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Preface

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scientific
conference for the study, development and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation,
speech-to- speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual
communication including all multimodal, emotional, paralinguistic, and stylistic aspects and their
applications in the field. The conference organizes evaluations and workshop sessions around challenge
areas, and presents scientific work and system descriptions.

In 2020, IWSLT joins ACL as the first ACL speech translation conference. It features six challenge
tracks: 1.) Simultaneous speech translation, 2.) Video speech translation, 3.) Offline speech translation,
4.) Conversational speech translation, 5.) Open domain translation, and 6.) Non-native speech
translation. These topics represent open problems toward effective cross-lingual communication and
we expect the community effort and discussion will greatly advance the state of the field. Each track was
coordinated by a chair. The resulting evaluation campaigns attracted a total of 30 teams, from academy
and industry. System submissions resulted in system papers that will be presented at the conference.

The great turnout this year demonstrates the growing academic and commercial interest in spoken
language translation. It has been empowered by growing availability of data resources also facilitated by
the conference over the years. The versatility of neural network models and broad availability of training
frameworks further support this trend as even smaller groups can now tackle complex problems, like
speech translation, directly. Given the growing interest and international demand, we invite researchers
and potential organizers to propose new IWSLT challenges for the future.

Following our call for papers this year, 43 submissions were received. In a blind review process, 9
research papers were selected out of 19 for oral presentation (47%) in addition to 24 system papers. The
program committee is excited about the quality of the accepted papers and expects lively discussion and
exchange at the conference.

The conference chairs and organizers would like to express their gratitude to everyone who contributed
and supported IWSLT. Our IWSLT-20 program exceeds all our expectations in quality and breath,
particularly when considering the challenges during a pandemic under lock-downs and health and travel
restrictions. We thank the challenge track chairs, organizers, and participants, the program chairs and
committee members, as well as all the authors that went the extra mile to submit system and research
papers to IWSLT, and make this year’s conference our most vibrant than ever. We also wish to express
our sincere gratitude to ACL for hosting our conference and for arranging the logistics and infrastructure
that allow us to hold IWSLT 2020 as a virtual online conference.

Welcome to IWSLT 2020, in Seattle, Mountain View or wherever you may be hiding out!

Marcello Federico and Alex Waibel
Conference Chairs
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Abstract

The evaluation campaign of the International
Conference on Spoken Language Translation
(IWSLT 2020) featured this year six chal-
lenge tracks: (i) Simultaneous speech transla-
tion, (ii) Video speech translation, (iii) Offline
speech translation, (iv) Conversational speech
translation, (v) Open domain translation, and
(vi) Non-native speech translation. A total
of 30 teams participated in at least one of
the tracks. This paper introduces each track’s
goal, data and evaluation metrics, and reports
the results of the received submissions.

1 Introduction [Marcello]

The International Conference on Spoken Lan-
guage Translation (IWSLT) is an annual scien-
tific conference (Akiba et al., 2004; Eck and
Hori, 2005; Paul, 2006; Fordyce, 2007; Paul,
2008, 2009; Paul et al., 2010; Federico et al.,
2011, 2012; Cettolo et al., 2013, 2014, 2015,
2016, 2017; Niehues et al., 2018, 2019) for the
study, development and evaluation of spoken lan-
guage translation technology, including: speech-
to-text, speech-to-speech translation, simultane-
ous and consecutive translation, speech dubbing,
cross-lingual communication including all multi-

modal, emotional, para-linguistic, and stylistic as-
pects and their applications in the field. The goal
of the conference is to organize evaluations and
sessions around challenge areas, and to present
scientific work and system descriptions. This pa-
per reports on the evaluation campaign organized
by IWSLT 2020, which features six challenge
tracks:

• Simultaneous speech translation, address-
ing low latency translation of talks, from En-
glish to German, either from a speech file into
text, or from a ground-truth transcript into
text;

• Video speech translation, targeting multi-
modal speech translation of video clips into
text, either from Chinese into English or from
English into Russian

• Offline speech translation, proposing
speech translation of talks from English into
German, using either cascade architectures or
end-to-end models, able to directly translate
source speech into target text;

• Conversational speech translation, target-
ing the translation of highly disfluent conver-
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sations into fluent text, from Spanish to En-
glish, starting either from audio or from a ver-
batim transcript;

• Open domain translation, addressing
Japanese-Chinese translation of unknown
mixed-genre test data by leveraging hetero-
geneous and noisy web training data.

• Non-native speech translation, considering
speech translation of English-to-Czech and
English-to-German speech in a realistic set-
ting of non-native spontaneous speech, in
somewhat noisy conditions.

The challenge tracks were attended by 30 par-
ticipants (see Table 1), including both academic
and industrial teams. This correspond to a signifi-
cant increment with respect to the last year’s eval-
uation campaign, which saw the participation of
12 teams. The following sections report on each
challenge track in detail, in particular: the goal
and automatic metrics adopted for the challenge,
the data used for training and testing data, the re-
ceived submissions and the summary results. A
detailed account of the results for each challenge
is instead reported in a corresponding appendix.

2 Simultaneous Speech Translation

Simultaneous machine translation has become an
increasingly popular topic in recent years. In par-
ticular, simultaneous speech translation enables
interesting applications such as subtitle transla-
tions for a live event or real-time video-call trans-
lations. The goal of this challenge is to examine
systems for translating text or audio in a source
language into text in a target language from the
perspective of both translation quality and latency.

2.1 Challenge
Participants were given two parallel tracks to enter
and encouraged to enter both tracks:

• text-to-text: translating ground-truth tran-
scripts in real-time.

• speech-to-text: translating speech into text in
real-time.

For the speech-to-text track, participants were able
to submit systems either based on cascaded or end-
to-end approaches. Participants were required to
implement a provided API to read the input and
write the translation, and upload their system as a

Docker image so that it could be evaluated by the
organizers. We also provided an example imple-
mentation and a baseline system1.

Systems were evaluated with respect to qual-
ity and latency. Quality was evaluated with the
standard metrics BLEU (Papineni et al., 2002a),
TER (Snover et al., 2006b) and METEOR (Lavie
and Agarwal, 2007). Latency was evaluated with
the recently developed metrics for simultaneous
machine translation including average proportion
(AP), average lagging (AL) and differentiable av-
erage lagging (DAL) (Cherry and Foster, 2019).
These metrics measure latency from an algorith-
mic perspective and assume systems with infinite
speed. For the first edition of this task, we report
wall-clock times only for informational purposes.
In the future, we will also take wall-clock time into
account for the official latency metric.

Three regimes, low, medium and high, were
evaluated. Each regime was determined by a
maximum latency threshold. The thresholds were
measured with AL, which represents the delay to a
perfect real-time system (milliseconds for speech
and number of words for text). The thresholds
were set to 3, 6 and 15 for the text track and to
1000, 2000 and 4000 for the speech track, and
were calibrated by the baseline system. Partic-
ipants were asked to submit at least one system
per latency regime and were encouraged to submit
multiple systems for each regime in order to pro-
vide more data points for latency-quality trade-off
analyses.

2.2 Data
Participants were allowed to use the same train-
ing and development data as in the Offline Speech
Translation track. More details are available in
§4.2.

2.3 Submissions
The simultaneous task received submissions from
4 teams: 3 teams entered both the text and the
speech tracks while 1 team entered the text track
only. Teams followed the suggestion to submit
multiple systems per regime, which resulted in a
total of 56 systems overall.

ON-TRAC (Elbayad et al., 2020) participated
in both the speech and text tracks. The authors
used a hybrid pipeline for simultaneous speech

1https://github.com/pytorch/fairseq/
tree/simulastsharedtask/examples/
simultaneous_translation

2



Team Organization
AFRL Air Force Research Laboratory, USA (Ore et al., 2020)
APPTEK/RWTH AppTek and RWTH Aachen University, Germany (Bahar et al., 2020a)
BHANSS Samsung Research, South Korea (Lakumarapu et al., 2020)
BUT Brno University of Technology, Czech Republic (no system paper)
CASIA Inst. of Automation, Chinese Academy of Sciences, China (Wang et al., 2020b)
CUNI Charles University, Czech Republic (Polák et al., 2020)
DBS Deep Bleu Sonics, China (Su and Ren, 2020)
DIDI LABS DiDi Labs, USA (Arkhangorodsky et al., 2020)
ELITR CUNI + KIT + UEDIN (Machác̆ek et al., 2020)
FBK Fondazione Bruno Kessler, Italy (Gaido et al., 2020)
HY University of Helsinki, Finland (Vázquez et al., 2020)
HW-TSC Huawei Co. Ltd, China (Wang et al., 2020a)
IITB Indian Institute of Technology Bombay, India (Saini et al., 2020)
ISTIC Inst. of Scientific and Technical Inf. of China (Wei et al., 2020)
KINGSOFT Kingsoft, China. (no system paper)
KIT Karlsruhe Institute of Technology, Germany (Pham et al., 2020)
KSAI Kingsoft AI Lab, China (no system paper)
NAIST Nara Institute of Science and Technology, Japan (Fukuda et al., 2020)
NICT National Institute of Comm. Techn., Japan (no system paper)
OCTANOVE Octanove Labs LLC, USA (Hagiwara, 2020)
ON-TRAC ONTRAC Consortium, France (Elbayad et al., 2020)
OPPO Beijing OPPO Telecommunications Co., Ltd., China (Zhang et al., 2020)
SJTU Shanghai Jiao Tong University, China (no system paper)
SRC-B Samsung Research, China (Zhuang et al., 2020)
SRPOL Samsung Research , Poland (Potapczyk and Przybysz, 2020)
SRSK Samsung Research, South Korea (Han et al., 2020)
TAMKANG Tamkang University, Taiwan (no system paper)
TSUKUBA University of Tsukuba, Japan (Cui et al., 2020)
UEDIN University of Edinburgh, UK(Chen et al., 2020)
XIAOMI Xiaomi AI Lab, China (Sun et al., 2020)

Table 1: List of Participants

translation track, with a Kaldi-based speech recog-
nition cascaded with transformer-based machine
translation with wait-k strategy (Ma et al., 2019).
In order to save the cost of encoding every time
an input word is streamed, a uni-directional en-
coder is used. Multiple wait-k paths are jointly
optimized in the loss function. This approach was
found to be competitive with the original wait-k
approach without needing to retrain for a specific
k.

SRSK (Han et al., 2020) participated in the
speech and text tracks. This is the only submission
to use an end-to-end approach for the speech track.
The authors use transformer-based models com-
bining the wait-k strategy (Ma et al., 2019) with
a modality-agnostic meta learning approach (In-
durthi et al., 2020) to address data sparsity. They

also use the ST task along with ASR and MT as
the source task, a minor variation explored com-
pared to the original paper. In the text-to-text
task, the authors also explored English-German
and French-German as source tasks. This train-
ing setup is facilitated using a universal vocabu-
lary. They analyzed models with different values
in wait-k during training and inference and found
the meta learning approach to be effective when
the data is limited.

AppTek/RWTH (Bahar et al., 2020a) partici-
pated in the speech and text tracks. The authors
proposed a novel method to simultaneous trans-
lation, by training an additional binary output to
predict chunk boundaries in the streaming input.
This module serves as an agent to decide when the
contextual information is sufficient for the decoder
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to write output. The training examples for chunk
prediction are generated using word alignments.
On the recognition side, they fixate the ASR sys-
tem to the output hypothesis that does not change
when further context is added. The model chooses
chunk boundaries dynamically.

KIT (Pham et al., 2020) participated in the
text track only. The authors used a novel read-
write strategy called Adaptive Computation Time
(ACT) (Graves, 2016). Instead of learning an
agent, a probability distribution derived from en-
coder timesteps, along with the attention mech-
anism from (Arivazhagan et al., 2019b) is used
for training. The ponder loss (Graves, 2016) was
added to the cross-entropy loss in order to encour-
age the model towards shorter delays. Different
latency can be achieved by adjusting the weight of
the ponder loss.

2.4 Results

We discuss results for the text and speech tracks.
More details are available in Appendix A.1.

2.4.1 Text Track
Results for the text track are summarized in the
first table of Appendix A.1. Only the ON-TRAC
system was able to provide a low latency model.
The ranking of the systems is consistent through-
out the latency regimes. The results for all systems
are identical between the high latency regime and
the unconstrained regime except for SRSK who
submitted a system above the maximum latency
threshold of 15.

In the table, only the models with the best
BLEU score for a given latency regime are re-
ported. In order to obtain a broader sense
of latency-quality thresholds, we plot in Fig-
ure 1 all the systems submitted to the text
track. The ON-TRAC models present competi-
tive trade-offs across a wide latency range. The
APPTEK/RWTH system obtains competitive per-
formance for medium latency, but its characteris-
tics in low and high latency regimes are unclear.

2.4.2 Speech Track
Results for the speech track are summarized in
the second table of Appendix A.1. We also re-
port latency-quality trade-off curves in Figure 2.
The ON-TRAC system presents better trade-offs
across a wide latency range. We also note that the
APPTEK/RWTH systems are all above the highest

Figure 1: Latency-quality trade-off curves, measured
by AL and BLEU, for the systems submitted to the text
track.

Figure 2: Latency-quality trade-off curves, measured
by AL and BLEU, for the systems submitted to the
speech track.

latency threshold of 4000, which makes it difficult
to compare its trade-offs to other systems.

2.5 Future Editions

In future editions, we will include wall-clock time
information as part of the official latency met-
ric. This implies that the evaluation will be run
in a more controlled environment, for example,
the hardware will be defined in advance. We
will also encourage participants to contrast cas-
cade and end-to-end approaches for the simulta-
neous speech track.

3 Video Speech Translation

We are living the multiple modalities world in
which we see objects, hear sounds, feel texture,
smell odors, and so on. The purpose of this shared
task is to ignite possibilities of multimodal ma-
chine translation. This shared task examines meth-
ods for combining video and audio sources as in-
put of translation models.

3.1 Challenge

In this year’s evaluation campaign, we added the
video translation track to ignite possibilities of
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multimodal machine translation. This track ex-
amines methods for combining video and audio
sources as input of translation models. We of-
fer two evaluation tasks. The first one is the
constrained track in which systems are required
to only use the datasets we provided in the data
section. The second one was unconstrained sys-
tems in which additional datasets are allowed.
Both tasks are available for Chinese-English and
English-Russian language pairs.

3.2 Data

We are focusing on e-Commerce domain, particu-
larly on the live video shows similar to the ones on
e-Commerce websites such as AliExpress, Ama-
zon, and Taobao. A typical live show has at least
one seller in a wide range of recording environ-
ments. The live show contents cover product de-
scription, review, coupon information, chitchat be-
tween speakers, interactive chat with audiences,
commercial ads, and breaks. We planned to col-
lect videos from Taobao for Chinese-English, and
videos from AliExpess for English-Russian.

We have experienced data collection and an-
notation challenges during these unprecedented
times. Our English-Russian plan could not be car-
ried out smoothly. Therefore, instead of collect-
ing and annotating e-Commerce videos, we use
the How2 dataset2 and translate the dev and test
sets from English to Russian.

For Chinese-English, we collected ten Taobao
full live shows which last between fifteen min-
utes and four hours. After quality check, we keep
seven live shows for annotation. For each live
show we sampled video snippets ranging from 1 to
25 minutes relatively to the length of the original
show. Audio files are extracted from video snip-
pets. Each audio file is further split into smaller
audios based on the silence and voice activities.
We ask native Chinese speakers to provide hu-
man transcriptions. For human translation, we en-
courage annotators to watch video snippets before
translating. There are 2 English translation refer-
ences for a total of 104 minutes of Chinese live
shows. All data is available on GitHub3.

3.3 Submissions

We received 4 registrations, however, due to the
pandemic we received only 1 submissions from

2https://srvk.github.io/how2-dataset/
3https://github.com/nguyenbh/iwslt2020 video translation

team HW-TSC. We also used the cascaded speech
translation cloud services from 2 providers which
will be named as Online A and Online B.

Team HW-TSC participated in the Chinese-
English unconstrained sub-task. HW-TSC sub-
mission is a cascaded system of a speech recog-
nition system, a disfluency detection system, and
a machine translation system. They simply extract
the sound tracks from videos, then feed them to
their proprietary ASR system and proceed tran-
scripts to downstream modules. ASR outputs are
piped into a BERT-based disfluency detection sys-
tem which performs repeat spoken words removal,
detect insertion and deletion noise. For the ma-
chine translation part, a transformer-big has been
employed. They experimented multi-task learn-
ing with NMT decoding and domain classification,
back translation and noise data augmentation. For
the details of their approach, please refer to their
paper (Table 1).

3.4 Results

We use vizseq4 as our main scoring tool. We
evaluate ASR systems in CER without punctua-
tions. The final translation outputs are evaluated
with lower-cased BLEU, METEOR, and chrF. We
also break down the translation performances by
the CER error buckets with sentence-level BLEU
scores. HW-TSC has a better corpus-level perfor-
mance than other online cloud services. All sys-
tems are sensitive to speech recognition errors.

4 Offline Speech Translation

In continuity with last year (Niehues et al., 2019),
the offline speech translation task required par-
ticipants to translate English audio data extracted
from TED talks5 into German. Participants could
submit translations produced by either cascade ar-
chitectures (built on a pipeline of ASR and MT
components) or end-to-end models (neural solu-
tions for the direct translation of the input audio),
and were asked to specify, at submission time,
which of the two architectural choices was made
for their system.

Similar to last year, valid end-to-end submis-
sions had to be obtained by models that:

• Do not exploit intermediate discrete repre-
sentations (e.g., source language transcrip-

4https://github.com/facebookresearch/vizseq
5http://www.ted.com

5



tion or hypotheses fusion in the target lan-
guage);

• Rely on parameters that are all jointly trained
on the end-to-end task

4.1 Challenge

While the cascade approach has been the domi-
nant one for years, the end-to-end paradigm has
recently attracted increasing attention as a way
to overcome some of the pipeline systems’ prob-
lems, such as higher architectural complexity and
error propagation. In terms of performance, how-
ever, the results of the IWSLT 2019 ST task still
showed a gap between the two approaches that,
though gradually decreasing, was still of about 1.5
BLEU points. In light of this, the main question
we wanted to answer this year is: is the cascaded
solution still the dominant technology in spoken
language translation? To take stock of the sit-
uation, besides being allowed to submit systems
based on both the technologies, participants were
asked to translate also the 2019 test set, which last
year was kept undisclosed to enable future com-
parisons.

This year’s evaluation also focused on a key is-
sue in ST, which is the importance of a proper
segmentation of the input audio. One of the find-
ings of last year’s campaign, which was carried
out on unsegmented data, was indeed the key role
of automatically segmenting the test data in way
that is close to the sentence-level one present in
the training corpora. To shed light on this aspect,
the last novelty introduced this year is the pos-
sibility given to participants to process the same
test data released in two versions, namely with
and without pre-computed audio segmentation.
The submission instructions included the request
to specify, together with the type of architecture
(cascade/end-to-end) and the data condition (con-
strained/unconstrained – see §4.2) also the chosen
segmentation type (own/given).

Systems’ performance is evaluated with re-
spect to their capability to produce trans-
lations similar to the target-language refer-
ences. To enable performance analyses from
different perspectives, such similarity is mea-
sured in terms of multiple automatic metrics:
case-sensitive/insensitive BLEU (Papineni et al.,
2002b), case-sensitive/insensitive TER (Snover
et al., 2006a), BEER (Stanojevic and Sima'an,
2014), and CharacTER (Wang et al., 2016). Simi-

lar to last year, the submitted runs are ranked based
on the case-sensitive BLEU calculated on the test
set by using automatic re-segmentation of the hy-
potheses based on the reference translations by
mwerSegmenter.6

4.2 Data
Training and development data. Also this year,
participants had the possibility to train their sys-
tems using several resources available for ST, ASR
and MT. The training corpora allowed to satisfy
the “constrained” data condition include:

• MuST-C (Di Gangi et al., 2019a)

• WIT3 (Cettolo et al., 2012)

• Speech-Translation TED corpus7

• How2 (Sanabria et al., 2018)8

• LibriVoxDeEn (Beilharz and Sun, 2019)9

• Europarl-ST (Iranzo-Sánchez et al., 2020)

• TED LIUM v2 (Rousseau et al., 2014) and v3
(Hernandez et al., 2018)

• all the data provided by WMT 201910

• OpenSubtitles 2018 (Lison et al., 2018)

• Augmented LibriSpeech (Kocabiyikoglu
et al., 2018)11

• Mozilla Common Voice12

• LibriSpeech ASR corpus (Panayotov et al.,
2015)

The list of allowed development data includes
the dev set from IWSLT 2010, as well as the
test sets used for the 2010, 2013, 2014, 2015
and 2018 IWSLT campaigns. Using other train-
ing/development resources was allowed but, in
this case, participants were asked to mark their
submission as an “unconstrained” one.

6https://www-i6.informatik.
rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

7http://i13pc106.ira.uka.de/˜mmueller/
iwslt-corpus.zip

8only English - Portuguese
9only German - English

10http://www.statmt.org/wmt19/
11only English - French
12https://voice.mozilla.org/en/datasets

– English version en 1488h 2019-12-10
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Test data. A new test set was released by
processing, with the same pipeline used to build
MuST-C (Di Gangi et al., 2019a), a new set of 22
talks that are not included yet in the public release
of the corpus. To measure technology progress
with respect to last year’s round, participants were
asked to process also the undisclosed 2019 test
set. Both test corpora were released with and with-
out sentence-like automatic segmentation. For the
segmented versions, the resulting number of seg-
ments is 2,263 (corresponding to about 4.1 hours
of translated speech from 22 talks) for the 2020
test set and 2,813 (about 5.1 hours from 25 talks)
for the 2019 test set.

4.3 Submissions
We received submissions from 10 participants
(twice as much compared to last year’s number)
coming from the industry, the academia and other
research institutions. Eight teams submitted at
least one run obtained with end-to-end technology,
showing a steady increase of interest towards this
emerging paradigm. In detail:

• 5 teams (DiDiLabs, FBK, ON-TRAC,
BHANSS, SRPOL) participated only with
end-to-end systems;

• 3 teams (AppTek/RWTH, KIT, HY) submit-
ted runs obtained from both cascade and end-
to-end systems;

• 2 teams (AFRL, BUT) participated only with
cascade systems.

As far as input segmentation is concerned, par-
ticipants are equally distributed between the two
possible types, with half of the total submitting
only runs obtained with the given segmentation
and the other half submitting at least one run with
in-house solutions. In detail:

• 5 teams (BHANSS, BUT, DiDiLabs, FBK,
HY) participated only with the given segmen-
tation of the test data;

• 2 teams (AFRL, ON-TRAC) participated
only with their own segmentation;

• 3 teams (AppTek/RWTH, KIT, SRPOL) sub-
mitted runs for both segmentation types.

Finally, regarding the data usage possibilities,
all teams opted for constrained submissions ex-
ploiting only the allowed training corpora listed in
§4.2.

In the following, we provide a bird’s-eye de-
scription of each participant’s approach.

AFRL (Ore et al., 2020) participated with a
cascade system that included the following steps:
(1) speech activity detection using a neural net-
work trained on TED-LIUM, (2) speech recog-
nition using a Kaldi system (Povey et al., 2011)
trained on TED-LIUM, (3) sentence segmenta-
tion using an automatic punctuator (a bidirectional
RNN with attention trained on TED data using Ot-
tokar Tilk13), and (4) machine translation using
OpenNMT (Klein et al., 2017). The contrastive
system differs from the primary one in two as-
pects: Step 3 was not applied, and the transla-
tion results were obtained using Marian (Junczys-
Dowmunt et al., 2018) instead of openNMT.

