM were lower than the ones of
DNC-DMS. We also conducted experiments on
DNC-MD models since Csordás and Schmidhuber
(2019) reported that DNC-MD performed better
than DNC-DMS on QA tasks, and we found that
the performance of the DNC-MD+KM model was
higher than DNC-MD. We hypothesize this is due
to the nature of the knowledge memory, which does
not use the temporal memory linkage. The order
of the KB triples when building knowledge mem-
ory and the order of the words in the dialogue are
irrelevant, therefore sharpness enhancement does
not work well.
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Turn User’s utterance Outputs of rsDNC+KM Target
1 good morning hello what can i help you with today 3 hello what can i help you with today
2 i’d like to book a table in a moderate price range i’m on it 3 i’m on it
3 <silence> any preference on a type of cuisine 3 any preference on a type of cuisine
4 with british food where should it be 3 where should it be
5 madrid please how many people would be in your party 3 how many people would be in your party
6 for four people please ok let me look into some options for you 3 ok let me look into some options for you
7 instead could it be in a expensive price range sure is there anything else to update 3 sure is there anything else to update
8 actually i would prefer for six sure is there anything else to update 3 sure is there anything else to update
9 no ok let me look into some options for you 3 ok let me look into some options for you
10 <silence> what do you think of this option: what do you think of this option:

resto london expensive british 4stars 7 resto madrid expensive british 8stars
11 no this does not work for me sure let me find an other option for you 3 sure let me find an other option for you
12 <silence> what do you think of this option: what do you think of this option:

resto paris expensive british 4stars 7 resto madrid expensive british 6stars
13 i love that great let me do the reservation 3 great let me do the reservation
14 do you have its phone number here it is here it is

resto madrid moderate british 5stars phone 7 resto madrid expensive british 6stars phone
15 thanks is there anything i can help you with3 is there anything i can help you with
16 no thank you you’re welcome 3 you’re welcome

Table 4: Outputs of rsDNC+KM on a poor performance example on the dialog bAbI tasks

Figure 5: Visualized result of read attention weights
from the knowledge memory in the rsDNC+KM’s suc-
cessful example on the dialog bAbI tasks

4.3 Movie Dialog tasks

The Movie Dialog dataset (Dodge et al., 2016) is
a set of four dialogue tasks on the topic of movies.
We used Task 3 (QA+Recommendation Dialog)
which combines the question answering and rec-
ommendation tasks. The dialogues consist of three
turns: the first turn requires a recommendation,
e.g. “I’m looking for a Brian De Palma movie. Re-
sponse: Blow Out”, in the second turn, the user
asks a factoid question regarding the model’s previ-
ous response, e.g. “Who does that star? Response:
John Travolta, John Lithgow, Nancy Allen, Den-
nis Franz”, and in the third turn , the user asks
for another recommendation and gives extra infor-
mation about their tastes, e.g. “I prefer Robert
De Niro movies. Can you suggest an alternative?
Response: Hi Mom!”. The dataset contains 1M
examples of dialogues for training and 10k for de-
velopment and test respectively. Among them, we
used 100k for training and 4,907 for development,

Figure 6: Visualized result of write attention weights
to the context memory in the rsDNC+KM’s poor per-
formance example of dialog bAbI tasks

and 4,766 for test due to the limitation of computa-
tional resources. The Movie Dialog dataset’s KB is
built from the Open Movie Database (OMDb)2 and
the MovieLens dataset3. We extracted only triples
sharing their entities with entities that appeared in
our reduced dialogue data from the original KB,
and got 126,999 triples. The number of entities
is 37,055, the number of relations is 10, and the
vocabulary size of the dialogues is 26,314.

Results Table 5 shows the mean hits@1 and
hits@10 over three different runs of multiple
models and our proposed models. Though
our DNC+KM and DNC-MD+KM were worse
than their corresponding original models, our rs-

2http://beforethecode.com/projects/omdb/download.aspx.
3http://grouplens.org/datasets/movielens/
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Task DNC DNC+KM rsDNC rsDNC+KM DNC-DMS DNC-DMS DNC-MD DNC-MD
+KM +KM

Whole test set (k=1) 18.74% 18.54% 18.26% 18.54% 18.57% 18.61% 18.76% 18.58%
Whole test set (k=10) 37.72% 37.49% 35.72% 36.13% 37.53% 37.88% 38.38% 37.33%

Table 5: Mean hits@k of different models and our proposed models in the Movie Dialog dataset Task 3
(QA+Recommendation Dialog). “k=1” and “k=10” mean hits@1 and hits@10, respectively

Task DNC DNC+KM rsDNC rsDNC+KM DNC-DMS DNC-DMS DNC-MD DNC-MD
+KM +KM

Response 1 (Recs) (k=1) 22.07% 21.97% 14.46% 14.56% 21.49% 21.95% 21.87% 21.64%
Response 2 (QA) (k=1) 7.18% 6.80% 8.97% 9.28% 7.07% 6.82% 7.27% 6.87%
Response 3 (Similar) (k=1) 38.16% 38.23% 40.99% 41.39% 38.35% 38.50% 38.30% 38.64%
Response 1 (Recs) (k=10) 50.25% 50.52% 37.20% 37.97% 49.05% 50.28% 50.43% 49.36%
Response 2 (QA) (k=10) 18.84% 18.26% 20.62% 20.72% 18.79% 18.88% 19.89% 18.52%
Response 3 (Similar) (k=10) 61.69% 61.62% 64.28% 64.90% 62.31% 62.23% 62.08% 61.68%