AppTek/RWTH (Bahar et al., 2020b) partic-
ipated with both cascade and end-to-end speech
translation systems, paying attention to careful
data selection (based on sentence embedding sim-
ilarity) and weighting. In the cascaded ap-
proach, they combined: (1) high-quality hybrid
automatic speech recognition (based on hybrid
LSTM/HMM model and attention models trained
on data augmented with a variant SpecAugment
(Park et al., 2019), layer-wise pretraining and CTC
loss (Graves et al., 2006) as additional loss), with
(2) the Transformer-based neural machine trans-
lation. The end-to-end direct speech translation
systems benefit from: (1) pre-training of adapted
LSTM-based encoder and Transformer-based de-
coder components, (2) an adapter component in-
between, and (3) synthetic data and fine-tuning.
All these elements make the end-to-end models
able to compete with the cascade ones in terms of
MT quality.

BHANSS (Lakumarapu et al., 2020) built their
end-to-end system adopting the Transformer ar-
chitecture (Vaswani et al., 2017a) coupled with
the meta-learning approach proposed in (Indurthi
et al., 2020). Meta-learning is used mitigate the
issue of over-fitting when the training data is lim-
ited, as in the ST case, and allows their system
to take advantage of the available ASR and MT
data. Along with meta-learning, the submitted
system also exploits training on synthetic data cre-
ated with different techniques. These include au-
tomatic English to German translation to generate
artificial text data, and speech perturbation with

13https://pypi.org/project/punctuator/
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the Sox audio manipulation tool14 to generate arti-
ficial audio data similar to (Potapczyk et al., 2019).

BUT (unpublished report) participated with
cascade systems based on (Vydana et al., 2020).
They rely on ASR-MT Transformer models con-
nected through neural hidden representations and
jointly trained with ASR objective as an auxiliary
loss. At inference time, both models are connected
through n-best hypotheses and the hidden repre-
sentation that correspond to the n-best hypotheses.
The n-best hypothesis from the ASR model are
processed in parallel by the MT model. The like-
lihoods of the final MT decoder are conditioned
on the likelihoods of the ASR model. The discrete
symbol token sequence, which is obtained as the
intermediate representation in the joint model, is
used as an input to an independent text-based MT
model, whose outputs are ensembled with the joint
model. Similarly, the ASR module of the joint
model is ensembled from a separately trained ASR
model.

DiDiLabs (Arkhangorodsky et al., 2020) par-
ticipated with an end-to-end system based on the
S-Transformer architecture proposed in (Di Gangi
et al., 2019b,c). The base model trained on MuST-
C was extended in several directions by: (1)
encoder pre-training on English ASR data, (2)
decoder-pre-training on German ASR data, (3) us-
ing wav2vec (Schneider et al., 2019) features as
inputs (instead of Mel-Filterbank features), and
(4) pre-training on English to German text transla-
tion with an MT system sharing the decoder with
S-Transformer, so to improve the decoder’s trans-
lation ability.

FBK (Gaido et al., 2020) participated with
an end-to-end-system adapting the S-Transformer
model (Di Gangi et al., 2019b,c). Its training
is based on: i) transfer learning (via ASR pre-
training and – word/sequence – knowledge dis-
tillation), ii) data augmentation (with SpecAug-
ment (Park et al., 2019), time stretch (Nguyen
et al., 2020a) and synthetically-created data), iii)
combining synthetic and real data marked as dif-
ferent “domains” as in (Di Gangi et al., 2019d),
and iv) multitask learning using the CTC loss
(Graves et al., 2006). Once the training with word-
level knowledge distillation is complete the model
is fine-tuned using label smoothed cross entropy
(Szegedy et al., 2016).

HY (Vázquez et al., 2020) participated with

14http://sox.sourceforge.net/

both cascade and end-to-end systems. For the
end-to-end system, they used a multimodal ap-
proach (with audio and text as the two modalities
treated as different languages) trained in a multi-
task fashion, which maps the internal represen-
tations of different encoders into a shared space
before decoding. To this aim, they incorporated
the inner-attention based architecture proposed by
(Vázquez et al., 2020) within Transformer-based
encoders (inspired by (Tu et al., 2019; Di Gangi
et al., 2019c)) and decoders. For the cascade ap-
proach, they used a pipeline of three stages: (1)
ASR (trained with S-Transformer (Di Gangi et al.,
2019c)), (2) re-punctuation and letter case restora-
tion (based on Marian’s implementation (Junczys-
Dowmunt et al., 2018) of Transformer), and (3)
MT (also based on Marian).

KIT (Pham et al., 2020) participated with both
end-to-end and cascade systems. For the end-
to-end system they applied a deep Transformer
with stochastic layers (Pham et al., 2019b). Po-
sition encoding (Dai et al., 2019) is incorporated
to mitigate issues due to processing long audio in-
puts, and SpecAugment (Park et al., 2019) is ap-
plied to the speech inputs for data augmentation.
The cascade architecture has three components:
(1) ASR (both LSTM (Nguyen et al., 2020b)
and Transformer-based (Pham et al., 2019a)) (2)
Segmentation (with a monolingual NMT system
(Sperber et al., 2018) that adds sentence bound-
aries and case, also inserting proper punctua-
tion), and (3) MT (a Transformer-based encoder-
decoder model implementing Relative Attention
following (Dai et al., 2019) adapted via fine-tuning
on data incorporating artificially-injected noise).
The WerRTCVAD toolkit15 is used to process the
unsegmented test set.

ON-TRAC (Elbayad et al., 2020) participated
with end-to-end systems, focusing on speech seg-
mentation, data augmentation and the ensembling
of multiple models. They experimented with sev-
eral attention-based encoder-decoder models shar-
ing the general backbone architecture described
in (Nguyen et al., 2019), which comprises an en-
coder with two VGG-like (Simonyan and Zisser-
man, 2015) CNN blocks followed by five stacked
BLSTM layers. All the systems were devel-
oped using the ESPnet end-to-end speech pro-
cessing toolkit (Watanabe et al., 2018). An ASR

15https://github.com/wiseman/
py-webrtcvad
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model trained on Kaldi (Povey et al., 2011) was
used to process the unsegmented test set, training
the acoustic model on the TED-LIUM 3 corpus.
Speech segments based on the recognized words
with timecodes were obtained with rules, whose
thresholds were optimised to get a segment dura-
tion distribution in the development and evaluation
data that is similar to the one observed in the train-
ing data. Data augmentation was performed with
SpecAugment (Park et al., 2019), speed perturba-
tion, and by automatically translating into German
the English transcription of MuST-C and How2.
The two synthetic corpora were combined in dif-
ferent ways producing different models that were
eventually used in isolation and ensembled at de-
coding time.

SRPOL (Potapczyk and Przybysz, 2020) par-
ticipated with end-to-end systems based on the one
(Potapczyk et al., 2019) submitted to the IWSLT
2019 ST task. The improvements over last year’s
submission include: (1) the use of additional train-
ing data (synthetically created, both by translating
with a Transformer model as in (Jia et al., 2019)
and via speed perturbation with the Sox audio ma-
nipulation tool); (2) training data filtration (ap-
plied to WIT3 and TED LIUM v2); (3) the use of
SpecAugment (Park et al., 2019); (4) the introduc-
tion of a second decoder for the ASR task, obtain-
ing a multitask setup similar to (Anastasopoulos
and Chiang, 2018); (5) the increase of the encoder
layer depth; (6) the replacement of simpler convo-
lutions with Resnet-like convolutional layers; and
(7) the increase of the embedding size. To process
the unsegmented test set, the same segmentation
technique used last year was applied. It relies on
iteratively joining, up to a maximal length of 15s,
the fragments obtained by dividing the audio input
with a silence detection tool.

4.4 Results

Detailed results for the offline ST task are pro-
vided in Appendix A.3. For each test set (i.e.
this year’s tst2020 and last year’s tst2019), the
scores computed on unsegmented and segmented
data (i.e. own vs given segmentation) are reported
separately. Background colours are used to differ-
entiate between cascade (white background) and
end-to-end architectures (grey).

Cascade vs end-to-end. Looking at the results
computed with case-sensitive BLEU (our primary
evaluation metric), the first interesting thing to

remark is that the highest score (25.3 BLEU) is
achieved by an end-to-end system, which out-
performs the best cascade result by 0.24 BLEU
points. Although the performance difference be-
tween the two paradigms is small, it can be consid-
ered as an indicator of the steady progress done by
end-to-end approaches to ST. Back to our initial
question “is the cascaded solution still the dom-
inant technology in ST?”, we can argue that, at
least in this year’s evaluation conditions, the two
paradigms are now close (if not on par) in terms of
final performance.

The importance of input segmentation. An-
other important aspect to consider is the key role
played by a proper segmentation of the input
speech. Indeed, the top five submitted runs are
all obtained by systems operating under the “un-
segmented” condition, that is with own segmenta-
tion strategies. This is not surprising considering
the mismatch between the provided training ma-
terial (often “clean” corpora split into sentence-
like segments, as in the case of MuST-C) and the
supplied test data, whose automatic segmentation
can be far from being optimal (i.e. sentence-like)
and, in turn, difficult to handle. The importance
of a good segmentation becomes evident looking
at the scores of those teams that participated with
both segmentation types (i.e. AppTek/RWTH,
KIT, SRPOL): in all cases, their best runs are ob-
tained with own segmentations. Looking at these
systems through the lens of our initial question
about the distance between cascade and end-to-
end approaches, it’s interesting to observe that, al-
though the two approaches are close when partici-
pants applied their own segmentation, the cascade
is still better when results are computed on pre-
segmented data.16 Specifically, on unsegmented
data, AppTek/RWTH’s best cascade score (22.49
BLEU) is 2 points better than their best end-to-end
score (20.5). For KIT’s submissions the distance
is slightly larger (22.06 - 19.82 = 2.24). In light of
this consideration, as of today it is still difficult to
draw conclusive evidence about the real distance
between cascade and end-to-end ST since the ef-
fectiveness of the latter seems to highly depend a
critical pre-processing step.

Progress wrt 2019. Comparing participants’ re-
sults on tst2020 and tst2019, the progress made by

16This is only possible for the submissions by
AppTek/RWTH and KIT, since SRPOL participated
only with their own segmentation.
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the ST community is quite visible. Before con-
sidering the actual systems’ scores, it’s worth ob-
serving that the overall ranking is almost identical
on the two test sets. This indicates that the top-
ranked approaches on this year’s evaluation set are
consistently better on different new test data com-
ing from the TED Talks domain. Three systems,
two of which end-to-end, were able to outper-
form last year’s top result (21.55 BLEU), which
was obtained by a cascade system. Moreover, two
out of the three systems that also took part in the
IWSLT 2019 campaign (FBK, KIT and SRPOL)
managed to improve their previous scores on the
same dataset. In both cases, they did it with a
large margin: from 3.85 BLEU points for FBK to
4.0 BLEU points for SRPOL. As the 2019 test set
was kept undisclosed, this is another confirmation
of the progress made in one year by ST technol-
ogy in general, and by the end-to-end approach in
particular.

5 Conversational Speech Translation

In conversational speech, there are many phenom-
ena which aren’t present in well-formed text, such
as disfluencies. Disfluencies comprise e.g., filler
words, repetitions, corrections, hesitations, or in-
complete sentences. This differs strongly from
typical machine translation training data. This
mismatch needs to be accounted for when trans-
lating conversational speech both for domain mis-
match as well as generating well-formed, fluent
translations. While previously handled with inter-
mediate processing steps, with the rise of end-to-
end models, how and when to incorporate such a
pre- or post-processing steps between speech pro-
cessing and machine translation is an open ques-
tion.

Disfluency removal typically requires token-
level annotations for that language. However,
most languages and translation corpora do not
such annotations. Using recently collected fluent
references (Salesky et al., 2018) for the common
Fisher Spanish-English dataset, this task poses
several potential questions: how should disflu-
ency removal be incorporated into current conver-
sational speech translation models where transla-
tion may not be done in a pipeline, and can this be
accomplished without training on explicit annota-
tions?

5.1 Challenge

The goal of this task is to provide fluent, English
translations given disfluent Spanish speech or text.
We provide three ways in which submissions may
differ and would be scored separately:

• Systems which translate from speech, or
from text-only

• Systems may be unconstrained (use addi-
tional data beyond what is provided) or con-
strained (use only the Fisher data provided)

• Systems which do and do not use the fluent
references to train

Submissions were scored against the fluent En-
glish translation references for the challenge test
sets, using the automatic metric BLEU (Papineni
et al., 2002a) to assess fluent translations and ME-
TEOR (Lavie and Agarwal, 2007) to assess mean-
ing preservation from the original disfluent data.
By convention to compare with previous published
work on the Fisher translation datasets (Post et al.,
2013), we score using lowercased, detokenized
output with all punctuation except apostrophes re-
moved. At test time, submissions could only be
provided with the evaluation data for their track.
We compare submissions to the baseline models
described in Salesky et al. (2019).

5.2 Data

This task uses the LDC Fisher Spanish speech
(disfluent) (Graff et al.) with new target transla-
tions (fluent) Salesky et al. (2018). This dataset
has 160 hours of speech (138k utterances): this is
a smaller dataset than other tasks, designed to be
approachable. We provide multi-way parallel data
for training:

• disfluent Spanish speech

• disfluent Spanish transcripts (gold)

• disfluent Spanish transcripts (ASR output)

• disfluent English translations

• fluent English translations

Each of these are parallel at level of the train-
ing data, such that the disfluent and fluent trans-
lation references have the same number of utter-
ances. Additional details for the fluent translations
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can be found here: Salesky et al. (2018). We ar-
ranged an evaluation license agreement with the
LDC where all participants could receive this data
without cost for the purposes of this task.

The cslt-test set is originally Fisher dev2
(for which the fluent translations are released for
this first time with this task). We provided partici-
pants with two conditions for each test set for the
text-only track: gold Spanish transcriptions, and
ASR output using the baseline’s ASR model.

5.3 Submissions

We received two submissions, both for the text-
only track, as described below.

Both teams described both constrained and un-
constrained systems. While NAIST submitted
multiple (6) systems, IIT Bombay submitted ul-
timately only their unconstrained system. Both
teams submitted at least one model without fluent
translations used in training – rising to the chal-
lenge goal of this task to generalize beyond avail-
able annotations.

NAIST (Fukuda et al., 2020) used a two-
pronged approach: first, to leverage both a larger
dataset which is out-of-domain (UN Corpus: i.e.
both fluent and also out-of-domain for conversa-
tional speech) they utilize an unsupervised style
transfer model, and second, to adapt between flu-
ent and disfluent parallel corpora for NMT they
pretrain on the original disfluent-disfluent trans-
lations and fine-tune to the target disfluent-fluent
case. They find that their style transfer domain
adaptation was necessary to make the most effec-
tive use of style-transfer, as without it, the domain
mismatch was such that meaning was lost during
disfluent-fluent translation.

IIT Bombay (Saini et al., 2020) submit both
unconstrained and constrained systems, both with-
out use of the parallel fluent translations. They use
data augmentation through noise induction to cre-
ate disfluent–fluent English references from En-
glish NewsCommentary. Their translation model
uses multiple encoders and decoders with shared
layers to balance shared modeling capabilities
while separating domain-specific modeling of e.g.
disfluencies within noised data.

5.4 Results

This task proved challenging but was met by very
inventive and different solutions from each team.
Results are shown in Appendix A.4.

In their respective description papers, the two
teams scored their systems differently, leading to
different trends between the two papers than may
be observed in our evaluation.

The unconstrained submissions from each site
utilized external data in very different ways,
though with the same underlying motivation. Un-
der the matched condition — unconstrained but
no fluent references used during training — given
gold source Spanish transcripts, The submissions
from NAIST (Fukuda et al., 2020) were superior
by up to 2.6 BLEU. We see that this is not the
case, however, when ASR output is the source,
where the IITB submission performs ≈3.4 bet-
ter on BLEU; this submission, in fact, outper-
forms all submitted under any condition, though
it has not been trained on the parallel fluent refer-
ences. This may suggest perhaps that the multi-
encoder and multi-decoder machine translation
model from IITB transferred better to the noise
seen in ASR output. Interestingly, we see a slight
improvement in BLEU for both sites with ASR
output as source under this matched conditions
(e.g. for those models where the fluent data is not
used).

Turning to our second metric, METEOR, where
we assess meaning preservation with the original
disfluent references, we see that the IITB submis-
sion from ASR output preserves much more of the
content contained in the disfluent references, re-
sulting in a much higher METEOR score than all
other submissions. The utterances in these out-
puts are also 10% longer than those of NAIST-
e. Qualitatively, these segments also appear to
have more repetitions than the equivalents trans-
lated from gold transcripts. This suggests perhaps
that NAIST’s noised training using the additional
unconstrained data may have transferred better to
the noise seen in ASR output, causing less of a
change given this challenge condition. This may
not reflected by BLEU computed against fluent
references, because in addition to removing disflu-
ent content, other tokens have been changed. This
reminds us this metric may not capture all aspects
of producing fluent translations.

NAIST submitted 6 models, allowing us to see
additional trends though there are no additional
submissions with matched conditions. The uncon-
strained setting where they leveraged noising of
UN Corpus data gave significant improvements of≈ 5 BLEU. Surprisingly to us, their submissions
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which do not leverage fluent references in training
are not far behind those which do — the respec-
tive gap between otherwise matched submissions
is typically ≈ 2 BLEU.

Overall, we are very encouraged to see submis-
sions which did not use the fluent parallel data, and
encourage further development in this area!

6 Open Domain Translation

The goals of this task were to further promote
research on translation between Asian languages,
the exploitation of noisy parallel web corpora for
MT, and thoughtful handling of data provenance.

6.1 Challenge

The open domain translation task focused on ma-
chine translation between Chinese and Japanese,
with one track in each direction. We encouraged
participation in both tracks.

We provided two bilingual parallel Chinese-
Japanese corpora, and two additional bilingual Zh-
Ja corpora. The first was a large, noisy set of
segment pairs assembled from web data. Sec-
tion 6.2 describes the data, with further details in
Appendix A.5. The second set was a compila-
tion of existing Japanese-Chinese parallel corpora
from public sources. These include both freely-
downloadable resources and ones released as part
of previous Chinese-Japanese MT efforts. We en-
couraged participants to use only these provided
corpora. The use of other data was allowed, as
long as it was disclosed.

The submitted systems were evaluated on a
held-out, mixed-genre, test set curated to contain
high-quality segment pairs. The official evalua-
tion metric was 4-gram character BLEU (Papineni
et al., 2002c). The scoring script17 was shared
with participants before the evaluation phase.

6.2 Parallel Training Data

We collected all the publicly available, par-
allel Chinese-Japanese corpora we could find,
and made it available to participants as the
existing parallel. These include Global
Voices, News Commentary, and Ubuntu corpora
from OPUS Tiedemann (2012); OpenSubtitles
(Lison and Tiedemann, 2016); TED talks (Dabre
and Kurohashi, 2017); Wikipedia (Chu et al.,

17https://github.com/didi/iwslt2020_
open_domain_translation/blob/master/
eval/bleu.py

2014, 2015); Wiktionary.org; and WikiMatrix
(Schwenk et al., 2019). We also collected parallel
sentences from Tatoeba.org, released under a CC-
BY License. Table 2 lists the size of each of these
existing corpora. In total, we found fewer than 2
million publicly available Chinese-Japanese paral-
lel segments.

Corpus Segments ZH Chars
Crawled (pipeline) 18,966,595 493,902,539
Ubuntu 92,250 1,549,964
Open Subtitles 914,355 10,932,722
TED 376,441 5,345,867
Global Voices 16,848 337,194
Wikipedia 228,565 5,067,489
Wiktionary 62,557 222,562
News Commentary 570 65,038
Tatoeba 4,243 50,846
WikiMatrix 267,409 9,950,657
Total 20,929,833 527,424,878

Table 2: Provided Chinese-Japanese parallel data.

We therefore built a data-harvesting
pipeline to crawl the web for more paral-
lel text. The data collection details can be
found in Appendix A.5. The result was the
webcrawled parallel filtered dataset,
containing nearly 19M hopefully-parallel segment
pairs (494M Zh chars) with provenance infor-
mation. This crawled data combined with the
existing corpora provide 20.9M parallel segments
with 527M Chinese characters. We included
provenance information for each segment pair.

6.3 Unaligned and Unfiltered Data

In addition to the aligned and filtered output of the
pipeline, we released two other variations on the
pipeline output. We hoped these larger yet noisier
versions of the data would be of use for working
on upstream data processing.

We provided a larger aligned, but un-
filtered, version of the web-crawled data
produced by the pipeline after Stage 5
(webcrawled parallel unfiltered).
This corpus contains 161.5M segment pairs, and
is very noisy (e.g. it includes languages other than
Chinese and Japanese). Our expectation is that
more sophisticated filtering of this noisy data will
increase the quantity of good parallel data.

We also released the parallel document con-
tents, with boundaries, from Step 4 in the
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pipeline shown in Appendix A.5. These docu-
ments are the contents of the webpages paired
by URL (e.g. gotokyo.org/jp/foo and
gotokyo.org/zh/foo), and processed with
BeautifulSoup, but before using Hunalign
(Varga et al., 2005) to extract parallel sentence
pairs. We released 15.6M document pairs as
webcrawled unaligned. Sentence aligner
improvements (and their downstream effects)
could be explored using this provided data.

6.4 Dev and Test Sets

The provided development set consisted of 5304
basic expressions in Japanese and Chinese, from
the Kurohashi-Kawahara Lab at Kyoto Univer-
sity.18 The held-out test set was intended to cover
a variety of topics not known to the participants in
advance. We selected test data from high-quality
(human translated) parallel web content, authored
between January and March 2020. The test set cu-
ration process can be found in Appendix A.5.

This curation produced 1750 parallel segments,
which we divided randomly in half: 875 lines for
the Chinese-to-Japanese translation test set, and
875 lines for the other direction. The Japanese
segments have an average length of 47 characters,
and the Chinese ones have an average length of 35.

6.5 Submissions

Twelve teams submitted systems for both trans-
lation directions, and three more submitted only
for Japanese-to-Chinese. Of the 15 participants, 6
were from academia and 9 were from industry.

We built a baseline system before the compe-
tition began, based on Tensor2Tensor (Vaswani
et al., 2018), and provided participants with the
baseline BLEU scores to benchmark against. We
also provided the source code for training the base-
line, as a potential starting point for experimen-
tation and development. Our source code for the
baseline system is now publicly available.19

The following summarizes some key points
of the participating teams that submitted system
descriptions; broad trends first, and then the
individual systems in reverse-alphabetical order.
Further details for these systems can be found in
the relevant system description papers in the full

18http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JEC%20Basic%20Sentence%20Data

19DiDi baseline source code available at:
github.com/didi/iwslt2020 open domain translation

workshop proceedings.

Architecture: All participants used either the
Transformer architecture (Vaswani et al., 2017b)
or a variant, such as dynamic linear combination
of layers, or transformer-evolved with neural ar-
chitecture search. Most participants submitted en-
semble models, showing consistent improvement
over the component models on the dev set.

Data Filtering: As anticipated, all teams in-
vested significant effort in data cleaning, normal-
ization and filtering of the provided noisy corpora.
A non-exhaustive list of the techniques used in-
cludes length ratios, language id, converting tra-
ditional Chinese characters to simplified, sentence
deduplication, punctuation normalization, and re-
moving html markup.

XIAOMI (Sun et al., 2020) submitted a large
ensemble, exploring the performance of a variety
of Transformer-based architectures. They also in-
corporated domain adaptation, knowledge distilla-
tion, and reranking.

TSUKUBA (Cui et al., 2020) used the unfiltered
data for backtranslation, augmented with synthetic
noise. This was done in conjunction with n-best
list reranking.

SRC-B (Samsung Beijing) (Zhuang et al.,
2020) mined the provided unaligned corpus for
parallel data and for backtranslation. They also
implemented relative position representation for
their Transformer.

OPPO (Zhang et al., 2020) used detailed rule-
based preprocessing and multiple rounds of back-
translation. They also explored using both the un-
filtered parallel dataset (after filtering) and the un-
aligned corpus (after alignment). Their contrastive
system shows the effect of character widths on the
BLEU score.

OCTANOVE (Hagiwara, 2020) augmented the
dev set with high-quality pairs mined from the
training set. This reduced the size of the we-
bcrawled data by 90% before using. Each half of
the discarded pairs was reused for backtranslation.

ISTIC (Wei et al., 2020) used the provided un-
filtered webcrawl data after significant filtering.
They also used adaptation, using elasticsearch to
find sentence pairs similar to the test set, and opti-
mizing the system on them.

DBS Deep Blue Sonics (Su and Ren, 2020) suc-
cessfully added noise to generate augmented data
for backtranslation. They also experimented with
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language model fusion techniques.
CASIA (Wang et al., 2020b) ensembled many

models into their submission. They used the un-
filtered data for backtranslation, used a domain
classifier based on segment provenance, and also
performed knowledge-distillation. They also used
13k parallel sentences from external data; see the
“External data” note in Section 6.6.

6.6 Results and Discussion

Appendix A.5 contains the results of the Japanese-
to-Chinese and Chinese-to-Japanese open-domain
translation tasks. Some comments follow below.

Data filtering was unsurprisingly helpful. We
released 4 corpora as part of the shared task.
All participants used existing parallel
and webcrawled parallel filtered.
Overall, participants filtered out 15%-90%
of the data, and system performance in-
creased by around 2-5 BLEU points. The
webcrawled parallel unfiltered
corpus was also used successfully, but re-
quired even more aggressive filtering. The
webcrawled unaligned data was even
harder to use, and we were pleased to see some
teams rise to the challenge. Data augmentation
via backtranslation also consistently helped.
However, there was interesting variation in
how participants selected the data to be trans-
lated. Provenance information is not common
in MT evaluations; we were curious how it
would be used. Hagiwara (2020) tried filtering
web crawled parallel filtered using
a provenance indicator, but found it was too
aggressive. Wang et al. (2020b) instead trained a
domain classifier, and used it at decoding time to
reweight the domain-specific translation models
in the ensemble.

External data was explicitly allowed, poten-
tially allowing the sharing of external resources
that were unknown to us. Hagiwara (2020) im-
proved on their submitted system, in a separate
experiment, by gathering 80k external parallel
question-answer pairs from HiNative and incor-
porating them into the training set. Wang et al.
(2020b) also improved their system by adding
13k external sentence pairs from hujiangjp. How-
ever, this inadvertently included data from one of
the websites from which the task’s blind test set
was drawn, resulting in 383/875 and 421/875 ex-
act matching segments on the Chinese side and

Japanese side respectively.
Overall, we are heartened by the participation

in this first edition of the open-domain Chinese-
Japanese shared task, and encourage participation
in the next one.

7 Non-Native Speech Translation

The non-native speech translation task has been
added to IWSLT this year. The task focuses on
the very frequent setting of non-native sponta-
neous speech in somewhat noisy conditions, one
of the test files even contained speech transmitted
through a remote conferencing platform. We were
interested in submissions of both types: the stan-
dard two-stage pipeline (ASR+MT, denoted “Cas-
caded”) as well as end-to-end (“E2E”) solutions.

This first year, we had English as the only
source language and Czech and German as the tar-
get languages. Participants were allowed to submit
just one of the target languages.

The training data sets permitted for “con-
strained” submissions were agreed upon the train-
ing data with the Offline Translation Task (Sec-
tion 4) so that task participants could reuse their
systems in both tasks. Participants were however
also allowed to use any other training data, render-
ing their submissions “unconstrained”.

7.1 Challenge

The main evaluation measure is translation quality
but we invited participants to report time-stamped
outputs if possible, so that we could assess their
systems also using metrics related to simultaneous
speech translation.

In practice, the translation quality is severely
limited by the speech recognition quality. Indeed,
the nature of our test set recordings is extremely
challenging, see below. For that reason, we also
asked the participants with cascaded submissions
to provide their intermediate ASR outputs (again
with exact timing information, if possible) and
score it against our golden transcripts.

A further critical complication is the lack of
input sound segmentation to sentence-like units.
The Offline Speech Translation Task (Section 4)
this year allowed the participants to come up either
with their own segmentation, or to rely upon the
provided sound segments. In the Non-Native task,
no sound segmentation was available. In some
cases, this could have caused even a computational
challenge, because our longest test document is
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25:55 long, well beyond the common length of
segments in the training corpora. The reference
translations in our test set do come in segments
and we acknowledge the risk of automatic scores
being affected by the (mis-)match of candidate and
reference segmentation, see below.

7.1.1 SLT Evaluation Measures
The SLT evaluation measures were calculated by
SLTev,20 a comprehensive tool for evaluation of
(on-line) spoken language translation.

SLT Quality (BLEU1 and BLEUmw) As said,
we primarily focus on translation quality and we
approximate it with BLEU (Papineni et al., 2002a)
for simplicity, despite all the known shortcomings
of the metric, e.g. Bojar et al. (2010).

BLEU was designed for text translation with a
clear correspondence between source and target
segments (sentences) of the text. We have ex-
plored multiple ways of aligning the segments pro-
duced by the participating SLT systems with the
reference segments. For systems reporting times-
tamps of individual source-language words, the
segment-level alignment can be based on the exact
timing. Unfortunately, only one system provided
this detailed information, so we decided to report
only two simpler variants of BLEU-based metrics:

BLEU1 The whole text is concatenated and
treated as one segment for BLEU. Note that
this is rather inappropriate for longer record-
ings where many n-grams could be matched
far from their correct location.

BLEUmw (mwerSegmenter + standard BLEU).
For this, first we concatenate the whole doc-
ument and segment it using the mwerSeg-
menter tool (Matusov et al., 2005). Then we
calculate the BLEU score for each document
in the test set and report the average.

Since the BLEU implementations differ in
many details, we rely on a stable one, namely
sacreBLEU (Post, 2018).21

SLT Simultaneity In online speech translation,
one can trade translation quality for delay and vice
versa. Waiting for more input generally allows the

20https://github.com/ELITR/SLTev
21We use the default settings, i.e. the signa-

ture BLEU+case.mixed+numrefs.1+smooth.exp+
+tok.13a+version.1.4.6.

system to produce a better translation. A compro-
mise is sought by systems that quickly produce
first candidate outputs and update them later, at
the cost of potentially increasing cognitive load for
the user by showing output that will become irrel-
evant.

The key properties of this trade-off are captured
by observing some form of delay, i.e. how long the
user has to wait for the translation of the various
pieces of the message compared to directly fol-
lowing the source, and flicker, i.e. how much “the
output changes”. We considered several possible
definitions of delay and flicker, including or ignor-
ing information on timing, segmentation, word re-
ordering etc., and calculated each of them for each
submission. For simplicity, report only the follow-
ing ones:

Flicker is inspired by Arivazhagan et al. (2019a).
We report a normalized revision score calcu-
lated by dividing the total number of words
produced by the true output length, i.e. by
the number of words in the completed sen-
tences. We report the average score across all
documents in the test set.

Delayts relies on timing information provided
by the participants for individual segments.
Each produced word is assumed to have ap-
peared at the time that corresponds propor-
tionally to its (character) position in the seg-
ment. The same strategy is used for the refer-
ence words. Note that the candidate segmen-
tation does not need to match the reference
one, but in both cases, we get an estimated
time span for each word.

Delaymw uses mwerSegmenter to first find corre-
spondences between candidate and reference
segments based on the actual words. Then
the same strategy of estimating the timing of
each word is used.

The Delay is summed over all words and di-
vided by the total number of words considered
in the calculation to show the average delay per
word.

Note that we use a simple exact match of the
candidate and reference word; a better strategy
would be to use some form of monolingual word
alignment which could handle e.g. synonyms. In
our case, non-matched words are ignored and do
not contribute to the calculation of the delay at all,

15



Domain Files Overall Duration Segments EN Words CS Words DE Words
Antrecorp 28 0h38m 427 5040 4071 4660
Khan Academy 5 0h18m 346 2886 2272 2660
SAO 6 1h39m 654 11928 9395 10613
Total 39 2h35m 1427 19854 15738 17933

Table 3: Non-Native Speech Translation Task test data composition. Words are estimated simply by splitting at
whitespace without tokenization.

reducing the reliability of the estimate. To provide
an indication of how reliable the reported Delays
are, we list also the percentage of reference words
matched, i.e. successfully found in the candidate
translation. This percentage ranges from 20% to
up to 90% across various submissions.

Note that only one team provided us with timing
details. In order to examine the empirical relations
between these conflicting measures, we focus on
the several contrastive runs submitted by this them
in Section 7.4.1.

7.1.2 ASR Evaluation Measures

The ASR-related scores were also calculated by
SLTev, using the script ASRev which assumes that
the “translation” is just an identity operation.

We decided to calculate WER using two differ-
ent strategies:

WER1 concatenating all segments into one long
sequence of tokens, and

WERmw first concatenating all segments pro-
vided by task participants and then using mw-
erSegmenter to reconstruct the segmentation
that best matches the reference.

In both cases, we pre-process both the candi-
date and reference by lower casing and removing
punctuation.

7.2 Data

7.2.1 Training Data for Constrained
Submissions

The training data was aligned with the Of-
fline Speech Translation Task (Section 4) to al-
low cross-submission in English-to-German SLT.
English-to-Czech was unique to the Non-Native
Task.

The permitted data for constrained submissions
were:

For English ASR:

• LibriSpeech ASR corpus (Panayotov et al.,
2015),

• Mozilla Common Voice,22

• Speech-Translation TED corpus.23

For English→Czech Translation:

• MuST-C (Di Gangi et al., 2019a), release 1.1
contains English-Czech pair,

• CzEng 1.7 (Bojar et al., 2016).24 Note
that CzEng overlaps with English-German
test data of the Offline Speech Transla-
tion Task so it was not allowed to use
this English-Czech corpus to train English-
German (multi-lingual) systems.

For English→Czech Translation:

• All the data for English-German track by
WMT 201925 News Translation Task, i.e.:

– English-German parallel data,

– German monolingual data,

• MuST-C (Di Gangi et al., 2019a), release 1.0
contains English-German pair,

• Speech-Translation TED corpus,26 the
English-German texts,

• WIT3 (Cettolo et al., 2012).

22https://voice.mozilla.org/en/datasets
– English version en 1488h 2019-12-10

23http://i13pc106.ira.uka.de/˜mmueller/
iwslt-corpus.zip

24https://ufal.mff.cuni.cz/czeng/
czeng17

25http://www.statmt.org/wmt19/
26http://i13pc106.ira.uka.de/˜mmueller/

iwslt-corpus.zip
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7.2.2 Test Data
The test set was prepared by the EU project
ELITR27 which aims at automatic simultaneous
translation of speech into subtitles in the particular
domain of conference speeches on auditing.

The overall size of the test set is in Table 3.
The details about the preparation of test set com-
ponents are in Appendix A.6.

7.3 Submissions

Five teams from three institutions took part in the
task. Each team provided one “primary” sub-
mission and some teams provided several further
“contrastive” submissions. The primary submis-
sions are briefly described in Table 4. Note that
two teams (APPTEK/RWTH and BUT) took the
opportunity to reuse their systems from Offline
Translation Task (Section 4) also in our task.

For the purposes of comparison, we also in-
cluded freely available ASR services and MT ser-
vices by two companies and denote the cascaded
run for each of them as PUBLIC-A and PUBLIC-B.
The ASR was run at the task submission deadline,
the MT was added only later, on May 25, 2020.

7.4 Results

Appendix A.6 presents the results of the
Non-Native Speech Translation Task for
English→German and English→Czech, resp.

Note that the primary choice of most teams does
not agree with which of their runs received the best
scores in our evaluation. This can be easily ex-
plained by the partial domain mismatch between
the development set and the test set.

The scores in both German and Czech results
indicate considerable differences among the sys-
tems both in ASR quality as well as in BLEU
scores. Before drawing strong conclusions from
these scores, one has to consider that the results
are heavily affected by the lack of reliable segmen-
tation. If MT systems receive sequences of words
not well matching sentence boundaries, they tend
to reconstruct the sentence structure, causing seri-
ous translation errors.

The lack of golden sound segmentation also af-
fects the evaluation: mwerSegmenter used in pre-
processing of WERmw and BLEUmw optimizes
WER score but it operates on a slightly differ-
ent tokenization and casing. While the instability
will be small in WER evaluation, it could cause

27http://elitr.eu/

more problems in BLEUmw. Our BLEU calcu-
lation comes from sacreBLEU it its default set-
ting. Furthermore, it needs to be considered that
this is the first instance of the Non-Native shared
task and not all peculiarities of the used evaluation
measures and tools are quite known.28 A manual
evaluation would be desirable but even that would
be inevitably biased depending on the exact way
of presenting system outputs to the annotators. A
procedure for a reliable manual evaluation of spo-
ken language translation without pre-defined seg-
mentation is yet to be sought.

The ASR quality scores29 WER1 and WERmw
are consistent with each other (Pearson
.99), ranging from 14 (best submission by
APPTEK/RWTH) to 33 WER1. WERmw is
always 1–3.5 points absolute higher.

Translation quality scores BLEU1 and BLEUmw
show a similarly high correlation (Pearson .987)
and reach up to 16. For English-to-German, the
best translation was achieved by the secondary
submissions of APPTEK/RWTH, followed by the
primary ELITR-OFFLINE and one of the sec-
ondary submissions of CUNI-NN. The public ser-
vices seem to score worse, PUBLIC-B follows very
closely and PUBLIC-A seems to seriously under-
perform, but it is quite possible that our cascaded
application of their APIs was suboptimal. The
only on-line set of submissions (ELITR) score be-
tween the two public systems.

The situation for English-to-Czech is similar,
except that APPTEK/RWTH did not take part in
this, so ELITR-OFFLINE provided the best ASR
as well as translations (one of their secondary sub-
missions).

Often, there is a big variance of BLEU scores
across all the submissions of one team. This indi-
cates that the test set was hard to prepare for and
that for a practical deployment, testing on the real
input data is critical.

As expected, the ASR quality limits the trans-

28In our analysis, we also used BLEU as implemented in
NLTK (Bird et al., 2009), observing substantial score differ-
ences. For instance, BUT1 received NLTK-BLEU of 12.68
instead of 0.63 reported in Appendix A.6 BLEUmw. For other
submissions, NLTK-BLEU dropped to zero without a clear
reason, possibly some unexpected character in the output.
The explanation of why NLTK can inflate scores is still pend-
ing but it should be performed to be sure that sacreBLEU
does not unduly penalize BUT submissions.

29Note that the same ASR system was often used as the
basis for translation into both Czech and German so the same
ASR scores appear on multiple lines in Tables in Appendix
A.6.
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Team Paper Training Data Off/On-Line Cascaded
APPTEK/RWTH Bahar et al. (2020a)† Unconstrained Off-Line Cascaded
BUT (unpublished draft) Unconstrained Off-Line Ensemble E2E+Cascaded
CUNI Polák et al. (2020) Unconstrained Off-Line Cascaded
ELITR Machác̆ek et al. (2020) Unconstrained On-Line Cascaded
ELITR-OFFLINE Machác̆ek et al. (2020) Unconstrained Off-Line Cascaded
PUBLIC-A – (public service) Unconstrained Off-Line Cascaded
PUBLIC-B – (public service) Unconstrained Off-Line Cascaded

† The paper describes the basis of the systems but does not explicitly refer to non-native translation task.

Table 4: Primary submissions to Non-Native Speech Translation Task. The public web-based services were added
by task organizers for comparison, no details are known about the underlying systems.

lation quality. WER1 and BLEU1 correlate nega-
tively (Pearson -.82 for translation to German and
-.66 for translation to Czech). Same correlations
were observed for WERmw and BLEUmw.

The test set as well as the system outputs will
be made available at the task web page30 for future
deep inspection.

7.4.1 Trade-Offs in Simultaneous SLT
The trade-offs in simultaneity of the translation
can be studied only on submissions of ELITR,
see Appendix A.6. We see that the Delay ranges
between 1 and up to 2.5 seconds, with Delaymw
giving sligthly lower scores on average, correlated
reasonably well with Delayts (Pearson .989). De-
lay into German seems higher for this particular
set of MT systems.

The best score observed for Flicker is 5.18 and
the worst is 7.51. At the same time, Flicker is not
really negatively correlated with the Delays, e.g.
Delayts vs. Flicker have the Pearson correlation of
-.20.

Unfortunately, our current scoring does not al-
low to study the relationship between the transla-
tion quality and simultaneity, because our BLEU
scores are calculated only on the final segments.
Any intermediate changes to the translation text
are not reflected in the scores.

Note that the timing information on when each
output was produced was provided by the par-
ticipants themselves. A fully reliable evaluation
would require participants installing their systems
on our hardware to avoid effects of network traffic,
which is clearly beyond the goals of this task.

8 Conclusions

The evaluation campaign of the IWSLT 2020 con-
ference offered six challenge tracks which at-
tracted a total of 30 teams, both from academy and

30http://iwslt.org/doku.php?id=non_
native_speech_translation

industry. The increasing number of participants
witnesses the growing interest towards research on
spoken language translation by the NLP commu-
nity, which we believe has been partly driven by
the availability of suitable training resources as
well as the versatility of neural network models,
which now permit to directly tackle complex tasks,
such as speech-to-text translation, which formerly
required building very complex system. We hope
that this trend will continue and invite researchers
interested in proposing new challenges for the next
edition to get in touch with us. Finally, results of
the human evaluation, which was still ongoing at
the time of writing the overview paper, will be re-
ported at the conference and will be included in an
updated version of this paper.
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Bentivogli, Roldano Cattoni, and Marcello Federico.
2015. The IWSLT 2015 Evaluation Campaign. In
Proceedings of the 12th International Workshop on
Spoken Language Translation (IWSLT 2015), Da
Nang, Vietnam.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
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T. Ha, E. Salesky, R. Sanabria, L. Barrault, L. Spe-
cia, and M. Federico. 2019. The IWSLT 2019 Eval-
uation Campaign. In Proceedings of the 16th Inter-
national Workshop on Spoken Language Translation
(IWSLT 2019), Hong Kong, China.

Jan Niehues, Roldano Cattoni, Sebastian Stüker,
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A.1. Simultaneous Speech Translation
⋅ Summary of the results of the simultaneous speech translation text track.⋅ Results are reported on the blind test set and systems are grouped by latency regime.⋅ Tabulated raw data will also be provided on the task web site31 and the repository32.

Team BLEU AP AL DAL

Low Latency

ON-TRAC 23.59 0.77 2.71 3.92

Medium Latency

ON-TRAC 29.38 0.65 5.95 6.94
KIT 29.31 0.63 5.93 6.84
APPTEK/RWTH 28.69 0.65 4.61 7.26
SRSK 27.10 0.91 5.44 6.44

High Latency

ON-TRAC 30.51 0.63 8.71 9.63
KIT 29.76 0.63 6.38 7.32
APPTEK/RWTH 28.69 0.65 4.61 7.26
SRSK 28.49 0.91 6.09 7.13

Unconstrained

ON-TRAC 30.51 0.63 8.71 9.63
KIT 29.76 0.63 6.38 7.32
SRSK 29.41 0.90 15.28 15.68
APPTEK/RWTH 28.69 0.65 4.61 7.26

⋅ Summary of the results of the simultaneous speech translation speech track.⋅ Results are reported on the blind test set and systems are grouped by latency regime.⋅ Tabulated raw data will also be provided on the task web site33 and the repository34.

Team BLEU AP AL DAL

Low Latency

SRSK 9.25 1.17 738.75 1102.96
ON-TRAC 7.27 0.97 955.11 1833.27

Medium Latency

ON-TRAC 15.31 0.86 1727.49 3280.03
SRSK 13.58 1.07 1815.93 2243.25

High Latency

ON-TRAC 21.80 0.74 3932.21 5029.31
SRSK 15.70 1.07 3602.02 4677.22

Unconstrained

ON-TRAC 21.80 0.74 3932.21 5029.31
APPTEK/RWTH 21.19 0.74 4123.67 4750.24
SRSK 16.99 1.03 4054.18 4799.37
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A.2. Video Speech Translation
⋅ Systems are ordered according to the CER metrics.⋅ BLEU and METEOR scores are given as percent figures (%).

Video Translation: Chinese-English
System CER BLEU METEOR chrF

HW TSC 36.54 14.96 30.4 35.2
Online A 37.65 11.97 26.3 32.4
Online B 47.89 13.19 26.0 30.4

Chinese-English: Average sentence-level
BLEU score within CER ranges

CER HW TSC Online A Online B

< 15.0 14.55 11.61 20.75
(15.0, 20.0] 15.72 14.78 17.17
(20.0, 25.0] 13.94 15.18 21.21
(25.0, 30.0] 13.10 7.84 16.38
(30.0, 35.0] 9.58 5.54 15.48
(35.0, 40.0] 5.85 5.77 15.82> 40.0 7.65 3.32 4.71
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A.3. Offline Speech Translation
⋅ Systems are ordered according to the BLEU metrics.⋅ BLEU and TER scores are given as percent figures (%).⋅ End-to-end systems are indicated by gray background.