Table 6: Detailed results in the Movie Dialog dataset Task 3 (QA+Recommendation Dialog). “k=1” and “k=10”
mean hits@1 and hits@10, respectively

Figure 7: Visualized result of read attention weights
from the context memory in the rsDNC+KM’s poor per-
formance example of dialog bAbI tasks

DNC+KM and DNC-DMS+KM performed bet-
ter than their original models on both hits@1 and
hits@10. In Table 6, we provide the detailed results
for a more specific analysis. Each task’s outputs are
a list of KB entities. Response 1 (Recs) is the first
turn in the dialogue and requires a recommendation.
The number of entities involved in response 1’s test
set is 5,421. Response 2 (QA) denotes the second
turn and the model needs to answer factoid ques-
tions considering context from the previous turn.
Response 2 has 9,867 entities in the test set since it
is often asked to answer more than one entities. Re-
sponse 3 (Similar) is the third turn where the model
provides another recommendation given the user’s
extra information about their tastes. 4,939 entities
are contained in the test set. In response 3 tasks,
the hits@1 score of our model with the knowl-
edge memory was higher in every DNC model. In
rsDNC models, both hits@1 and hits@10 of rs-
DNC+KM improved on all three tasks. Despite the

Figure 8: Visualized result of read attention weights
from the knowledge memory in the rsDNC+KM’s poor
performance example of dialog bAbI tasks

fact that the scores of rsDNC+KM outperformed
the other models on response 2 and response 3
tasks, the results on response 1 tasks were rather
low. Response 1 tasks require to deal with long
input sentences such as “Gentlemen of fortune,
Revanche, Eternal sunshine of the spotless mind,
Prometheus, Fanny and Alexander, The hurt locker,
and 127 hours are films I really like. I’m look-
ing for a Brian De Palma movie. ” and therefore
we think that rsDNC models have difficulties at
processing long sequences.

5 Related Work

Rae et al. (2016) introduced the sparse DNC
(SDNC) with a sparse memory access scheme
called Sparse Access Memory (SAM). SAM con-
trols memory modifications within a sparse subset
and uses efficient data structures for content-based
addressing, and therefore the memory size does
not influence memory consumption. Ben-Ari and
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Bekker (2017) proposed a differentiable allocation
mechanism to replace the non-differentiable sorting
function of DNC and reduced training time. As dif-
ferent approaches to neural networks with memo-
ries, the dynamic memory network (DMN) (Kumar
et al., 2015) and the DMN+ (Xiong et al., 2016),
and End-to-end memory networks (Sukhbaatar
et al., 2015) can be mainly listed. They store sen-
tences in a memory and look up related sentences
to answer queries using the attention mechanism.
The relation memory network (RMN) (Moon et al.,
2018) uses MLP and makes a multi-hop approach
to an external memory to find out relevant informa-
tion. In contrast to the above models, our model
explicitly incorporates a memory architecture to
store structured knowledge.

Key-Value Memory Networks (Miller et al.,
2016) are based on End-to-end memory net-
works (Sukhbaatar et al., 2015) and operate a mem-
ory with the key-value structure. This structure
makes the model flexible to encode knowledge
sources and solves the gap between reading docu-
ments and using the KB. Saha et al. (2018) created
Complex Sequential Question Answering (CSQA)
dataset that consists of coherently linked questions
which can be answered from a large scale KB. They
combined the hierarchical recurrent encoder de-
coder (HRED) model (Serban et al., 2015) and the
key-value memory network model (Miller et al.,
2016) to solve their CSQA dataset. Unlike these
models, our proposed model does not need to ex-
tract KB facts related to queries beforehand and
can learn which KB facts the model should extract
in a differentiable way.

6 Conclusion

We added knowledge memory architecture to three
DNC models, vanilla DNC, rsDNC, and DNC-
DMS, and experimentally analyzed the effect of our
addition on dialogue tasks that require background
knowledge. Our proposed models, DNC+KM, rs-
DNC+KM, and DNC-MD+KM outperformed their
original models on full dialog tasks in the (6) dia-
log bAbI tasks dataset. In particular, each model
obtained an improvement of approximately 14%,
20%, and 7%, respectively on tasks which require
KB facts. In the Movie Dialog dataset, our rs-
DNC+KM and DNC-DMS+KM performed better
than their original models. In future work we will
investigate the behavior of the knowledge mem-
ory in detail and study how to build and use the

knowledge memory more effectively in the whole
architecture. We will also conduct experiments
with models that are different from DNC models
such as Key-Value Memory Networks (Miller et al.,
2016) to compare with our models.
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