Speech Translation : TED English-German tst 2020 (own segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

SRPOL 25.3 59.45 53.16 49.35 26.4 57.60
APPTEK/RWTH 25.06 61.43 53.51 48.24 26.29 59.20
AFRL 23.33 62.12 52.46 50.05 24.53 59.96
APPTEK/RWTH 23.29 64.77 52.31 49.12 24.67 62.42
KIT 22.56 65.56 50.04 53.15 23.71 63.42
ON-TRAC 22.12 63.87 51.20 51.46 23.25 61.85
KIT 21.81 66.50 50.99 51.30 24.21 63.06

Speech Translation : TED English-German tst 2020 (given segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

APPTEK/RWTH 22.49 65.20 51.40 52.75 23.73 62.93
KIT 22.06 65.38 51.22 51.26 23.24 63.10
SRPOL 21.49 65.74 49.81 56.20 22.7 63.82
FBK 20.75 68.11 49.87 55.31 21.88 66.04
APPTEK/RWTH 20.5 70.08 49.65 54.85 21.84 67.95
KIT 19.82 70.51 48.62 56.91 22 67.36
BHANSS 18.09 71.78 47.09 60.96 19 70.06
HY 17.02 76.37 47.03 58.32 18.07 74.23
DIDI LABS 10.14 101.56 41.95 62.60 10.83 99.60
HY 6.77 86.31 36.81 76.30 7.26 84.91

Speech Translation : TED English-German tst 2019 (own segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

SRPOL 23.96 60.79 51.45 51.16 24.94 59.12
APPTEK/RWTH 23.4 63.53 52.13 49.23 24.6 61.27
APPTEK/RWTH 21.58 66.15 50.87 50.54 22.85 63.79
AFRL 21.28 64.96 51.11 51.88 22.5 62.66
KIT 21.07 66.59 49.88 52.74 22.33 64.32
KIT 20.43 66.29 50.99 50.26 22.99 62.46
ON-TRAC 20.19 66.38 49.89 52.51 21.23 64.26

Speech Translation : TED English-German tst 2019 (given segmentation)
System BLEU TER BEER characTER BLEU(CI) TER(CI)

SRPOL 20.1 67.73 47.76 59.08 21.17 65.92
FBK 19.52 68.93 48.07 58.26 20.65 66.87
APPTEK/RWTH 19.23 71.22 47.94 57.96 20.53 68.97
KIT 18.83 70.08 47.83 57.88 21.2 66.66
BHANSS 17.85 70.32 46.63 61.01 18.85 68.55
HY 16.44 76.26 46.06 60.42 17.46 74.17
DIDI LABS 10.22 97.01 42.13 62.77 10.95 94.93
HY 7.64 83.85 37.48 75.74 8.25 82.47
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A.4. Conversational Speech Translation
⋅ MT systems are ordered according to the BLEU metric.⋅ BLEU scores utilize 2 fluent English references to assess fluent translation.⋅ METEOR scores utilize 4 disfluent English references to test meaning preservation from the original disfluent data.

* = submitted with an off-by-one error on L2077; corrected by the organizers

Text Translation : test, gold transcript
System Constrained? No Fluent Data? BLEU METEOR

NAIST-b 25.6 28.5
NAIST-c 25.4 28.1
NAIST-a ✓ 20.8 25.7
NAIST-f ✓ 23.6 33.8
NAIST-e ✓ 23.1 34.1
IITB ✓ 21.0 33.0
NAIST-d ✓ ✓ 18.5 30.8

Text Translation : test, ASR output
System Constrained? No Fluent Data? BLEU METEOR

NAIST-b 23.9 23.5
NAIST-c 22.0 22.0
NAIST-a ✓ 17.0 21.6
IITB ✓ 28.1* 39.1
NAIST-e ✓ 24.7 31.3
NAIST-f ✓ 24.7 30.9
NAIST-d ✓ ✓ 13.7 22.3
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A.5. Open Domain Translation
Shared translation task overall results for all participants, evaluated with 4-gram character BLEU.
* = collected external parallel training data that inadvertently overlapped with the blind test set.

JA → ZH ZH → JA
Baseline 22.0 Baseline 26.3
CASIA 55.8* CASIA 43.0*
SRC-B 34.0 XIAOMI 34.3
OPPO 32.9 TSUKUBA 33.0
XIAOMI 32.5 OCTANOVE 31.7
TSUKUBA 32.3 DBS 31.2
UEDIN 30.9 OPPO 30.1
KSAI 29.4 UEDIN 29.9
ISTIC 28.2 SRC-B 28.4
DBS 26.9 ISTIC 27.7
OCTANOVE 26.2 NICT 26.3
KINGSOFT 25.3 KSAI 25.9
NICT 22.6 HW-TSC 7.1
HW-TSC 11.6
TAMKANG 1.8
SJTU 0.1

Pipeline for crawling parallel Chinese-Japanese data

The pipeline’s stages, diagrammed in Figure 3, are:

1. Deep-crawl the target URL list. We skipped this step in the first run, and instead started with
5 billion entries from CommonCrawl.35

2. Identify potentially-parallel Chinese-Japanese webpage pairs using URL structure. For example,
https://www.gotokyo.org/jp/ and https://www.gotokyo.org/cn/ only differ
by the country codes jp and cn.

3. Download the potentially parallel page pairs.

4. Strip HTML and markup metadata with the BeautifulSoup Python module. Split each page
into sentence segments.

5. Align segments to be parallel, using Hunalign (Varga et al., 2005).

6. Filter pairs by language ID and length ratio.

The first pipeline run produced 227k URL pairs (1.4m segment pairs) of parallel data containing 28.7m
characters on the Chinese side. We used the 227k URL pairs to trace which domains yielded the most
parallel data. We then re-ran the pipeline on each of the 6000 most-promising domains, but now deep-
crawling the domain using scrapy in Step 1 to produce the URL list examined in Step 2.

We concatenated the parallel output from all the runs, keeping track of the provenance URL
of each segment. Finally, we applied a filter to remove objectionable content. The result was
webcrawled parallel filtered dataset, containing nearly 19m hopefully-parallel segment
pairs (494m Zh chars) with provenance information.

35https://commoncrawl.org/
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Figure 3: Pipeline to harvest parallel zh-jp text. The modules are numbered in black, with inputs/outputs in orange.
The examples at the bottom show how the pipeline can be entered at intermediate stages.

Test Set Provenance

The held-out test set was intended to cover a variety of topics not known to the participants in advance.
We selected test data from high-quality (human translated) parallel web content, authored between Jan-
uary and March 2020. Because of this timeframe, COVID19 is a frequent topic in the test set. We
collected bilingual material from 104 webpages, detailed in the Appendix. Table 5.

Pages Source
54 jp.hjenglish.com : Chinese website

with Japanese learning material.
38 j.people.com.cn : the Japanese ver-

sion of the People’s Daily newspaper.
4 china-embassy.or.jp : the Embassy of

China in Japan
4 people.com.cn : the People’s Daily

newspaper, in Chinese.
3 emb-japan.go.jp : the Embassy of

Japan in China
1 kantei.go.jp : the Prime Minister of

Japan’s office

Table 5: Provenance of the Chinese-Japanese test set.

To build the test set, we first identified articles on these sites with translations, and copied their contents
into separate files. All segments were then manually aligned by a native Chinese speaker with basic
knowledge of Japanese, using the InterText tool (Vondricka, 2014). Lastly, a bilingual speaker filtered
the aligned pairs, excluding pairs that were not parallel. This produced 1750 parallel segments, which
we divided randomly in half: 875 lines for the Chinese-to-Japanese translation test set, and 875 lines
for the other direction. The Japanese segments have an average length of 47 characters, and the Chinese
ones have an average length of 35.
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A.6. Non-Native Speech Translation

English→German

⋅ Complete result for English-German SLT systems followed by public systems PUBLIC-A and PUBLIC-B for comparison.⋅ Primary submissions are indicated by gray background. Best results in bold.

SLT ASR
Quality Simultaneity Quality

System BLEU1 BLEUmw Flicker Delayts[Match%] Delaymw[Match%] WER1 WERmw

APPTEK/RWTH1 14.70 13.28 - - - 14.27 16.26
APPTEK/RWTH2 16.14 15.00 - - - 14.27 16.26
APPTEK/RWTH3 15.92 14.50 - - - 14.27 16.26
BUT1 2.25 0.63 - - - 32.33 34.09
BUT2 2.25 0.67 - - - 32.91 34.46
BUT3 1.93 0.59 - - - 32.91 34.46
BUT4 2.29 0.72 - - 32.91 34.46
CUNI-NN11 6.37 5.86 - - - 28.68 32.10
CUNI-NN12 14.08 12.38 - - - 17.39 20.46
CUNI-NN13 14.32 12.73 - - - 17.02 19.98
CUNI-NN14 6.65 6.20 - - - 28.75 32.23
CUNI-NN15 12.51 10.88 - - - 16.54 18.19
CUNI-NN16 13.15 11.50 - - - 16.33 17.95
ELITR31 9.72 7.22 6.71 1.901 [50.91%] 1.926 [30.01%] 23.77 25.15
ELITR32 9.18 7.32 7.48 1.926 [30.01%] 1.944 [30.42%] 22.91 24.26
ELITR33 9.18 7.32 7.48 1.972 [52.61%] 1.945 [30.43%] 22.91 24.26
ELITR34 9.18 7.32 7.43 1.951 [52.53%] 1.923 [30.41%] 22.91 24.26
ELITR35 9.18 7.32 6.48 2.038 [52.84%] 2.024 [30.76%] 22.91 24.26
ELITR36 9.18 7.32 5.97 2.034 [52.66%] 2.029 [30.79%] 22.91 24.26
ELITR37 9.39 7.05 6.33 2.471 [34.14%] 1.828 [31.81%] 23.81 25.25
ELITR38 9.40 7.06 6.35 2.461 [34.24%] 1.846 [31.85%] 23.81 25.25
ELITR39 9.40 7.06 6.33 2.380 [33.37%] 1.810 [31.63%] 23.81 25.25
ELITR40 9.39 7.05 5.66 2.544 [34.28%] 1.964 [32.28%] 23.81 25.25
ELITR41 9.39 7.06 5.30 2.391 [34.09%] 1.957 [32.28%] 23.81 25.25
ELITR-OFFLINE21 14.83 12.67 - - - 15.29 17.67
ELITR-OFFLINE22 13.31 11.35 - - - 15.29 17.67
ELITR-OFFLINE23 14.08 12.33 - - - 15.29 17.67
ELITR-OFFLINE24 13.03 10.76 - - - 15.29 17.67
ELITR-OFFLINE25 12.88 10.83 - - - 15.29 17.67
ELITR-OFFLINE26 10.45 8.32 - - - 15.29 17.67
ELITR-OFFLINE27 11.58 9.87 - - - 16.33 17.95
ELITR-OFFLINE28 11.76 9.83 - - - 16.33 17.95
ELITR-OFFLINE29 12.51 10.88 - - - 16.33 17.95
ELITR-OFFLINE30 11.34 9.42 - - - 16.33 17.95
ELITR-OFFLINE31 12.51 10.53 - - - 16.33 17.95
ELITR-OFFLINE32 7.89 5.72 - - - 16.33 17.95
CUNI-KALDI01 - - - - - 22.88 24.53
CUNI-KALDI02 - - - - - 30.42 31.17
CUNI-KALDI03 - - - - - 21.25 23.40
PUBLIC-A 4.29 3.02 - - - 30.10 31.09
PUBLIC-B 13.75 12.35 - - - 21.54 23.59
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English→Czech

⋅ Complete result for English-Czech SLT systems followed by public systems PUBLIC-A and PUBLIC-B for comparison.⋅ Primary submissions are indicated by gray background. Best results in bold.

SLT ASR
Quality Simultaneity Quality

System BLEU1 BLEUmw Flicker Delayts[Match%] Delaymw[Match%] WER1 WERmw

CUNI-NN01 10.57 10.34 - - - 28.68 32.10
CUNI-NN02 10.89 11.50 - - - 17.39 20.46
CUNI-NN03 12.74 11.38 - - - 17.02 19.98
CUNI-NN04 10.24 10.21 - - - 28.75 32.23
CUNI-NN05 11.85 10.57 - - - 16.54 18.19
CUNI-NN06 12.27 11.00 - - - 16.33 17.95
ELITR01 7.87 6.22 7.00 1.530 [42.45%] 1.575 [23.93%] 23.77 25.15
ELITR02 7.56 5.95 6.46 1.696 [22.01%] 1.561 [25.25%] 23.81 25.25
ELITR03 7.56 5.95 6.38 1.744 [22.26%] 1.618 [25.34%] 23.81 25.25
ELITR04 7.54 5.93 6.38 1.725 [22.09%] 1.603 [25.32%] 23.81 25.25
ELITR05 8.93 7.67 7.51 1.605 [44.80%] 1.623 [92.49%] 23.81 25.25
ELITR06 8.79 7.54 7.00 1.198 [52.55%] 1.082 [32.18%] 23.81 25.25
ELITR07 8.93 7.67 6.97 1.596 [44.79%] 1.630 [24.86%] 23.81 25.25
ELITR08 8.93 7.67 6.54 1.586 [44.64%] 1.629 [24.91%] 23.81 25.25
ELITR09 8.93 7.65 7.38 1.520 [42.80%] 1.503 [23.23%] 23.81 25.25
ELITR10 8.93 7.67 7.41 1.630 [44.77%] 1.667 [24.96%] 23.81 25.25
ELITR11 6.50 4.94 6.00 1.677 [20.99%] 1.595 [24.58%] 23.81 25.25
ELITR12 6.50 4.94 6.26 1.610 [20.87%] 1.504 [24.35%] 23.81 25.25
ELITR13 6.50 4.94 6.26 1.495 [19.47%] 1.399 [23.30%] 23.81 25.25
ELITR14 6.52 4.95 5.69 1.650 [20.88%] 1.597 [24.63%] 23.81 25.25
ELITR15 6.50 4.94 5.18 1.541 [20.71%] 1.594 [24.59%] 23.81 25.25
ELITR16 7.40 5.74 6.64 1.633 [21.89%] 1.468 [24.43%] 23.81 25.25
ELITR17 8.45 7.32 6.56 1.597 [44.85%] 1.728 [25.35%] 22.91 24.26
ELITR18 8.36 7.17 6.00 1.514 [45.58%] 1.629 [26.54%] 22.91 24.26
ELITR19 8.56 7.45 5.31 1.600 [46.81%] 1.713 [27.94%] 22.91 24.26
ELITR20 8.55 7.41 6.31 1.557 [45.78%] 1.704 [26.51%] 22.91 24.26
ELITR-OFFLINE01 13.33 11.75 - - - 15.29 17.67
ELITR-OFFLINE02 13.44 11.64 - - - 15.29 17.67
ELITR-OFFLINE03 13.56 11.79 - - - 15.29 17.67
ELITR-OFFLINE04 14.08 12.57 - - - 15.29 17.67
ELITR-OFFLINE05 10.07 8.23 - - - 15.29 17.67
ELITR-OFFLINE06 8.42 6.99 - - - 15.29 17.67
ELITR-OFFLINE07 9.62 8.16 - - - 15.29 17.67
ELITR-OFFLINE08 11.88 10.26 - - - 16.33 17.95
ELITR-OFFLINE09 11.52 9.83 - - - 16.33 17.95
ELITR-OFFLINE10 11.43 9.99 - - - 16.33 17.95
ELITR-OFFLINE11 11.85 10.57 - - - 16.33 17.95
ELITR-OFFLINE12 9.29 7.76 - - - 16.33 17.95
ELITR-OFFLINE13 7.76 6.35 - - - 16.33 17.95
ELITR-OFFLINE14 7.37 6.54 - - - 16.33 17.95
PUBLIC-A 3.30 2.47 - - - 30.10 31.09
PUBLIC-B 10.79 9.85 - - - 21.54 23.59

Test Set Provenance

Only a limited amount of resources could have been invested in the preparations of the test set and the
test set thus build upon some existing datasets. The components of the test sets are:

Antrecorp36 (Macháček et al., 2019), a test set of up to 90-second mock business presentations given
by high school students in very noisy conditions. None of the speakers is a native speaker of
English (see the paper for the composition of nationalities) and their English contains many lexical,
grammatical and pronunciation errors as well as disfluencies due to the spontaneous nature of the
speech.

For the purposes of this task, we equipped Antrecorp with manual translations into Czech and
German. No MT system was used to pre-translate the text to avoid bias in automatic evaluation.

36http://hdl.handle.net/11234/1-3023

33



Because the presentations are very informal and their translation can vary considerably, we created
two independent translations into Czech. In the end, only the first one of them was used as the
reference, to keep BLEU scores across test set parts somewhat comparable.

Khan Academy37 is a large collection of educational videos. The speaker is not a native speaker of
English but his accent is generally rather good. The difficulty in this part of the test lies in the
domain and also the generally missing natural segmentation into sentences.

SAO is a test set created by ELITR particularly for this shared task, to satisfy the need of the Supreme
Audit Office of the Czech Republic. The test sets consists of 6 presentations given in English by
officers of several supreme audit institutions (SAI) in Europe and by the Europan Court of Auditors.
The speakers nationality (Austrian, Belgian, Dutch, Polish, Romanian and Spanish) affects their
accent. The Dutch file is a recording of a remote conference call with further distorted sound
quality.

The development set contained 2 other files from Antrecorp, one other file from the SAO domain and
it also included 4 files from the AMI corpus (Mccowan et al., 2005) to illustrate non-native accents. We
did not include data from AMI corpus in the test set because we found out that some participants trained
their (non-constrained) submissions on it.

For SAO and Antrecorp, our test set was created in the most straightforward way: starting with the
original sound, manual transcription was obtained (with the help of ASR) as a line-oriented plaintext.
The transcribers were instructed to preserve all words uttered38 and break the sequence of words into
sentences in as natural way as possible. Correct punctuation and casing was introduced at this stage,
too. Finally, the documents were translated in Czech and German, preserving the segmentation into
“sentences”.

For the evaluation of SLT simultaneity, we force-aligned words from the transcript to the sound using a
model trained with Jasper (Li et al., 2019) and resorted to fully manual identification of word boundaries
in the few files where forced alignment failed.

Despite a careful curation of the dataset, we are aware of the following limitations. None of them are
too frequent or too serious but they still deserve to be mentioned:

• Khan Academy subtitles never had proper segmentation into sentences and manual correction of
punctuation and casing. The subtitles were supposedly manually refined but the focus was on their
presentation in the running video lecture, not on style and typesetting.

• Khan Academy contains many numbers (written mostly as numbers). For small numbers, both digits
and words are often equally suitable but automatic metrics treat this difference as a mistranslation
and no straightforward reliable normalization is possible either, so we did not apply any.

• Minor translation errors into German were seen in Khan Academy videos and in the “Belgian” SAO
file.

37http://www.khanacademy.org/
38This decision is possibly less common in the ASR community but it is motivated by the subsequent translation step which

has the capacity to recover from disfluences as needed.
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Abstract

This paper describes the ON-TRAC Consor-
tium translation systems developed for two
challenge tracks featured in the Evaluation
Campaign of IWSLT 2020, offline speech
translation and simultaneous speech transla-
tion. ON-TRAC Consortium is composed
of researchers from three French academic
laboratories: LIA (Avignon Université), LIG
(Université Grenoble Alpes), and LIUM (Le
Mans Université). Attention-based encoder-
decoder models, trained end-to-end, were used
for our submissions to the offline speech trans-
lation track. Our contributions focused on
data augmentation and ensembling of multi-
ple models. In the simultaneous speech trans-
lation track, we build on Transformer-based
wait-k models for the text-to-text subtask. For
speech-to-text simultaneous translation, we at-
tach a wait-k MT system to a hybrid ASR sys-
tem. We propose an algorithm to control the
latency of the ASR+MT cascade and achieve
a good latency-quality trade-off on both sub-
tasks.

1 Introduction

While cascaded speech-to-text translation (AST)
systems (combining source language speech recog-
nition (ASR) and source-to-target text transla-
tion (MT)) remain state-of-the-art, recent works
have attempted to build end-to-end AST with very
encouraging results (Bérard et al., 2016; Weiss
et al., 2017; Bérard et al., 2018; Jia et al., 2019;
Sperber et al., 2019). This year, IWSLT 2020 of-
fline translation track attempts to evaluate if end-
to-end AST will close the gap with cascaded AST
for the English-to-German language pair.

Another increasingly popular topic is simultane-
ous (online) machine translation which consists in
generating an output hypothesis before the entire

∗Equal contribution.

input sequence is available. To deal with this low
latency constraint, several strategies were proposed
for neural machine translation with input text (Ma
et al., 2019; Arivazhagan et al., 2019; Ma et al.,
2020). Only a few works investigated low latency
neural speech translation (Niehues et al., 2018).
This year, IWSLT 2020 simultaneous translation
track attempts to stimulate research on this chal-
lenging task.This paper describes the ON-TRAC
consortium automatic speech translation (AST) sys-
tems for the IWSLT 2020 Shared Task (Ansari
et al., 2020). ON-TRAC Consortium is composed
of researchers from three French academic labora-
tories: LIA (Avignon Université), LIG (Université
Grenoble Alpes), and LIUM (Le Mans Université).

We participated in:

• IWSLT 2020 offline translation track with
end-to-end models for the English-German
language pair,

• IWSLT 2020 simultaneous translation track
with a cascade of an ASR system trained using
Kaldi (Povey et al., 2011) and an online MT
system with wait-k policies (Dalvi et al., 2018;
Ma et al., 2019).

This paper goes as follows: we review the sys-
tems built for the offline speech translation track in
§2. Then, we present our approaches to the simulta-
neous track for both text-to-text and speech-to-text
subtasks in §3. We ultimately conclude this work
in §4.

2 Offline Speech translation Track

In this work, we developed several end-to-end
speech translation systems, using a similar architec-
ture as last year (Nguyen et al., 2019) and adapting
it for translating English speech into German text
(En-De). All the systems were developed using the
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Name #segments Total length
(in hours)

MuST-C train 229.703 400
MuST-C dev 1.423 2.5

MuST-C tst-COMMON 2.641 4.1
MuST-C tst-HE 600 1.2
Europarl train 32.628 77
Europarl dev 1.320 3.1

How2 synthetic 176.564 285.5
tst2019 2.813 5.1
tst2020 2.263 4.1

Table 1: Statistics of training and evaluation data. The
statistics of tst2019 and tst2020 are measured on the
segmented version provided by IWSLT2020 organiz-
ers.

ESPnet (Watanabe et al., 2018) end-to-end speech
processing toolkit.

2.1 Data and pre-processing

Data. We relied on MuST-C (Di Gangi et al.,
2019) English-to-German (hereafter called MuST-
C original), and Europarl (Iranzo-Sánchez et al.,
2020) English-to-German as our main corpora.
Besides, we automatically translated (into Ger-
man) the English transcription of MuST-C and
How2 (Sanabria et al., 2018) in order to augment
training data. This resulted in two synthetic cor-
pora, which are called MuST-C synthetic and How2
synthetic respectively. The statistics of these cor-
pora, along with the provided evaluation data, can
be found in Table 1. We experimented with differ-
ent ways of combining those corpora. The details
of these experiments are presented later in this sec-
tion.

Speech features and data augmentation. 80-
dimensional Mel filter-bank features, concatenated
with 3-dimensional pitch features1 are extracted
from windows of 25ms with a frame shift of 10ms.
We computed mean and variance normalization on
these raw features of the training set, then applied
it on all the data. Beside speed perturbation with
factors of 0.9, 1.0, and 1.1, SpecAugment (Park
et al., 2019) is applied to the training data (Ko et al.,

1Pitch-features are computed using the Kaldi
toolkit (Povey et al., 2011) and consist of the follow-
ing values (Ghahremani et al., 2014): (1) probability of
voicing (POV-feature), (2) pitch-feature and (3) delta-pitch
feature. For details, see http://kaldi-asr.org/doc/
process-kaldi-pitch-feats_8cc.html

Figure 1: Architecture of the speech encoder: a stack
of two VGG blocks followed by 5 BLSTM layers.

2015). All three SpecAugment methods were used,
including time warping (W = 5), frequency mask-
ing (F = 30), and time masking (T = 40).

Text preprocessing. The same as last year, we
normalize punctuation, and tokenize all the Ger-
man text using Moses.2 Texts are case-sensitive
and contain punctuation. Moreover, the texts of
the MuST-C corpus contain multiple non speech
events (i.e ’Laughter’, ’Applause’ etc.). All these
marks are removed from the texts before training
our models. This results in a vocabulary of 201
characters. We find that some of these characters
should not appear in the German text, for example,ˇ “( ,你,葱,送, etc. Therefore, we manually exclude
them from the vocabulary. In the end, we settle
with an output vocabulary of 182 characters.

2.2 Architecture
We reuse our last year attention-based encoder-
decoder architecture. As illustrated in Figure 1,
the encoder has two VGG-like (Simonyan and
Zisserman, 2015) CNN blocks followed by five
stacked 1024-dimensional BLSTM layers. Each
VGG block is a stack of two 2D-convolution layers
followed by a 2D-maxpooling layer aiming to re-
duce both time (T ) and frequency (D) dimensions
of the input speech features by a factor of 2. Af-
ter these two VGG blocks, input speech features’
shape is transformed from (T×D) to (T/4×D/4).
We used Bahdanau’s attention mechanism (Bah-
danau et al., 2015) in all our experiments. The
decoder is a stack of two LSTM layers 1024 di-
mensional memory cells. We would like to men-

2http://www.statmt.org/moses/
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No. Experiment MuST-C
tst-COMMON

MuST-C
tst-HE tst2015 (iwslt seg) tst2015 (ASR seg)

1 MuST-C original +
EuroParl 20.18 19.82 12.59 14.85

2
MuST-C original +

Europarl +
How2 synthetic

20.51 20.10 12.10 13.66

3*
MuST-C original +

Europarl +
How2 synthetic

23.55 22.35 13.00 15.30

4*
MuST-C original +

Europarl +
How2 synthetic +
MuST-C synthetic

22.75 21.31 14.00 16.45

5* Finetune 3*
on MuST-C original 23.60 22.26 13.71 15.30

6*
Finetune 3*

on MuST-C original+
MuST-C synthetic

23.64 22.23 13.67 15.29

7 Ensemble (1 to 6) 25.22 23.80 15.20 16.53

Table 2: Detokenized case-sensitive BLEU scores for different experiments - * represents experiments that apply
SpecAugment.

Model iwslt seg ASR seg

3* constrastive5 constrastive3
4* constrastive4 constrastive2

Ensemble constrastive1 primary

Table 3: The ranking of out submitted systems. Model
3* and 4* are respectively corresponding to No.3* and
No.4* of Table 2.

tion that Transformer based models have also been
tested using the default ESPnet architecure and
showed weaker results compared to the LSTM-
based encoder-decoder architecture.

Hyperparameters’ details. All of our models are
trained in maximum 20 epochs, with early stopping
after 3 epochs if the accuracy on the development
set does not improve. Dropout is set to 0.3 on the
encoder part, and Adadelta is chosen as our opti-
mizer. During decoding time, the beam size is set
to 10. We prevent the models from generating too
long sentences by setting a maxlenratio3 = 1.0.
All our end-to-end models are similar in terms of
architecture. They are different mainly in the fol-
lowing aspects: (1) training corpus; (2) type of

3maxlenratio =
maximum_output_length

encoder_hidden_state_length

tokenization units;4 (3) fine-tuning and pretrain-
ing strategies. Description of different models and
evaluation results are given in Section 2.4.

2.3 Speech segmentation

Two types of segmentation of evaluation and devel-
opment data were used for experiments and submit-
ted systems: segmentation provided by the IWSLT
organizers and automatic segmentation based on
the output of an ASR system.

The ASR system, used to obtain automatic seg-
mentation, was trained with the Kaldi speech recog-
nition toolkit (Povey et al., 2011). An acoustic
model was trained using the TED-LIUM 3 cor-
pus (Hernandez et al., 2018).5 This ASR system
produces recognized words with timecodes (start
time and duration for each word). Then we form
the speech segments based on this output follow-
ing the rules: (1) if silence duration between two
words is longer than a given threshold Θ = 0.65
seconds, we split the audio file; (2) if the number
of words in the current speech segment exceeds
40, then Θ is reduced to 0.15 seconds in order to
avoid too long segments. These thresholds have
been optimised to get segment duration distribu-

4All systems use 182 output caracter tokens except system
1 which has 201

5The off-limit TED talks from IWSLT-2019 were excluded
from the training subset
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No. Set BLEU TER BEER CharacTER BLEU(ci) TER(ci)
1 2019.contrastive1 17.57 71.68 47.24 58.03 18.64 69.66
2 2019.contrastive2 17.83 71.60 48.66 53.49 18.9 69.26
3 2019.contrastive3 19.03 66.96 49.12 54.10 19.97 65.01
4 2019.contrastive4 15.08 78.79 45.87 59.06 16.06 76.62
5 2019.contrastive5 15.87 74.17 46.18 59.96 16.86 72.15
6 2019.primary 20.19 66.38 49.89 52.51 21.23 64.26
7 2020.contrastive1 18.47 71.85 48.92 55.83 19.46 69.88
8 2020.contrastive2 19.31 69.30 49.55 52.68 20.36 67.14
9 2020.contrastive3 20.51 64.88 50.19 53.06 21.5 62.99

10 2020.contrastive4 15.48 83.45 46.68 57.56 16.42 81.33
11 2020.contrastive5 16.5 75.15 47.23 57.90 17.42 73.22
12 2020.primary 22.12 63.87 51.20 51.46 23.25 61.85

Table 4: IWSLT 2020 official results (offline track) on tst2019 and tst2020.

tion in the development and evaluation data that
is similar to the one observed in the training data.
It will be shown in next subsection that this ASR
segmentation improves results over the provided
segmentation when the latter is noisy (see experi-
mental results on iwslt/tst2015).

2.4 Experiments and results

After witnessing the benefit of merging different
corpora from our submission last year (Nguyen
et al., 2019), we continue exploring different com-
binations of corpora in this submission. As shown
in the first two rows of Table 2, merging How2
synthetic with the baseline (MuST-C original + Eu-
roparl) does not bring significant improvement. It is
noticeable that this pool is worse than the baseline
on both tst2015 (iwslt seg) and tst2015 (ASR seg).
However, we find that applying data augmentation
(SpecAugment) on this same combination helps
outperform the baseline on every investigated test-
set, most significantly on MuST-C tst-COMMON,
and MuST-C tst-HE. Therefore, SpecAugment is
consistently applied to all the experiments that fol-
low. Adding MuST-C synthetic to this pool sur-
prisingly decreases BLEU scores on both MuST-C
testsets, while significantly increases the scores on
both tst2015 (iwslt seg) and tst2015 (ASR seg).
Not being able to investigate further on this matter
due to time constraint, instead of fine-tuning 4*, we
decided to fine-tune 3*, which performs reasonably
well among all the testsets, on MuST-C original
and MuST-C original+synthetic. We witness that
the impact of fine tuning is very limited. One can
also see once again that adding MuST-C synthetic
does not make much difference. Finally, the last

row of the table shows the results of ensembling
all six models at decoding time. It is clear from the
table that ensembling yields the best BLEU scores
across all the testsets.

2.5 Overview of systems submitted

Two conclusions that can be drawn from Table 2 are
(1) ensembling all six models is the most promising
among all presented models, (2) our own segmenta-
tion (tst2015 ASR segmentation) is better than the
default one. Therefore, we choose as our primary
submission the translations of the ASR segmenta-
tions generated by the ensemble of all six models.
Model 3* and 4* (Table 2) are also used to translate
our contrastive submission runs, whose ranks are
shown in Table 3. The official results for all our
submitted systems can be found in Table 4. They
confirm that our segmentation approach proposed
is beneficial.

3 Simultaneous Speech Translation
Track

In this section, we describe our submission to the
Simultaneous Speech Translation (SST) track. Our
pipeline consists of an automatic speech recogni-
tion (ASR) system followed by an online machine
translation (MT) system. We first define our online
ASR and MT models in §3.1 and §3.2 respectively.
Then, we outline in §3.3 how we arrange the two
systems for the speech-to-text subtask. We detail
our experimental setup and report our results on
the text-to-text subtask in §3.4 and on the speech-
to-text in §3.5.

38



3.1 Online ASR
Our ASR system is a hybrid HMM/DNN system
trained with lattice-free MMI (Povey et al., 2016),
using the Kaldi speech recognition toolkit (Povey
et al., 2011). The acoustic model (AM) topology
consists of a Time Delay Neural Network (TDNN)
followed by a stack of 16 factorized TDNNs (Povey
et al., 2018). The acoustic feature vector is a con-
catenation of 40-dimensional MFCCs without cep-
stral truncation (MFCC-40) and 100-dimensional i-
vectors for speaker adaptation (Dehak et al., 2010).
Audio samples were randomly perturbed in speed
and amplitude during the training process. This ap-
proach is commonly called audio augmentation and
is known to be beneficial for speech recognition
(Ko et al., 2015).

Online decoding with Kaldi. The online ASR
system decodes under a set of rules to decide when
to stop decoding and output a transcription. An
endpoint is detected if either of the following con-
ditions is satisfied:

(a) After t seconds of silence even if nothing was
decoded.

(b) After t seconds of silence after decoding
something, if the final-state was reached with
costrelative < c.

(c) After t seconds of silence after decoding
something, even if no final-state was reached.

(d) After the utterance is t seconds long regardless
of anything else.

Each rule has an independent characteristic time t
and condition (b) can be duplicated with different
times and thresholds (t, c). The value of costrelative
reflects the quality of the output, it is null if a final-
state of the decoding graph had the best cost at the
final frame, and infinite if no final-state was active.

3.2 Online MT
Our MT systems are Transformer-based (Vaswani
et al., 2017) wait-k decoders with unidirectional en-
coders. Wait-k decoding starts by reading k source
tokens, then alternates between reading and writ-
ing a single token at a time, until the source is
depleted, or the target generation is terminated.
With a source-target pair (x,y), the number of
source tokens read when decoding yt following a
wait-k policy is zkt = min(k+ t− 1, |x|). To stop
leaking signal from future source tokens, the en-
ergies of the encoder-decoder multihead-attention

are masked to only include the zt tokens read so
far.

Unlike Transformer wait-k models introduced in
Ma et al. (2019) where the source is processed with
a bidirectional encoder, we opt for a unidirectional
encoding of the source. In fact, this change alle-
viates the cost of re-encoding the source sequence
after each read operation. Contrary to offline task,
where bidirectional encoders are superior, unidi-
rectional encoder achieve better quality-lagging
trade-offs in online MT.

Ma et al. (2019) optimize their models with max-
imum likelihood estimation w.r.t. a single wait-k
decoding path zk:

log p(y |x, zk) =

|y|∑

t=1

log pθ(yt|y<t,x≤zkt ). (1)

Instead of optimizing a single decoding path,
we jointly optimize across multiple wait-k paths.
The additional loss terms provide a richer train-
ing signal, and potentially yield models that could
perform well under different lagging constraints.
Formally, we consider an exhaustive set of wait-k
paths and in each training epoch we encode the
source sequence then uniformly sample a path to
decode with. As such, we optimize:

Z =
{
zk | k ∈ {1, . . . , |x|}

}
, (2)

Ez[log p(y|x, z)]≈
∑

z∼∈Z

log pθ(y|x, z). (3)

We will refer to this training with multi-path.

3.3 Cascaded ASR+MT
For speech-to-text online translation we pair an
ASR system with our online MT system and decode
following the algorithm described in Algorithm 1.

In this setup, the lagging is controlled by the
endpointing of the ASR system. The online MT
system follows the lead of the ASR and translates
prefix-to-prefix. Since the MT system is not trained
to detect end of segments and can only halt the
translation by emitting </s>, we constrain it to
decode α|xasr|+β tokens, where xasr is the partial
transcription and (α, β) two hyper-parameters.

Along with the hyper-parameters of the ASR’s
endpointing rules, we tune (α, β) on a development
set to achieve good latency-quality trade-offs.

3.4 Text-to-text translation subtask

Training MT. We train our online MT systems on
English-to-German MuST-C (Di Gangi et al., 2019)
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Algorithm 1 ASR+MT decoding algorithm

Input: source audio blocks x.
Output: translation hypothesis y.
Initialization: action=READ, z=0, t=1,

xasr=(), y=(<s>)
Hyper-parameters sz, α, β.
while yt 6= </s> do

while action = READ ∧ z < |x| do
Read sz elements from x. z += sz
Feed the new audio blocks to the ASR system.
if Endpoint detected ∨ z = |x| then

Output transcription and append it to xasr.
action = WRITE

end if
end while
if |y| < α|xasr|+ β then

Given y and xasr, predict the next token yt+1

t += 1
else

action = READ
end if

end while

Pairs
English

words
German

words

Europarl 1,730K 43,7M 41,1M
Common Crawl 1,543K 31,0M 30,0M
News Commentary 320K 7,0M 7,2M
MuST-C 214K 3,9M 3,7M

Table 5: Parallel training data for the MT systems.

and WMT’19 data,6 namely, Europarl (Koehn,
2005), News Commentary (Tiedemann, 2012) and
Common Crawl (Smith et al., 2013). We remove
pairs with a length-ratio exceeding 1.3 from Com-
mon Crawl and pairs exceeding a length-ratio of
1.5 from the rest. We develop on MuST-C dev
and report results on MuST-C tst-COMMON. For
open-vocabulary translation, we use SentencePiece
(Kudo and Richardson, 2018) to segment the bi-
texts with byte pair encoding (Sennrich et al., 2016).
This results in a joint vocabulary of 32K types. De-
tails of the training data are provided in Table 5.

We train Transformer big architectures and
tie the embeddings of the encoder with the de-
coder’s input and output embeddings. We opti-
mize our models with label-smoothed maximum
likelihood (Szegedy et al., 2016) with a smoothing
rate ε = 0.1. The parameters are updated using

6http://www.statmt.org/wmt19/
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Figure 2: [Text-to-Text] Latency-quality trade-offs
evaluated on MuST-C tst-COMMON with greedy de-
coding. Offline systems have an AL of 18.55 words.
The red vertical bars correspond to the AL evaluation
thresholds.

Adam (Kingma and Ba, 2015) (β1, β2 = 0.9, 0.98)
with a learning rate that follows an inverse square-
root schedule. We train for a total of 50K updates
and evaluate with the check-pointed weights cor-
responding to the lowest (best) loss on the devel-
opment set. Our models are implemented with
Fairseq (Ott et al., 2019). We generate transla-
tion hypotheses with greedy decoding and evaluate
the latency-quality trade-off by measuring case-
sensitive detokenized BLEU (Papineni et al., 2002)
and word-level Average Lagging (AL) (Ma et al.,
2019).

Results. We show in Figure 2 the performance of
our systems on the test set (MuST tst-COMMON)
measured with the provided evaluation server.7

We denote with ktrain=∞ a unidirectional model
trained for wait-until-end decoding i.e. reading the
full source before writing the target. We evaluate
four wait-k systems each trained with a value of
ktrain in {5, 7, 9,∞} and decoded with keval rang-
ing from 2 to 11. We then ensemble the afore-
mentioned wait-k models and evaluate a multi-
path model that jointly optimizes a large set of
wait-k paths. The results demonstrate that multi-
path is competetive with wait-k without the need to
select which path to optimize (some values of k, e.g.
5, underperform in comparison). Ensembling the
wait-k models gives a boost of 1.43 BLEU points
on average.

7https://github.com/pytorch/fairseq/
blob/simulastsharedtask/examples/
simultaneous_translation
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Corpus #hours #words #speakers

TED-LIUM 3 452 5.05M 2,028
How2 365 3.31M 13,147
Europarl 94 0.75M 171

Table 6: Corpora used for the acoustic model.

Decoding Corpus WER

Offline TED-LIUM 3 dev 7.65
Offline TED-LIUM 3 test 7.84
Offline MuST-C tst-COMMON 14.2
Online MusT-C tst-COMMON 16.3

Table 7: WERs for the ASR system with offline and
online decoding (AL=5s for online)

3.5 Speech-to-text translation subtask

Training ASR. We train our system following the
tedlium recipe8 while adapting it for the IWSLT
task. The TDNN layers have a hidden dimension
of 1536 with a linear bottleneck dimension of 160
in the factorized layers. The i-vector extractor is
trained on all acoustic data (speech perturbed +
speech) using a 10s window. The acoustic training
data includes TED-LIUM 3, How2 and Europarl.
These corpora are detailed in Table 6 and represent
about 900 hours of audio.

As a language model, we use the 4-grams small
model provided with TED-LIUM 3. The vocab-
ulary size is 152K, with 1.2 million of 2-grams,
622K 3-grams and 70K 4-grams.

The final system is tuned on TED-LIUM 3 dev
and tested with TED-LIUM 3 test and MuST-C
tst-COMMON. Results are shown in Table 7.

Training MT. To train the MT system for the
ASR+MT cascade we process source-side data (En-
glish) to match transcriptions of the ASR. This con-
sists of lower-casing, removing punctuation and
converting numbers into letters. For this task we
use two distinct English and German vocabularies
of 32K BPE tokens each. We train Transformer
big architectures with tied input-output decoder
embeddings following the setup described in §3.4.

Results. Similar to the text-to-text subtask, we
show our results in a plot of BLEU-to-AL in Fig-
ure 3. The systems are evaluated on the test
via the provided evaluation server where MuST-

8https://github.com/kaldi-asr/kaldi/
tree/master/egs/tedlium
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Figure 3: [Speech-to-Text] Latency-quality trade-offs
evaluated on MuST-C tst-COMMON with greedy de-
coding. Offline systems have an AL of 5806 ms.
The red vertical bars correspond to the AL evaluation
thresholds.

C’s sentence-level aligned segments are streamed
and decoded online and the lagging is measured
in milliseconds. Note that in this task we use
a single ASR model and only ensemble the MT
wait-k models. The cascade of an online ASR with
wait-k MT follows the same trends as the text-to-
text models. In particular, multi-path is compet-
itive with specialized wait-k models and ensem-
bling boosts the BLEU scores by 0.67 points on
average.

4 Conclusion

This paper described the ON-TRAC consortium
submission to the IWSLT 2020 shared task. In
the continuity of our 2019 participation, we have
submitted several end-to-end systems to the offline
speech translation track. A significant part of our
efforts was also dedicated to the new simultaneous
translation track: we improved wait-k models with
unidirectional encoders and multi-path training and
cascaded them with a strong ASR system. Fu-
ture work will be dedicated to simultaneous speech
translation using end-to-end models.
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Abstract

AppTek and RWTH Aachen University team
together to participate in the offline and simul-
taneous speech translation tracks of IWSLT
2020. For the offline task, we create both cas-
caded and end-to-end speech translation sys-
tems, paying attention to careful data selection
and weighting. In the cascaded approach, we
combine high-quality hybrid automatic speech
recognition (ASR) with the Transformer-based
neural machine translation (NMT). Our end-
to-end direct speech translation systems ben-
efit from pretraining of adapted encoder and
decoder components, as well as synthetic data
and fine-tuning and thus are able to compete
with cascaded systems in terms of MT qual-
ity. For simultaneous translation, we utilize
a novel architecture that makes dynamic deci-
sions, learned from parallel data, to determine
when to continue feeding on input or generate
output words. Experiments with speech and
text input show that even at low latency this ar-
chitecture leads to superior translation results.

1 Introduction

When developing English→German speech trans-
lation systems for the IWSLT 2020 evaluation, we
had the following goals:
• To obtain the best possible translation quality

with the baseline cascaded approach. This in-
cludes data filtering, weighting, and domain
adaptation for the MT component, hybrid
ASR (Section 2.1) with a strong recurrent lan-
guage model (LM) for the ASR component,
and a preprocessing scheme that converts the
written English source text into spoken forms
with hand-crafted rules for numbers, dates,
abbreviations, etc. (Section 2.2).
• Starting from the best cascaded system for

text and speech input in terms of data com-
position, to design and implement an archi-
tecture that obtains the best possible transla-

tion quality for simultaneous speech transla-
tion at different levels of latency, learning a
flexible read/output strategy from the under-
lying linguistic qualities of aligned parallel
data. Our simultaneous translation approach
is described in Section 3.
• For the end-to-end direct speech translation,

to benefit as much as possible from the model
components of the cascaded approach, in-
cluding pre-training encoder/decoder parts, an
adapter component, and using synthetic data
at different levels (see Section 4), and try to
obtain translation quality that reaches the level
of our best cascaded approach.

Traditionally, RWTH/AppTek can train strong
attention-based LSTM models, which still compete
on-par with Transformer-based architectures on
some language pairs and translation tasks. There-
fore, we train both LSTM and Transformer base
and big models (Vaswani et al., 2017). For the
simultaneous translation task, we choose LSTM
models for their simpler architecture that allows
for an easier modification of the encoder and de-
coder process to partial input and prediction of
chunk boundaries, as will be discussed in Section 3.
For the offline translation tasks, our final submis-
sions are ensembles of different encoder-decoder
architectures, as well as ensembles of cascaded and
end-to-end direct speech translation systems.

2 Cascaded Speech Translation

2.1 Automatic Speech Recognition

Our ASR systems are based on hybrid
LSTM/HMM model (Bourlard and Wellekens,
1989; Hochreiter and Schmidhuber, 1997) and
attention models (Bahdanau et al., 2015).

2.1.1 Hybrid LSTM/HMM model
The acoustic model has been trained on a total of
approx. 2300 hours of transcribed speech including
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EuroParl, How2, MuST-C, TED-LIUM (exclud-
ing the black-listed talks), LibriSpeech, Mozilla
Common Voice, and IWSLT TED corpora.

As described in (Matusov et al., 2018), we apply
an automatic re-alignment process to improve the
quality of the TED talk segmentations. We use
the TED-LIUM pronunciation lexicon. The acous-
tic model takes 80-dim. MFCC features as input
and estimates state posterior probabilities for 5K
tied triphone states. It consists of 4 bi-directional
(BiLSTM) layers with 512 units for each direction.
Frame-level alignment and state tying are obtained
from a bootstrap model based on a Gaussian mix-
ture acoustic model. We train the network for 10
epochs using the Adam update rule (Kingma and
Ba, 2015) with Nesterov momentum and reducing
the learning rate using the Newbob scheme.

The baseline language model is a simple 4-gram
count model trained with Kneser-Ney smoothing
on all allowed English text data (approx. 2.8B run-
ning words). The vocabulary consists of the same
152k words from the training lexicon and the out-
of-vocabulary rate is far below 1%.

In addition, we train a neural LM with noise
contrastive estimation (NCE) loss (Gutmann and
Hyvärinen, 2010). The model estimates the distri-
bution over the full vocabulary given the uncon-
strained history starting from the sentence begin.
It learns 128-dim. word embeddings that are pro-
cessed by two LSTM layers with 2048 units each.
The output of the second LSTM layer is projected
by a linear bottleneck layer onto 512 dimensions.
We use the frequency sorted log-uniform distribu-
tion to sample 1024 negative examples for NCE
loss calculation. This training approach results in a
self-normalized model (Gerstenberger et al., 2020),
which allows for an efficient, single-pass decoding
with the neural LM (Beck et al., 2019).

The streaming recognizer implements a ver-
sion of chunked processing (Chen and Huo, 2016;
Zeyer et al., 2016), which allows to use the same
BiLSTM-based acoustic model in both offline and
online speech translation applications.

2.1.2 Attention Model
Following the work of LSTM-based attention ASR
models (Zeyer et al., 2019), we apply a 6-layer
BiLSTM encoder of 1024 nodes with interleaved
max-pooling resulting in a total time reduction fac-
tor of 6 and a 1-layer LSTM decoder with a size
of 1024 equipped with a single-head additive at-
tention. We use a variant of SpectAugment (Park
et al., 2019) for data augmentation. A layer-wise

pre-training strategy similar to (Zeyer et al., 2018b)
is applied during training for a more stable and
faster initial convergence. We start with a small
encoder (small in depth and width, i.e. number
of layers and hidden dimensions) and then grow
it over time. It means, we add layer by layer till
the 6th layer, and increase the dimension till 1024
nodes. With each pre-training epoch, we grow the
network in terms of both the number of layers and
the number of hidden dimensions. Moreover, con-
nectionist temporal classification (CTC) (Graves
et al., 2006) as an additional loss is used on top of
the speech encoder during training.

The models are trained using the Adam opti-
mizer, dropout probability of 0.1 and label smooth-
ing. We employ a learning rate scheduling scheme
with a decay factor in the range of 0.8 to 0.9 based
on perplexity on the development set. We apply
byte-pair-encoding (BPE) (Sennrich et al., 2016b)
with 5k merge operations with a dropout of 0.1.
The beam size of 12 is used during the search with-
out an extra language model. To enable the pre-
training of the components, the same architecture
is used in the speech encoder side of our direct
speech translation models.

2.2 Written-to-Spoken Text Conversion
The large majority of MT parallel data comes from
text sources and thus includes punctuation marks,
digits, and special symbols. We apply additional
preprocessing to the English side of the data to
make it look like speech transcripts produced by
the ASR system. We lowercase the text, remove all
punctuation marks, expand common abbreviations,
especially for measurement units, and convert num-
bers, dates, and other entities expressed with digits
into their spoken form. For the cases of multiple
readings of a given number (e.g. “one oh one” and
“one hundred and one”), we select one randomly, so
that the system can learn to convert alternative read-
ings in English to the same number expressed with
digits in German. Because of this preprocessing,
our MT systems learn to insert punctuation marks,
restore word case, and convert spoken number and
entity forms to digits as part of the translation pro-
cess. The same preprocessing is applied to the
English monolingual data that is used in language
model training of the ASR system.

2.3 Data Filtering and Domain Adaptation
For NMT training, we utilize the parallel data al-
lowed for the IWSLT 2020 evaluation. We divide
it into three parts: in-domain, clean, and out-of-
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domain. We consider data from the TED and
MuST-C corpora as in-domain and use it for sub-
sequent fine-tuning experiments, as well as the
“ground truth” for filtering the out-of-domain data
based on sentence embedding similarity with the
in-domain data. As “clean” we consider the News-
Commentary, Europarl, and WikiTitles corpora and
use their full versions in training.

To reduce the size of the training data, we ap-
ply a filtering approach based on sentence simi-
larity. We train monolingual GloVe word embed-
dings (Pennington et al., 2014) both on the source
and the target side of the data. Following Arora
et al. (2017) we use a weighted average over the
word embeddings of a sentence to generate a fixed-
size sentence embedding. To obtain a sentence pair
embedding, we concatenate the source and target
sentence embedding of each bilingual sentence pair.
Afterwards we employ k-Means clustering from
the scikit-learn toolkit (Pedregosa et al., 2011) in
the sentence pair embedding space.

After obtaining a set of clusters, we use the in-
domain data to determine which clusters should
be used for training. This is done by selecting all
clusters which contain a non-negligible portion of
the in-domain data using a fixed threshold n. We
apply this technique to the noisy and out-of-domain
corpora, namely ParaCrawl, CommonCrawl, rapid
and OpenSubtitles. With the tuned threshold n =
5.0% we achieve a data reduction of around 45%
(from 42.5M to 23.3M lines) and an improvement
in the system performance of 1.6 % BLEU on the
development set (from 30.7% to 32.3% BLEU).

A similar approach is applied to the German
monolingual data allowed by the IWSLT 2020 eval-
uation that we incorporate into the MT training us-
ing back-translation (Sennrich et al., 2016a). First,
from the billions of words of allowed text data
we extract only sentence portions of at least four
words which are enclosed in quotes. Especially in
the news texts, these often represent quoted speech
and thus may be more suitable to be used in train-
ing of speech NMT systems. Then, we apply the
monolingual variant of the sentence embedding
similarity approach described above to select 7.9M
sentences. To create the synthetic parallel data, we
translate these sentences into English with a De-En
NMT Transformer base model that is trained on
the in-domain and clean parallel data.

2.4 Neural Machine Translation
We employ the base and big Transformer model
with multi-head attention. The base Transformer

model consists of a self-attentive encoder and de-
coder, each of which is composed of 6 stacked
layers. Every layer consists of two sub-layers: a 8-
head self-attention layer followed by a rectified lin-
ear unit (ReLU). We apply layer normalization (Ba
et al., 2016) before and dropout (Srivastava et al.,
2014) and residual connections (He et al., 2016)
after each sub-layer. All projection and multi-head
attention layers consist of 512 nodes followed by a
feed-forward layer equipped with 2048 nodes.

In comparison, the architecture of the big Trans-
former model incorporates 16-head self-attention
sub-layers. Furthermore, all projection and atten-
tion layers consist of 1024 nodes and each feed-
forward layer consists of 4096 nodes.

All models are trained on a single GPU and in-
creased the effective batch size by accumulating
gradient updates before applying them with a fac-
tor of 2 and 8 for the base and big Transformer
respectively. All models are trained using Adam
optimizer with an initial learning rate of 0.0003
and 1M lines per checkpoint. We apply a learning
rate scheduling based on the perplexity on the vali-
dation set for a few consecutive evaluation check-
points. Label smoothing (Pereyra et al., 2017) and
dropout rates of 0.1 are used. The source and target
sentences are segmented into subwords using Sen-
tencePiece (SP) (Kudo and Richardson, 2018) with
a vocabulary size of 20K and 30K respectively.

3 Simultaneous Translation

In simultaneous translation a stream of source
words is translated into a stream of target words
without relying on the context of a full sentence.
In this process, the system has to make decisions
on when to read further input and when to produce
partial translations. Hence, there is an inherent
compromise between latency and MT quality.

3.1 Alignment-based Chunking

We develop a novel model architecture, based on of-
fline LSTM models which are similar to Bahdanau
et al. (2015). The approach is described in full de-
tail in Wilken et al. (2020). Our model consists of
a multi-layer BiLSTM encoder, a unidirectional de-
coder and an attention mechanism. We expand the
forward encoder with an additional binary output
trained to predict chunk boundaries in the incom-
ing source word stream. These chunk boundaries
mark positions where enough context for transla-
tion is present to trigger a translation. We generate
training examples for such chunks based on sta-

46



tistical word alignment, created using the Eflomal
Toolkit (Östling and Tiedemann, 2016). The chunk
sequence of a sentence pair is defined such that it
is monotonic1, no word in the chunk is aligned to a
word outside the chunk, and chunks are of minimal
size. By this, reordering happens only within the
chunks, thus in terms of word alignment the source
side of a chunk provides enough information to
continue the partial translation monotonically.

We shift the extracted source boundaries by D
positions to the right such that the first words after
the actual boundary provide context for the bound-
ary detection component. Furthermore, we im-
prove the chunk extraction described above by re-
moving a chunk boundary if the target word follow-
ing it is important as context for translation of the
last word in the candidate chunk. Details are given
in (Wilken et al., 2020). The words in the chunks
are converted to SP subword sequences prior to the
training of the simultaneous NMT system.

3.2 Streaming ASR

For the speech-to-text condition we use the cas-
caded approach, integrating the streaming version
of the ASR system described in Section 2.1 into the
decoder. We send 1-second chunks of the incoming
audio into the ASR system. We have to alter the
ASR system to output the common prefix of all
hypothesized transcriptions in the beam, such that
words in the output are guaranteed to not change
due to further evidence. For each 1-second chunk
we check whether new words were generated by
the ASR. If so, we pass them to the encoder of
the MT system. From that point on, translation
happens as described in the next section.

3.3 Online MT Decoding

For each word in the input stream, we first apply
subword splitting. Then we feed the subwords into
the forward encoder one by one, producing the en-
coding of that subword and a boundary decision.
If a boundary is predicted, all source words of the
current chunk are fed into the backwards encoder.
After that, the decoder produces the translation at-
tending to the forward and backwards encodings of
all words of the sentence read so far. Here, we per-
form the beam search with a beam size of 12. For
length normalization, we divide the scores by I0.9,
I being the target length. To know when to stop
decoding of a chunk, we predict the target chunk

1Given a pair of subsequent chunks, the first word of the
second chunk immediately follows the last word of the first
chunk on the source and target side.

Training data\Running words EN DE

DST 7.5M 8.1M
ASR1 32.9M -
MT2 309.8M 289.9M
SYNTH SPEECH3 4.2M 5.0M
SYNTH TRANS4 32.9M 37.3M
BT5 125.2M 117.3M

Table 1: Data size. 1Contains the ASR portion of DST
data; 2contains the MT supervised data of DST data;
3additional synthetic DST data by synthesizing bilin-
gual MT data (using TTS model); 4additional synthetic
DST data by translation ASR transcriptions; 5back-
translation of German monolingual data.

boundaries via a binary translation factor (Wilken
and Matusov, 2019). A hypothesis in the beam is
considered final as soon as a boundary is predicted.
The states of the forward encoder and the decoder
are kept across chunks. The backward encoder is
initialized for each chunk. In both encoder and
decoder we feed an embedding of the boundary
decision into the next recurrent step, analogous to
label feedback of the target word.

4 End-to-End Direct Speech Translation

The direct speech translation models have been
trained using direct speech translation (DST) train-
ing data including MuST-C, IWSLT TED, and Eu-
roParl corpora, i.e. a total of approx. 420 hours of
transcribed and translated speech (see Table 1). We
remove all sequences longer than 75 tokens and all
utterances longer than 6000 frames.

The end-to-end models are based on encoder-
decoder architectures. The LSTM-based speech
encoder uses 6 stacked BiLSTM layers with inter-
leaved max-pooling layers in between to reduce the
utterance length with a factor of 6. We apply layer-
wise encoder pre-training w.r.t. both the number of
layers and dimensions. The CTC loss is used on
top of speech encoder except in pre-training. All
other parameters are similar to ASR training; thus,
we also apply SpectAugment in all of our DST
experiments similar to (Bahar et al., 2019b).

The text decoder is based on the decoder of MT
models, as illustrated in Figure 1, using either the
LSTM or the Transformer topology. In LSTM se-
tups, the decoder is equipped with a 1-layer unidi-
rectional LSTM with cell size 1024 and single-head
additive attention. All tokens are mapped into a
512-dimensional embedding space. Both base and
big Transformer decoders are based on the archi-
tecture explained in Section 2.4.

To solve the data sparseness problems of DST
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ST encoder

Pre-trained ASR encoder

Adaptor

BiLSTM ×Le

Attention

ST decoder

Pre-trained MT decoder

LSTM/Self-Attention ×Ld

English Speech

German Text

Figure 1: Overview of the DST model with pretrain-
ing and an adaptor. Shallow grey blocks correspond to
pre-trained components, and dark grey blocks are fine-
tuned on the DST task.

training, we explore various strategies to augment
the data by leveraging weakly supervised data, i.e.
ASR and MT training data. Our high-quality Trans-
former big model has been employed to generate
synthetic DST training data by automatically trans-
lating the correct transcripts of ASR training data
(Jia et al., 2019). SYNTH TRANS refers to machine-
translated ASR training data. As listed in Table 1,
we translate the whole ASR training data (32.9M
words) resulting in 37.3M German tokens and com-
bine it with the original DST data, weighting each
set equally. Similarly, we create synthetic DST
training data by generating speech from the source
side of an MT parallel corpus (Jia et al., 2019). We
refer to it as SYNTH SPEECH, and its statistics can
be found in Table 1. Our text-to-speech synthe-
sis (TTS) model is trained on ASR LibriSpeech
dataset as described in (Rossenbach et al., 2020).
Using the TTS model, we synthesize 800k random
samples (total of 5M words as listed in Table 1)
from the OpenSubtitles corpus pre-filtered as de-
scribed in Section 2.3. Again, the generated data is
uniformly mixed with the original DST data.

To further leverage the weakly supervised data,
we apply pre-training of both the encoder and de-
coder with an adaptor layer in between. Initializa-
tion of model components using pre-trained ASR
and MT models is a common transfer learning strat-
egy to reduce dependency on scarce DST train-
ing data. We pre-train the encoder using our ASR
model explained in Section 2.1, and the decoder
using our MT model, either the LSTM attention
or Transformer, as described in Section 2.4. Af-
ter initialization with pre-trained components, we
fine-tune on the DST training data. As proposed

in (Bahar et al., 2019a), in order to familiarize
the pre-trained text decoder with the output of the
pre-trained speech encoder, we insert an additional
adaptor layer which is a BiLSTM layer between the
encoder and decoder. We train the adaptor compo-
nent jointly without freezing the parameters in the
fine-tuning stage. An abstract overview is shown
in Figure 1.

5 Experimental Results

In this section we report results for offline cascaded
and direct speech translation, as well as for simulta-
neous NMT under various training data conditions.

Acoustic training of the baseline model and
the HMM decoding have been performed with
the RWTH ASR toolkit (Wiesler et al., 2014).
All neural models have been built with RE-
TURNN (Doetsch et al., 2017; Zeyer et al., 2018a)
using Sisyphus framework (Peter et al., 2018).

The number of running words of all training cor-
pora is presented in Table 1. The data used for
training the NMT models is referred to as MT and
contains the in-domain, clean, and filtered bilin-
gual data as defined in Section 2.3. On the other
hand, BT denotes the parallel data obtained through
back-translating the filtered monolingual data (see
also Section 2.3). When the concatenation of MT

and BT is used for training, we over-sample the in-
domain and clean part of MT 5 times. We remove
transcriber comments and emulate the ASR output
using the preprocessing described in Section 2.2.

As heldout tuning sets, we use the concatenation
of the TED dev2010, tst2014, and MuST-C dev
corpora. As heldout test data, we use TED tst2015,
MuST-C tst-HE and MuST-C tst-COMMON.

We report case-sensitive BLEU (Papineni et al.,
2002) and TER (Snover et al., 2006) scores. For
simultaneous NMT, also the average lagging (AL)
metric (Ma et al., 2019) is reported. To measure
AL, we have integrated our online decoder into
the server-client implementation of IWSLT 2020
within the fairseq framework (Ott et al., 2019).

5.1 ASR Quality

For training of the ASR component used in the
cascaded approach, we first pool the data from all
available corpora, removing utterances that can not
be aligned using a baseline model trained on the
IWSLT TED corpus, resulting in 2300h of aligned
audio. The performance of the model trained on
this data is shown in the first line of Table 2. To
understand the contribution of the various data
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# Model TED MuST-C MuST-C
AM LM tst2015 tst-HE tst-COM

Hybrid HMM
1 LSTM 4-gram 8.7 10.5 13.1
2 LSTM 4-gram 11.1 9.4 11.5
3 LSTM LSTM 9.6 7.5 9.9

Attention
4 LSTM None 6.9 7.7 10.6

Table 2: ASR word error rate results in [%].

sources, we train a model for each corpus. Based
on the accuracy on the dev set we decide to exclude
EuroParl and How2 data sets, as they appear to be
the worst match for the target domain. The second
line shows that fine-tuning on the “matched” sub-
set (about 85% of the total training data) does not
lead to a consistent reduction of WER. Still, we
decide to proceed with this acoustic model, based
on the experience with the single corpus experi-
ments. Finally, switching to the neural LM (see
Section 2.1.1) considerably improves the accuracy
on the test sets shown in line 3. This final system
is used in the cascaded translation approach. The
attention ASR model described in Section 2.1.2 has
been trained using 2300h meaning 32.9M words.
As shown in Table 2, the performance of the LSTM
model (line 4) is competitive to the hybrid HMM
model. We use LSTM speech encoder for all of our
direct ST modeling in pre-training.

5.2 ASR Output for MT Fine-Tuning

For cascaded speech translation, both offline and
simultaneous, we apply fine-tuning on the DST
corpora. with correct source transcripts. In addi-
tion, we augment this data with the MuST-C and
TED tst2010 through tst2013 sets, the source side
of which is generated using the hybrid HMM (see
Table 2 line 2). All fine-tuning systems employ an
initial learning rate of 0.0008. The simultaneous
systems and the offline Transformer base model
trained on the MT+BT data (see Table 1) are fine-
tuned using 100k lines per checkpoint, whereas the
other offline models use 1M lines per checkpoint.

5.3 Offline Speech Translation

The results for the offline speech translation sys-
tems are presented in Table 3. The first line shows
the results obtained when translating the ground
truth source text of the test sets with a Transformer
base model trained on the MT data, thus eliminat-
ing potential speech recognition errors. The prepro-
cessing on the source side emulates the ASR output
by applying lower-casing, removing punctuation

marks and removing transcriber comments.
Line 2 through 8 present the results of translating

the output of the hybrid HMM ASR system (see
Table 2 line 3). In comparison to the first line, we
see a significant loss of up to 3.5% BLEU when
translating the ASR output (line 2). Fine-tuning
this model as described in Section 5.2 leads to a
performance gain of up to 1.9% BLEU (line 3).

Furthermore, we train models on the MT+BT

data (line 4 to 8). Although the Transformer base
model in line 4 outperforms the corresponding
model in line 2, applying fine-tuning (line 5) does
not yield better performance than the fine-tuned
model in line 3, which can be traced back to the
over-sampled clean data. The big Transformer
models in line 6 and 7 outperform the base models
in lines 4 and 5, respectively.

Overall, the fine-tuned big model (line 7) per-
forms better on tst2015 and tst-HE, whereas the
fine-tuned base model trained without oversam-
pling and back-translated data (line 3) performs
better on tst-COMMON. Our final submission (line
8) consists of the ensemble of the fine-tuned mod-
els in line 5 and 7 and yields the best performance
on average. The results obtained translating the
output of the attention ASR system (see Table 2
line 4) using the ensemble of the two models (line
5 and 7) are listed in line 9.

5.4 Direct Speech Translation
The fourth block of Table 3 shows the results of
direct speech translation where we do not rely on
intermediate transcriptions. In the first set of exper-
iments, our DST models are based on the LSTM
attention architecture where both encoder and de-
coder are composed of LSTM units (line 10 to
12). The LSTM attention model outperforms the
Transformer model. Again, pre-training the entire
network (plus a BiLSTM layer as an adaptor in
between) yields improvements of 2.9% BLEU and
4.3% TER on average across all test sets indicating
that pre-training is an effective strategy to lever-
age the supervised ASR and MT training data in
practice.

Augmenting ASR data with automatic transla-
tions (SYNTH TRANS) shows slightly worse results
(line 12), which might be due to domain mismatch.
In line with our pure MT and ASR experiments,
we combine our strong speech LSTM encoder with
our powerful text decoder, i.e. big Transformer
(lines 13 to 16). As shown, this combination pro-
vides additional gain over vanilla pre-trained mod-
els. These lines differ in terms of training data
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TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

# System BLEU TER BLEU TER BLEU TER Training data composition

Pure text MT
1 Transformer base 31.2 52.3 28.5 55.8 31.3 50.1 MT

Cascaded hybrid ASR→MT
2 Transformer base 29.0 56.6 26.3 58.9 27.8 54.7 MT+ASR

3 + fine-tune 30.2 55.7 28.1 57.2 29.7 53.1 MT+ASR

4 Transformer base 29.8 56.1 27.2 57.8 28.3 54.9 (MT+BT)+ASR

5 + fine-tune 30.1 55.7 28.2 56.7 28.8 55.7 (MT+BT)+ASR

6 Transformer big 30.5 55.2 27.9 56.7 28.7 54.6 (MT+BT)+ASR

7 + fine-tune 30.9 55.2 28.6 56.3 28.8 55.5 (MT+BT)+ASR

8 Ensemble (5, 7) 30.9 55.2 28.7 56.4 29.7 54.5 (MT+BT)+ASR

Cascaded attention ASR→MT
9 Ensemble (5, 7) 30.3 54.2 28.3 56.9 28.8 55.3 (MT+BT)+ASR

End2end Direct DST
10 LSTM-attention 23.6 64.1 22.1 63.3 24.3 59.1 DST

11 + pretraining 26.0 59.1 24.7 60.1 27.9 54.3 DST+ASR+MT

12 + pretraining 25.0 61.0 24.3 60.3 26.7 55.7 (DST + SYNTH TRANS)+ASR+MT

13 + big Transformer decoder 26.4 58.2 24.6 59.3 29.1 53.8 DST+DST+MT

14 + big Transformer decoder 26.1 58.6 25.1 58.8 28.7 53.8 DST+ASR+MT

15 + big Transformer decoder 25.9 59.3 24.1 63.5 27.0 55.9 (DST + SYNTH SPEECH)+ASR+MT

16 + big Transformer decoder 27.0 58.3 25.1 61.3 27.3 55.8 (DST + SYNTH TRANS)+ASR+MT

17 + fine-tune 26.8 58.6 25.1 62.3 27.9 55.3 (DST + SYNTH TRANS)+ASR+MT

18 Ensemble (13, 17) 27.2 57.9 25.5 60.7 29.4 53.3
19 Ensemble (13, 15, 16, 17) 28.0 57.3 26.5 58.1 29.6 53.4

Table 3: Offline speech translation results measured in BLEU [%] and TER [%].

which is used either for pre-training or for fine-
tuning. For instance, in line 13, we use the ASR
model trained on the DST (in-domain) data for pre-
training the encoder whereas line 14 corresponds
to the ASR model trained on all (in-domain and
out-of-domain) ASR data. In lines 15 and 16, we
use additional augmented data. In general, ASR
data augmented with synthetic translations can help
the model, while synthesized speech for the MT
data is less effective and still performs worse than
the model using DST data only (see lines 14, 15).
Another aspect to consider is that the additional
synthetic data we generate might be out-of-domain.
Therefore, we fine-tune on top of generated data to
mitigate the domain gap (line 17). This approach
improves the results on the tst-COMMON set. In
the end, to benefit from all data variations, we do
an ensemble of models that outperforms all single
ones.

With data augmentation, pre-training, fine-
tuning, and careful architecture selection, a com-
bination of LSTM encoder and big Transformer
decoder, we obtain comparable results and even on
par on tst-COMMON set and close the gap between
the cascaded and the direct models.
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Figure 2: BLEU vs. Average Lagging latency for a
unidirectional 6-encoder 2-decoder system, generated
by varying the maximum chunk size using the values
C ∈ {5, 6, 7, 8, 9, 10, 20}. The results are computed
for the tst-HE dataset.

5.5 Simultaneous Speech Translation

We present results for simultaneous speech and text
translation models fine-tuned on a concatenation of
the MuST-C and TED training data. In the case of
speech translation models, the fine-tuning is done
as described in Section 5.2. All simultaneous mod-
els use 30k SP units for the source and target side.

Table 4 displays the results for the simultaneous
speech translation task. In the upper part, we pro-
vide the results for the offline Transformer base sys-
tem trained on the same data for reference. The re-
sults are shown for the reference transcript, and the
streaming ASR output. In the middle of the table,
we list multiple simultaneous NMT systems with
varying settings. We enforce a maximum source-
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TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

System BLEU TER BLEU TER AL BLEU TER
Offline baseline, Transformer (MT+BT training data)

using reference transcript 32.7 50.9 30.1 54.3 32.6 48.9
using streaming ASR 28.6 56.3 26.0 59.2 26.4 57.3

Simultaneous NMT (AL ≤ 4s)
6enc, 2dec, C=10, D=2 24.3 60.8 22.6 63.1 3.95s 22.4 60.2
6enc, 4dec, C=10, D=2 25.1 59.5 22.2 63.1 3.94s 22.3 60.0
6enc, 2dec, C=6, D=3 23.3 62.1 21.9 64.7 3.98s 22.3 61.3
2x4enc, 1dec, C=6, D=3 23.8 60.9 22.3 63.1 3.99s 22.3 61.0
6enc, 2dec, C=20, D=4 24.9 61.2 23.0 63.0 4.45s 22.1 62.0

Table 4: Experimental results (in %) for simultaneous NMT of speech, IWSLT 2020 English→German. C refers
to the enforced maximum chunk size, D indicates the boundary decision delay.

TED MuST-C MuST-C
Avg. tst2015 tst-HE tst-COMMON

System AL BLEU TER BLEU TER BLEU TER
Simultaneous NMT

6enc, 2dec, D=2 4.55 30.5 52.5 29.0 54.6 30.3 50.4
6enc, 2dec, D=3 5.21 30.5 52.6 28.9 55.4 29.8 51.0
6enc, 2dec, D=4 5.99 30.3 52.7 29.1 54.0 30.5 50.3
2x4enc, 1dec, D=3 5.33 29.9 53.4 29.0 54.9 30.7 50.4

Table 5: Experimental results (in %) for simultaneous NMT of text input, IWSLT 2020 English→German, D
indicates the boundary decision delay.

side chunk size C and vary the source boundary
delay D to achieve a latency below 4 seconds on
tst-HE. We compare a unidirectional architecture
of 6 LSTM encoder layers and 2 or 4 LSTM de-
coder layers to a bidirectional model. The model
has two stacks of 4 forward and 4 backward LSTM
encoder layers, concatenated at the top-most layer.
The model uses 1 LSTM decoder layer. We observe
that training with a lower delay D=2 and relaxing
the maximum chunk size (C=10) produces better
results than training with a larger delay (D=3), and
using a smaller (C=6). The lower row shows re-
sults for a system with C=20, achieving a latency
of 4.45 seconds. We note that the model makes
dynamic decisions to decide on the source chunk
boundaries that directly influence the latency.

Table 5 shows the results for simultaneous text
translation. We compare unidirectional and bidirec-
tional models with different latencies. All models
use a fixed maximum chunk size of C=20. The
models are trained with different delay values. We
observe that even with a delay D=2 the model
is able to learn reasonable chunk boundaries that
achieve lower latency than higher-delay models
and also maintain a comparable performance.

Figure 2 illustrates the performance on tst-HE
against average lagging (AL) latency. The latency
is varied by changing the maximum chunk size
C. The model used is a unidirectional 6-encoder
2-decoder model trained with delay D=2. We ob-
serve little improvement when increasing the max-

imum chunk size beyond C=7. At C=7, AL is
equal to 3.84s with a performance of 22.2% BLEU,
comparable to 22.3% BLEU obtained when setting
C=20 (corresponding to AL=4.02s). This is likely
due to the learned chunking that is able to set the
boundaries without the need for external interven-
tion by capping the chunk size. On the other hand,
reducing the maximum chunk size to 5 and 6 to-
kens reduces latency, but also reduces translation
context and therefore hurts performance.

6 Final Results

Compared to last year’s submission, the results
of both cascade and direct offline speech transla-
tion models have improved. The cascade system
shows an improvement of 2.0% BLEU compared to
the 2018 submission. The MT quality of the direct
model almost reached the one of the cascade model,
obtaining a huge improvement of 12.4% BLEU.
The performance on the tst2019 and tst2020 test
sets is shown in Table 6, as evaluated by the IWSLT
2020 server. Our primary cascade and direct sys-
tems correspond to the lines 8 and 19 of Table 3
respectively. The contrastive systems which are
single models correspond to the lines 7 and 17 of
the table. We see that the provided reference seg-
mentation negatively affects the MT quality. In con-
trast, the segmentation obtained by our hybrid ASR
model yields segments which apparently are more
sentence-like, include less noise and thus can be
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better translated. On the condition with automatic
segmentation, the difference between our cascade
and direct models ranges from 1.8 to 2.3 BLEU

points. This holds both for our primary ensem-
ble submission and the contrastive single systems,
which have lower BLEU scores by 1% or less as
compared to the ensembles. More results can be
found in (Ansari et al., 2020).

System
TED TED

tst2019 tst2020
BLEU TER BLEU TER

reference segmentation
cascade (primary) 21.0 67.2 22.5 65.2
direct (primary) 19.2 71.2 20.5 70.1

automatic segmentation
cascade (primary, ensemble) 23.4 63.5 25.1 61.4
direct (primary, ensemble) 21.6 66.2 23.3 64.8
cascade (contrastive, single) 23.2 63.6 24.6 61.9
direct (contrastive, single) 20.9 67.2 22.3 66.5

Table 6: AppTek/RWTH IWSLT 2020 submission for
offline speech translation, BLEU and TER scores in %.

7 Conclusions

In this paper, we summarize the results of the joint
participation of AppTek and RWTH Aachen Uni-
versity in the IWSLT 2020 evaluation. For the first
time, we present simultaneous translation results
on real speech from our hybrid streaming ASR sys-
tem. With a latency of 4 seconds they are only 4
BLEU points behind our strong cascaded offline
NMT baseline. This baseline still exhibits the best
results in the offline speech translation task, but
our direct single end-to-end system, with careful
architecture selection, pre-training, and data aug-
mentation, is almost able to compete with our best
cascaded system, obtaining a BLEU score of 29.1
vs 29.7% on MuST-C tst-COMMON set. On the
TED tst2015 set, the ensemble of our direct end-
to-end systems yields a BLEU score of 28.0%, ex-
actly reaching AppTek’s cascaded system results
at IWSLT 2018, obtained one and a half years ago.
At that time, our first DST prototype scored only
17.1% BLEU on the same test set. This shows the
fast and tremendous progress of our direct speech
translation research.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL, pages 1532–1543.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Lukasz Kaiser, and Geoffrey E. Hinton. 2017. Regu-
larizing neural networks by penalizing confident out-
put distributions. CoRR, abs/1701.06548.

Jan-Thorsten Peter, Eugen Beck, and Hermann Ney.
2018. Sisyphus, a workflow manager designed for
machine translation and automatic speech recogni-
tion. In Conference on Empirical Methods in Natu-
ral Language Processing, Brussels, Belgium.

Nick Rossenbach, Albert Zeyer, Ralf Schlüter, and
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Abstract
This paper describes KIT’s submissions to
the IWSLT2020 Speech Translation evaluation
campaign. We first participate in the simulta-
neous translation task, in which our simultane-
ous models are Transformer-based and can be
efficiently trained to obtain low latency with
minimized compromise in quality. On the of-
fline speech translation task, we applied our
new Speech Transformer architecture to end-
to-end speech translation. The obtained model
can provide translation quality which is com-
petitive to a complicated cascade. The latter
still has the upper hand, thanks to the ability to
transparently access to the transcription, and
resegment the inputs to avoid fragmentation.

1 Introduction

The Karlsruhe Institute of Technology (KIT) par-
ticipated in the IWSLT 2020 Evaluation Cam-
paign (Ansari et al., 2020) in two main tracks: Of-
fline Speech Translation task (SLT) and Simulta-
neous Text Translation. Our highlight s the pro-
posal of a novel method for training simultaneous
translation models, with the Adaptive Computa-
tion Time technique (Graves, 2016) incorporated
to the Transformer models (Vaswani et al., 2017).
On the other hand, the end-to-end speech transla-
tion models have observed a single deep Speech
Transformer (Pham et al., 2019b) approaching the
performance of a heavily powered cascade. The
latter, however, is more transparent because of vis-
ible inputs and outputs to each components. It is
still the dominant approach, thanks to the segmen-
tation module that adds punctuations and sentence
boundaries, so the MT models do not suffer from
fragmentation.

2 Data

The overall data that the project employed can be
divided into two main sections: speech and text

corpora.

Speech Corpora. We gathered the allowed train-
ing data included MuST-C and Speech-Translation
TED Talks containing both parallel data for au-
dio to English and German. The TEDLIUM3
and the Mozilla Common Voice data are speech
recognition-specific. Furthermore we also consid-
ered the How2 dataset (the Portuguese translation
is ignored). The data is further cleaned with ASR
models (the details are unveiled in Section 4.4) to
obtain the training time as shown in Table 1.

Table 1: Speech Training data

Data Segments Total time
MuST-C 229K 408h
Speech Translation 142K 160h
TEDLIUM 264K 415h
Common Voice 854K 1490h
How2 217K 360h

Text Corpora. We collected the text parallel
training data as presented in Table 2.

Table 2: Text Training Data

Dataset Sentences
TED Talks (TED) 220K
Europarl (EPPS) 2.2MK
CommonCrawl 2.1M
Rapid 1.21M
ParaCrawl 25.1M
OpenSubtitles 12.6M
WikiTitle 423K
Back-translated News 26M
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3 Simultaneous Speech Translation

For simultaneous speech translation, we deploy
a novel model on the text-to-text task based on
Adaptive Computation Time (ACT, Graves (2016)).
At each decoder step, the model makes a decision
on whether to READ another input token or to
WRITE an output token (c. f. Raffel et al. (2017)).

In our case, these decisions are made by a mech-
anism based on ACT: At each decoder step, we cal-
culate a probability distribution over the encoder
timesteps, representing the prediction where the
decoder should halt and WRITE an output. Specifi-
cally, for decoder step i, we calculate:

pni = σ(ENERGY(sni )) (1)

N(i) = min{n′ :
n′∑

n=1

pni ≥ 1− ε} (2)

R(i) = 1−
N(i)−1∑

n=1

pni (3)

αn
i =

{
R(i) if n = N(i)
pni otherwise

(4)

It follows from the definition that αi is a proba-
bility distribution. We use this distribution along
with the attention mechanism from Arivazhagan
et al. (2019) to calculate the encoder-decoder atten-
tion. In order to incentivise the model to keep the
delays short, we employ the ponder loss in addition
to the usual cross-entropy:

L(θ) = −
∑

(x,y)

log p(y|x; θ) + λC(n) (5)

C =
|x|∑

i=1

N(i) +R(i) (6)

For more information on the ponder loss, see
(Graves, 2016). By varying the parameter λ, we
can produce systems with different latency regimes.
However, each model produces many different
latency-quality tradeoffs during training.

We use sentencepiece (Kudo and Richardson,
2018) to create a shared 37000 word BPE dictio-
nary for source and target. We then train an offline
transformer (Vaswani et al., 2017) model with rela-
tive self-attention (Dai et al., 2019). Based on this,
we train several ACT models with λ varying from
0.15 to 0.7. For all models, we use the Adam opti-
mizer (Kingma and Ba, 2015). We train the offline

model for 200 000 steps, varying the learning rate
from 2.5 · 10−4 to 0 with a cosine schedule, then
train each of the simultaneous models for 1000
steps with initializing parameters from the offline
model. All models use the transformer “base” con-
figuration (layer size 512, feed-forward size 2048,
8 attention heads, 6 layers in encoder and decoder).
Because the evaluation primarily measures delay
in terms of tokens, not time, we could have used a
larger model, but we decided to choose our model
for a more realistic scenario where evaluation time
is an important factor.

4 Offline Speech Translation

We participate to the offline speech translation task
using two different approaches: cascade and end-
to-end. In the cascade, the audio inputs are fed
into our Speech Recognition component (ASR -
Section 4.1), then the outputs will go through a
Segmentation module (Section 4.2) to have well-
formed inputs prior to our Machine Translation
module (MT - Section 4.3). The outputs of our
MT are the final outputs of the cascade system.
On the other hand, the end-to-end approach, as
its name suggests, performs trainings for a single
model from the English audio inputs to produce
text outputs in German (Section 4.4).

4.1 Speech Recognition
Data preparation and Segmentation tool We
used two different training data sets for this evalu-
ation. Having collected all audios from the TED-
LIUM and How2 corpora provided by the or-
ganizer, we then generated 40 features of Mel-
filterbank coefficients for ASR training models us-
ing Janus Recognition Toolkit. We use Sentence-
Piece toolkit (Kudo and Richardson, 2018) to train
and create 4000 different byte-pair-encoding (BPE)
for all models. After that, the WerRTCVAD toolkit
(Wiseman, 2016) was used to segment the audio in
two unsegmented datasets.

Model We only focus on sequence-to-sequence
ASR models, which are based on two different net-
work architectures: The long short-term memory
(LSTM) and the Transformer. Our LSTM-based
models consist of 6 bidirectional layers of 1024
units for the encoder and 2 unidirectional layers for
the decoder (Nguyen et al., 2019). Our transformer-
based models presented in (Pham et al., 2019b)
consist of 32 blocks for the encoder and 12 blocks
for the decoder. Inputs to the LSTM model are
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Mel-filterbank features with 40 coefficients. For
the Transformer model, we concatenated 4 consec-
utive features, then combined them with the posi-
tion information and put them to the self-attention
blocks. For LSTM regularization, we applied the
dropout rate 0.35 in all LSTM layers, and the em-
bedding dropout rate 0.35 for LSTM. For Trans-
former regularization, we applied dropout of rate
is 0.5 and Stochastic Layers in our models (Pham
et al., 2019b).

4.2 Segmentation
Automatic speech recognition (ASR) systems typi-
cally do not generate punctuation marks or reliable
casing. Using the raw output of these systems as
input to MT causes a performance drop due to
mismatched train and test conditions. To create
segments and better match typical MT training con-
ditions, we use a monolingual NMT system to add
sentence boundaries, insert proper punctuation, and
add case where appropriate before translating [15].
The idea of the monolingual machine translation
system is to translate from lower-cased, without-
punctuation text into text with case information and
punctuation.

This year, we reuse the segmentation model from
(Pham et al., 2019a). We ultilize a transformer-
based NMT system to to translate from an English
sentence into a sequence of punctuation and cas-
ing notations. The training data for that are EPPS,
NC and a filtered version of the ParaCrawl cor-
pus. Then, we fine-tune the model on the TED
corpus. For more details, please refer to (Pham
et al., 2019a).

4.3 Machine Translation
Data Preparation. This year, we use an approx-
imating of 70 millions sentence pairs, coming
from TED, EPPS, NC, CommonCrawl, ParaCrawl,
Rapid and OpenSubtitles corpora, including around
26 millions back-translation sentence pairs. The
data are applied tokenization and smart-casing us-
ing the Moses scripts. Furthermore, we segment
words into subword units using BPE method (Sen-
nrich et al., 2016). The smartcasing and BPE model
are trained on what we call clean datasets (TED,
EPPS, NC and CommonCrawl), with the number
of BPE merging operation of 40000, jointly learned
from English and German sides.

Modeling and Training. Basically our transla-
tion system employs Transformer-based encoder-
decoder model (Vaswani et al., 2017). Our model

comprises of a 12-layer encoder and 12-layer de-
coder, in which each layer’ size is 1024, while the
the inner size of feed-forward network inside each
layer is 4096. The notable different of our transla-
tion model compared to the original Transformer
lays on the attention blocks. We implemented Rel-
ative Attention following the work of (Dai et al.,
2019). The self-attention layers take into account
the relative distances between the states instead
of using an absolute position encoding scheme by
adding the position vectors to the word embeddings.
For the encoder, in order to distinguish the two di-
rections of attention (forward and backward), we
use negative distances for forward, and positive dis-
tances for backward. Each attention block is multi-
head attention with 16 heads. We also employ label
smoothing in order to regularize the cross-entropy
loss. Since we share the vocabularies of the source
and target, we are able to tie the embedding weights
of the encoder and decoder layers.

Since we utilize a large amount of data, we set
dropout at 0.1 and trained for 300000 steps. We use
the learning rate schedule with 8000 steps of warm-
ing up before linearly scaling down afterwards. We
then average five best models according to perplex-
ity on a validation set. We denote this as Large
configuration.

Domain Adaptation. From the Large model,
we perform fine-tuning on the TED data, which
we consider the in-domain data for the task. In
addition to the original TED data, we introduce
some noises into a portion of that data and mix
this noised data to the original one, then do the
fine-tuning. The noises are simply produced by
duplicating or deleting n words in some random
positions conforming to some distributions1 and
inserting or deleting a punctuation from the original
sentence.

The main differences between the Fine-tuning
configuration and the Large configuration is that
we apply more strict regularizations, since the fine-
tuning data is significantly smaller. Particularly,
the dropout is now 0.3, word dropout (Gal and
Ghahramani, 2016) is at 0.1 and we also implement
switchout (Wang et al., 2018) with the rate of 0.95.
Switchout is especially useful when we want to

1The probability of whether the noise is introduced is
pw noise = 0.7. The distribution of duplicating and delet-
ing a word is pw manipulate = (0.6, 0.4). The distribution
of how many words ranging from 1 to 3 (n = 1, 2, 3) is
pw num = (0.6, 0.35, 0.05). Those distributions are deliber-
ately chosen after we looked into the outputs of a validation
set from our ASR.
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simulate the noisy conditions of speech translation,
in which the automatic transcripts often contain
errors. We train one fine-tuned model from the
original TED, and another model with the mix of
TED and noised TED with the same Fine-tuning
configuration. Both of them are trained for 2800
steps with the learning rate of 2 and the same warm-
up schedule as before, then again five best models
of each are averaged. Finally, we ensemble these
two averaged models to be our submitted system.

4.4 End-to-End Model

Corpora The main source of parallel data comes
from the MUST-C corpus (Di Gangi et al., 2019b)
(only the English-German part) and the Speech
Translation data provided by the organizer. The
speech features are regenerated with the in-house
Janus Recognition Toolkit.

In order to utilize the English audio utterances
without aligned German translations, we generate
the synthetic translations for the available TED
Talks in the TEDLIUM dataset and furthermore the
large Mozilla Common Voice (CV). Even though
these datasets contain their aligned transcriptions,
it is still challenging to generate the translations
accordingly. The audio segmentation process in
the data collection process does not necessarily
force the utterances to be encapsulated within sen-
tence borders, and also the transcriptions are of-
ten lower-cased and stripped off punctuations. As
a result, we used the Transformer-based punctu-
ation model (Cho et al., 2017) to generate punc-
tuations for each utterance. The translation mod-
els are trained with the WMT 2018 dataset com-
bined with OpenSubtitles as in (Pham et al., 2019a)
(which still satisfy the “constrained” conditions for
the evaluation campaign). It is notable that, even
though we can generate better translations by us-
ing the window technique as in (Cho et al., 2017)
to have better sentence boundaries, such method
breaks the alignment with audio utterances. There-
fore, the generated translation can be incomplete
or noisy compared to the translation acquired from
the available parallel corpora.

The data is further cleaned from the potential
errors (in alignment). These errors can be detected
by first training an ASR model, that we based on
the Transformer-based ASR (Pham et al., 2019b),
and then decoding the audio inputs. We then com-
pute the GLEU score (Wu et al., 2016) between the
generated and the annotated transcripts. With the

threshold of 0.67, we removed the utterances with
the lower scores, and end up with the training SLT
data as in Table 1

During training, the validation data is the Devel-
opment set of the MuST-C corpus. The reason is
that the SLT testsets often do not have the aligned
audio and translation, while training end-to-end
models often rely on perplexity for early stopping.

Modeling The main architecture is the deep
Transformer (Vaswani et al., 2017) with stochastic
layers (Pham et al., 2019b). Each model has 32
encoder layers and 12 decoder layers, and they are
randomly dropped in training according to the lin-
ear schedule presented in the original work, with
the top layer has the highest dropout rate p = 0.5.

In order to make training stable, we initialized
the encoder of the network with the ASR model
with the same configuration (so that the parame-
ters can be transferred). We have two intermediate
ASR models for this purpose, one is trained on
top of TEDLIUM and MuST-C combined, and one
learns from the combination of CV, TEDLIUM
and MuST-C, serving two different data settings
presented in the next section.

With the initialized encoder, the networks can be
trained with an aggressive learning rate with 2048
warm-up rate. Label-smoothing and dropout rates
are set at 0.1 and 0.25 respectively for all models.
Furthermore, all speech inputs are augmented with
spectral augmentation (Park et al., 2019; Bahar
et al., 2019). All models are trained for 100000
steps, each consists of accumulated 12000 target
tokens.

Finally, in order to alleviate the weaknesses of
the Transformer models when it comes to dealing
with long inputs, such as speech signals, we incor-
porated the relative position encoding (Dai et al.,
2019) into our Transformers. The self-attention
layers use the relative distance between states to
compute their similarity functions, instead of rely-
ing on an absolute position encoding scheme which
is vulnerable for this task.

Speech segmentation A big challenge of end-
to-end speech translation is audio segmentation,
which could harm the performance significantly.
The model does not have the ability to re-segment
the audio inputs compared to the cascade. Here
we simply use the WerRTCVAD toolkit (Wiseman,
2016) to provide the translation model with seg-
ments.

58



Figure 1: Quality-latency tradeoffs of various check-
points on the MUST-C test set. Metrics are determined
by the official evaluation script.

Model BLEU AL DAL AP
Offline 32.9 18.6 18.6 1.00
High Latency 31.5 6.3 7.2 0.81
Medium Latency 31.4 6.0 6.9 0.80
Low Latency 25.0 3.0 3.8 0.66

Table 3: Performance of our submitted models on the
MUST-C test set.

4.5 Experimental Results

4.5.1 Simultaneous Translation

We evaluate our model on the MUST-C test set,
tst-COMMON. As each model goes through many
different quality-latency trade-offs during training,
we evaluated a large number of checkpoints be-
fore choosing three models for the low-latency (AL
≤ 3), medium latency (AL ≤ 6) and high-latency
(AL ≤ 12) categories. Figure 1 shows all evaluated
models on a quality-latency graph. The perfor-
mance peaks at around 6 Average Lagging, con-
venient for the medium latency category. Higher
latency models can reach similar performance with
longer training (the shown models are trained for
1000 steps or less), but only barely exceed the peak
at 6 Average Lagging, indicating that that is this
model’s ideal maximum latency. Table 3 shows the
performance of our models on the MUST-C test set.

4.5.2 Cascade Offline Speech Translation

Speech Recognition. We tested our ASR sys-
tems on two datasets, tst2015 and How2 eval-
uation set. The ensemble of LSTM-based and
Transformer-based sequence-to-sequence model
provide the best results, which are 4.1 and 10.6
WERs respectively for two evaluation sets.

Data tst2015 How2
Transformer-based 6.5 12.5
LSTM-based 4.5 11.5
Ensemble 4.1 10.6

Table 4: WER on tst2015 and How2 sets

Machine Translation. The SLT results on
tst2014 are reported in Table 5. By fine-tuning
on TED and introducing noises, we are able to gain
an improvements of 0.64 BLEU points from the
model which is already better than the best model
of last year’s evaluation.

Table 5: Cascade SLT result on tst2014 (En-De)

System tst2014 (BLEU)
Large 25.46
TED Finetune 25.90
Noised TED Finetune 26.03
Ensemble 26.10

4.5.3 End-to-end Offline Speech Translation

We tested three different data conditions. The
Small setup uses only MuST-C as the data. The
Medium model is trained on MuST-C, Speech-
Translation and TEDLIUM. Finally the Large one
is trained on all data we have including the Mozilla
CV. This naming convention only indicates the data
size, while the model size and training procedure
is kept the same across all settings.

We tested the models on two different setups.
The tst-COMMON is provided with the MuST-C
and it is not necessary to resegment the transla-
tion afterwards to match the translation reference.
On the other hand, the tst2014 set requires this
step, because depending on the segmentation, the
hypothesis and reference can have different align-
ment. All of the evaluations were performed with
cased BLEU scores.

Table 6: SLT BLEU scores on MuST-C test set and
tst2014 (En-De)

Data MuST-C tst-COMMON tst2014
Small 25.2 -
Medium 30.6 25.4
Large 28.0 23.2
Large+Adapt 28.1 23.3

59



We obtained the results as in 6. Our Small setup
has achieved 25.2 BLEU scores on tst-COMMON
which already outperformed the best published
results on this test set (Di Gangi et al., 2019a).
Adding the Speech-Translation and the TEDLIUM
data helped us to further improve the result to 30.6.
On the other hand, the Large setup suffered a 2
BLEU point loss compared to the Medium coun-
terpart. This could be the result of the difference in
terms of domain between the Mozilla CV and TED
Talks, as well as the recording environment and
the translation quality obtained with the MT mod-
els. However, even adapting these models on the
MuST-C and Speech-Translation corpora cannot
further improve this setup.

On the tst2014 test set, our end-to-end models
achieved the best result with 25.4 BLEU scores,
which is closely competitive with the best system in
IWSLT 2019 (Pham et al., 2019a), which was 25.7.
This indicates that a deep Transformer network
can potentially reach the performance of a strong
cascade pipeline with mutliple models. Simplicity
is the advantage of this setup, however, when the
output can be obtained directly after the feature gen-
eration step, instead of having several components
which have different input and output formats.

5 Conclusion

At the IWSLT2020 evaluation campaign, we first
presented a novel simultaneous model that can effi-
ciently learn to wait and translate using ACT tech-
nique. Afterwards, we built two systems for offline
speech translation, namely a cascade and an end-to-
end model using Deep Transformer networks. We
showed that the end-to-end model can rival even
the best cascade in challenging speech translation
tests.
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mann Ney. 2019. On using specaugment for
end-to-end speech translation. arXiv preprint
arXiv:1911.08876.

Eunah Cho, Jan Niehues, and Alex Waibel. 2017.
NMT-based segmentation and punctuation insertion
for real-time spoken language translation. In Inter-
speech 2017. ISCA.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

M Di Gangi, Matteo Negri, Viet Nhat Nguyen,
Amirhossein Tebbifakhr, and Marco Turchi. 2019a.
Data augmentation for end-to-end speech transla-
tion: FBK@IWSLT’19. In Proceedings of the 16th
International Workshop on Spoken Language Trans-
lation (IWSLT).

Mattia A. Di Gangi, Roldano Cattoni, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2019b. MuST-C:
a Multilingual Speech Translation Corpus. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics (NAACL).

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems 29 (NIPS).

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983.

Diederik Kingma and Jimmy Ba. 2015. Adam: a
method for stochastic optimization (2014). arXiv
preprint arXiv:1412.6980, 15.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71.

60



Thai-Son Nguyen, Sebastian Stueker, Jan Niehues,
and Alex Waibel. 2019. Improving sequence-
to-sequence speech recognition training with
on-the-fly data augmentation. arXiv preprint
arXiv:1910.13296.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Ngoc-Quan Pham, Thai-Son Nguyen, Thanh-Le Ha,
Juan Hussain, Felix Schneider, Jan Niehues, Sebas-
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Abstract

In this paper, we describe end-to-end simul-
taneous speech-to-text and text-to-text transla-
tion systems submitted to IWSLT2020 online
translation challenge. The systems are built by
adding wait-k and meta-learning approaches
to the Transformer architecture. The systems
are evaluated on different latency regimes. The
simultaneous text-to-text translation achieved
a BLEU score of 26.38 compared to the com-
petition baseline score of 14.17 on the low
latency regime (Average latency ≤ 3). The
simultaneous speech-to-text system improves
the BLEU score by 7.7 points over the compe-
tition baseline for the low latency regime (Av-
erage Latency ≤ 1000).

1 Introduction

Simultaneous Neural Machine Translation (SNMT)
addresses the problem of live interpretation in ma-
chine translation. In a traditional neural machine
translation model, the encoder first reads the entire
source sequence, and then the decoder generates
the translated target sequence. On the other hand,
a simultaneous neural machine translation model
alternates between reading the source sequence and
writing the target sequence using either a fixed or
an adaptive policy. This would allow the model to
avoid intolerable delay in live or streaming transla-
tion scenarios.

In this work, we build a simultaneous translation
system for text-to-text(t2t) and speech-to-text(s2t)
problems based on Transformer wait-k model (Ma
et al., 2019a). We adopt the meta-learning approach
presented in (Indurthi et al., 2020) to deal with the
data scarcity issue in the speech-to-text translation
task. The system architecture and data processing
techniques are designed for the IWSLT 2020 on-
line translation task (Ansari et al., 2020). However,
these techniques can be applied to current and fu-
ture SNMT models as well. We conduct several

experiments on both text-to-text and speech-to-text
problems to evaluate the proposed system. Our ex-
perimental results reveal that the proposed system
achieves significant performance gains over the pro-
vided competition baselines on both the translation
tasks.

2 Simultaneous Translation

2.1 Base Model

The machine translation task involves converting
an input sequence x = (x1, x2, . . . , xn), xi ∈ Rdx
in the source language to the output sequence
y = (y1, y2, . . . , yk), yt ∈ Rdy in the target lan-
guage. In the simultaneous translation task, the
model produces the output in an online fashion as
the input is read. Hence, while producing an output
yt, the complete input sequence might not have
been processed .

Our model derives from the transformer wait-
k model proposed in (Ma et al., 2019a). Similar
to (Ma et al., 2019b), the encoder consists of uni-
directional transformer blocks unlike bi-directional
transformer blocks used in the original transformer.
The decoder starts producing the translation after
having read the first k input units from the source
sequence. It learns to anticipate the information
which might be missing due to word order differ-
ences between the input and target sequences. The
model also supports training and testing under dif-
ferent latency regimes, i.e., different k.

In the machine translation task, the input and
output can have different lengths. This difference
is highly prominent for language pairs such as
English-Chinese. The average source to target ratio
for each language pair(r) is defined as r = |y|/|x|
and the catch-up frequency is defined as c = r − 1.
For the speech-to-text translation task, |x| is set to
the length of the transcript of input waveform and
we define stride, s, which represents the number
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of frames in the source waveform to be consumed
in order to produce each target text token. Usu-
ally, s is set to 1 for the text-to-text translation
task. The wait-k model adjusts the reading speed
of the decoder according to this ratio r and stride s.
Hence, the final decoding policy of the model can
be defined by the the following equation:

gwait−k, c,s(t) = min{(k + t− 1− bctc) ∗ s, |x|},

where g(t) is the number of input units processed
in order to produce yt.

2.2 Meta Learning

Recently, (Indurthi et al., 2020) proposed a Modal-
ity Agnostic Meta-Learning (MAML, (Finn et al.,
2017)) approach to address the data scarcity issue
in the speech-to-text translation task. We adopt this
approach to train our simultaneous translation task.
Here, we briefly describe the MAML approach
used for training, for more details, please refer to
(Indurthi et al., 2020).

The MAML approach involves two steps: (1)
Meta-Learning Phase, (2) Fine-tuning Phase. In the
meta-learning phase, we use a set of related high
resource tasks as source tasks to train the model. In
this phase, the model captures the general learning
aspects of the tasks involved. In the fine-tuning
phase, we initialize the model from the parameters
learned during the meta-learning phase and train
further to learn the specific target task.
Meta-Learning Phase: The set of source tasks in-
volved in the meta-learning phase are denoted by
T . For each step in this phase, we first uniformly
sample one source task τ ∈ T and then sample two
batches(Dτ and D

′
τ ) of training examples. The

Dτ is used to train the model to learn the task spe-
cific distribution, and this step is called meta-train
step. In each meta-train step, we create auxiliary
parameters (θaτ ) initialized from the original model
parameters (θm). We update the auxiliary param-
eters during this step while keeping the original
parameters of the model intact. The auxiliary pa-
rameters (θa) are updated using gradient-descent
steps, which is given by,

θaτ = θm − α∇θm`(Dτ ; θ
m). (1)

After the meta-train step, the auxiliary param-
eters (θa) are evaluated on D

′
τ . This step is

called meta-test and the gradients computed dur-
ing this step are used to update the original model

parameters(θm).

θmτ = θm − β∇θa`(D
′
τ ; θ

a).‘ (2)

Exposing the meta-learned parameters((θm) to
the vast data of the source tasks T during this phase
makes them suitable to act as a good initialization
point for the future related target tasks.

Fine-tuning Phase: During the fine-tuning
phase, the model is initialized from the meta-
learned parameters (θm) and trained on a specific
target task. In this phase, the model training is car-
ried out like a usual neural network training without
involving the auxiliary parameters.

2.3 Training

We train our systems with and without using the
meta-learning approach described in Section 2.2.
In the meta-learning approach, we first pre-train the
model on the source tasks and further fine-tune on
the target task, which is represented as ‘wMT’. We
also train another model directly on the given tar-
get task without using the meta-learning approach,
represented as ‘woMT’. The meta-learning training
approach helps the low resource tasks to utilize the
training examples from the high resource source
tasks.

The source tasks used for simultaneous speech-
to-text translation are Automatic Speech Recogni-
tion (ASR), Machine Translation (MT), and Speech
Translation (ST) tasks. Unlike (Indurthi et al.,
2020), we also added the ST task as a source
task, and this improved the performance of our
system further. Even though the simultaneous text-
to-text translation task has sufficient training data,
we apply the meta-learning training approach to
learn possible language representations across dif-
ferent language pairs. We use English-German and
French-German language pairs as the source tasks
in the meta-training for the text-to-text translation
task.

The text sequences are represented as word-
piece tokens, and the speech signals are represented
as Log Mel 80-dimensional features. Usually, the
speech sequences are a few times longer than the
text sequences, therefore, we use an additional
layer to compress the speech signal and exploit
structural locality. The compression layer consists
of 3 Convolution layers with stride 2, both on the
time and frequency domain of the speech sequence.
The compressed speech sequence is passed to the
encoder layer for further processing. To facilitate
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Pair
Dataset

Must-C OpenSubtitles WMT19 All

EnDe 229k 22.5m 38m 61m
FrDe 9.8m 9.8m

Table 1: Dataset Statistics for T2T

Dataset
Wait-k

4 7 8 15 Offline

All 25.50 28.31 28.80 29.70
All + BT 25.06 28.22 28.71

All reduced 26.04 28.57 29.07 30.27 31.20

Table 2: Comparing Datasets for T2T

the training on multiple language pairs and tasks,
we create a universal vocabulary ((Gu et al., 2018a))
for both text-to-text and speech-to-text translation
systems. The universal vocabularies are created
based on the source and target tasks.

For each simultaneous task, we train the system
on a dataset D of parallel sequences to maximize
the the log likelihood:

`(D; θ) =
1

|D|

|D|∑

i=1

log p
(
yi|xi; θ

)
, (3)

where θ denotes the parameters of the model. We
train the systems for three different latency regimes
based on the competition requirements.

3 Experiments

3.1 Datasets
3.1.1 Simultaneous Text-to-Text Translation
For the text-to-text translation task, we use the
MuST-C, IWSLT 2020, OpenSubtitles2018, and
WMT19 (presented as ‘All’ in the Table 2) for train-
ing. We evaluate our system on the MuST-C Dev
set. Our parallel corpus of WMT19 consists of
Europarl v9, ParaCrawl v3, Common Crawl, News
Commentary v14, Wiki Titles v1 and Document-
split Rapid for the German-English language pair.
We also use the WMT19 German-French language
pair as one of the source tasks during the meta-
learning training phase. The statistics of the data
we use for text-to-text translation are provided in
the Table 1. We also use monolingual data from
the News crawl corpus for data augmentation using
back-translation technique. About 20M English
sentences are translated by the En-De translation
model, which was trained on the WMT19 corpus
(presented as ‘All + BT’ in the Table 2). Due to
the presence of noise in the OpenSubtitles2018

Task Dataset Hours Sent. #
MT Open Subtitles 22.5m
MT WMT 19 4.6m
ASR LibriSpeech 982 233k
ASR IWSLT 19 ST 272 145k
ASR MuST-C 400 229k
ASR TED LIUM 3 452 28.6k
ST Europarl-ST 89 97.9k
ST IWSLT ST 19 272 726k
ST MuST-C 400 918k
ST TED-LIUM 3 452 537k

Table 3: Dataset Statistics for S2T

and ParaCrawl, we use only 10M randomly sam-
pled examples from these corpora (presented as
‘All reduced’ in the Table 2).

3.1.2 Simultaneous Speech-to-Text
Translation

The speech-to-text translation models are trained
on examples collected from the Must-C, IWSLT
2020, Europarl-ST, and TED-LIUM3 datasets. The
statistics for the same are provided in the Table
3. The models are evaluated using the MuST-C
Dev set. Due to the limited availability of training
examples for the ST task, we increase the number
of training examples by using data augmentation
techniques. For data augmentation on the text side,
we use English-to-German NMT model to gener-
ate synthetic German sequences from the English
sequences. We use two NMT models and top-K
beam results to generate multiple synthetic Ger-
man sequences. These NMT models are based on
the Transformer architecture and trained on the
WMT19 dataset with different hyper-parameter
settings. For speech sequence, we use the Sox
library to generate the speech signal using dif-
ferent values of speed, echo, and tempo param-
eters similar to (Potapczyk et al., 2019). The pa-
rameter values are uniformly sampled using these
ranges for each parameter: tempo ∈ (0.85, 1.3),
speed ∈ (0.95, 1.05), echo delay ∈ (20, 200), and
echo decay ∈ (0.05, 0.2). We increase the size
of the IWSLT2020 ST dataset to five times of the
original size by augmenting 4X data – four text
sequences using the NMT models and four speech
signals using the Sox parameter ranges. For the
Europarl-ST, we augment 2X examples to triple
the size. The TED-LIUM3 dataset does not con-
tain speech-to-text translation examples originally,
hence, we create 2X synthetic speech-to-text trans-
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Train-kt 4 7 8 26 27 28
Decode-k BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL

kt 26.04⊕ 2.84 28.57∗ 5.15 29.07 5.85 30.78 14.59 30.16 14.93 30.48 15.17
kt − 1 24.32 2.06 28.24 4.47 29.07∗ 5.15 30.73 14.27 30.13 14.60 30.48 14.89
kt − 3 17.98 0.32 26.38⊕ 2.93 27.75 3.71 30.69 13.58 30.21 13.96 30.49 14.27

Table 4: Varying k during Testing for T2T: kt denotes k used for training

Latency regimes Low Medium High
Methods Dataset BLEU AL k BLEU AL k BLEU AL k

Fairseq Must-C 14.17 2.91 4 17.28 5.88 8 19.53 12.37 20
woMT All reduced 26.04 2.84 4 29.07 5.85 8 30.78 14.59 26
wMT All reduced 25.31 2.83 4 28.75 5.76 8 30.08 14.57 26

Table 5: Comparing Training Strategies for T2T

lations using speech-to-text transcripts. Finally, for
the MuST-C datasest, we use synthetic speech to
increase the dataset size to 4X. Overall, we created
the synthetic training data of size roughly equal to
two times the original data using data augmentation
techniques described above.

3.2 Implementation Details

For the text-to-text translation, we use base
parameter settings from the Transformer model
(Vaswani et al., 2017), except that we use uni-
directional encoder. Each model is trained for 500k
steps with a batch size of 4096 tokens. The source
tasks used in the meta-training phase are English-
German and French-German language pairs. The
stride s is set to 1.

For the speech-to-text translation, the number
of encoder and decoder layers are 8 and 6, respec-
tively. The compression layer consists of three
Convolutional layers. Each model is trained for
300k meta steps and fine-tuned for another 300k
with a text batch size of 4096 tokens and a speech
batch size of 1.5M frames. The models are trained
using the multi-step Adam optimizer (Saunders
et al., 2018) with the gradients accumulated over
32 steps.

Our code is based on the Tensor2Tensor frame-
work (Vaswani et al., 2018), and we use 4*NVIDIA
P40 GPUs for all the experiments. We use the
server-client API based evaluation code provided
by the organizers of the IWSLT2020 online trans-
lation challenge. This evaluation API gives sev-
eral metrics to measure the translation quality and
latency, such as BLEU, METEOR, TER, Differ-
entiable Average Lagging(DAL), Average Lag-
ging(AL) and Average Proportion (AP). In this
paper, we report the BLEU scores along with the

AL. We also report the numbers from the baselines
provided by the organizing committee in the Table
5 and 7. All the results are reported on the MuST-C
Dev set, unless stated otherwise. The emission rate
r of German-English is set to 1.0. Moreover, we
use the same parameter value for k and s during
training and testing, unless stated otherwise.

4 Results

4.1 Simultaneous Text-to-Text Translation

We train our models on different dataset sizes
which are created by using back translation and
sampling techniques and compare the performance
across these datasets. The BLEU scores with var-
ious wait-k values for models trained on differ-
ent dataset sizes have been reported in the Table
2. As we can see in the Table 2, the augmented
dataset (‘All + BT’) performs poorly compared
to the model trained on the original dataset. On
the contrary, the reduced dataset gives best perfor-
mance among all these datasets. All these models
are trained using the woMT training strategy.

Motivated by (Ma et al., 2019a), we decode the
target text using smaller k values than the k value
used during the training. As one can observe (by
comparing the marked cells) in the Table 4, the
result obtained from a model upon decoding using
k = 7, when trained using k = 8 is better than
the model which is both trained and decoded using
k = 7. A similar trend is also observed for k =
4. Also, as train-k or decode-k increases, usually
the BLEU and the AL also increases. However,
this trend is limited to the low or medium latency
regimes, since the models with larger k are less
sensitive to k value and the performance degrades
as k reaches towards the input sequence length. For
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Train-kt/st 3/300 4/350 3/400 4/800 5/800
Decode-k/s BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL

kt/st 12.85 1136.11 14.59 1875.04 15.89 1940.67 17.95 3967.49 17.42 4318.34
kt − 1/st 12.24 897.79 13.88 1539.73 14.9 1653.62 17.79 3582.93 17.43 4002.83
kt/st − 100 7.16 45.48 10.77 715.92 12.79 1084.11 17.81 3679.68 17.14 4027.91

Table 6: Varying k/s during Testing for S2T: kt/st denote k/s used during training

Latency regimes Low Medium High
Methods Dataset BLEU AL k s BLEU AL k s BLEU AL k s

Fairseq Must-C 4.5 792.28 1 320 9.3 1828.28 2 400 11.49 3664.19 2 800
woMT iwslt20 aug 6.70 1061.90 3 300 9.11 1882.17 3 400 12.59 4020.97 4 800
wMT iwslt20 aug 12.85 1136.11 3 300 15.89 1940.67 3 400 17.95 3967.49 4 800

Table 7: Comparing the Training Strategies for S2T

example, the model trained with k = 26 has the
highest BLEU score among the models trained on
k values ranging from 26 to 28. All the models
reported in the Table 4 use the All reduced dataset
and the woMT training approach.

We compare the wMT and woMT training strate-
gies on three latency regimes. The results have
been tabulated in the Table 5. Unlike speech trans-
lation, we did not witness any improvement in the
text-translation from the meta-learning approach.
In the Table 5, models trained using the woMT
strategy achieved a better results than the wMT
strategy. A possible reason for this might be that
the English-German text translation problem is not
suffering from data scarcity. Moreover, the number
or diversity of source tasks used for meta-learning
training is limited compared to the speech-to-text
translation source tasks. We also observe that
English-German and French-German corpus have
an overlap of over 70% German words limiting the
variability of the source tasks, which hampers the
model from learning any meta-aspects of the text
translation tasks during the meta-learning phase.
This might be the reason behind meta-training be-
ing less effective for online text-to-text task.

4.2 Simultaneous Speech-to-Text Translation

Similar to the online text-to-text task, we vary the
latency parameters while decoding the simultane-
ous speech model as well. We vary both k and
strides(s), and report the BLEU in the Table 4. We
can see from the Table 6 that as k and s increase,
the BLEU score increases while AL decreases. Un-
like the text-to-text translation, decoding with de-
creased k and s does not result in any BLEU score
improvement. For instance, as seen in the Table
6, the result of model trained with 5/800(where

k = 5 and stride s = 800) and decoded with 4/800
shows lower performance than that of the model
both trained and decoded using 4/800. Also, a
similar trend can be observed between the models
trained with 3/400 and 3/300. As we can see in the
last two columns, the BLEU score decreases as k
increases from 4 to 5 for s = 800. This is similar to
what we observed in the text case as well, increas-
ing k in the high latency regime leads to a drop in
the performance. All the models reported in the
Table 6 are trained using the augmented datasets
and the wMT training approach.

Finally, we explore the effectiveness of the meta-
learning approach for the online speech-to-text
translation task for the three latency regimes. In the
Table 7, we can easily see that there is a significant
BLEU score gap between models trained using the
wMT and woMT training strategy. The results show
that our meta-learning approach improves the per-
formance of the models in all the latency regimes.
Compared to the online text-to-text translation task,
the meta-learning approach in the online speech-to-
text task exploits many sub-problems with a variety
of source tasks such as ASR, MT and ST. Also,
the speech-to-text task suffers severely from the
data-scarcity issue as compared to the text-to-text
task, and using the meta-learning approach helps
overcome this issue.

5 Related Work

Simultaneous Translation: The earlier works in
simultaneous translation such as (Cho and Esipova,
2016; Gu et al., 2016; Press and Smith, 2018; Dalvi
et al., 2018) lack the ability to anticipate the words
with missing source context. The wait-k model
introduced by (Ma et al., 2019a) brought in many
improvements by introducing a simultaneous trans-
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lation module which can be easily integrated into
most of the sequence to sequence models. Ari-
vazhagan et al. (2019) introduced MILk which is
capable of learning an adaptive schedule by using
hierarchical attention; hence it performs better on
the latency quality trade-off. Wait-k and MILk
are both capable of anticipating words and achiev-
ing specified latency requirements by varying the
hyper-parameters.

Speech to Text Translation: Most of the exist-
ing systems tackle the problem of simultaneous
speech to text translation using a cascaded pipeline
of online ASR and MT systems.

Previous works such as (Niehues et al.,
2016);(Ari et al., 2020) propose re-translation
strategies for simultaneous speech translation, but
their use case is limited to settings where output
revision is allowed.

Although there has been some work towards
making an end-to-end offline speech translation
modules, the paucity of training datasets remains
a bottleneck. The work done by (Ma et al., 2019a)
cannot simply be extended to the domain of simul-
taneous speech translation as we discussed earlier.
Similar to our model (Gu et al., 2016) also uses a
pre-trained model for the simultaneous translation
task. However, they use a full-sentence model dur-
ing pre-training, unlike ours. Our proposed model
alleviates these issues, both our pre-training and
fine-tuning training phases are done in an online
fashion, hence avoiding any train-inference discrep-
ancies. Our model has a controllable latency which
can be specified by k.

Meta Learning: Meta-Learning approaches
have been particularly useful with low resource
problems since they inherently learn to adapt
to a new problem with less training examples.
Andrychowicz et al. (2016); Ha et al. (2016)
focuses more on the meta policy while MAML
system proposed by (Finn et al., 2017) focuses
more on finding a good initialization point for the
target tasks. The work done by (Indurthi et al.,
2020) and (Gu et al., 2018b) employ the MAML
algorithm for low resource settings in offline
speech-to-text and text-to-text translation task. In
this work, we adopt these strategies to the online
translation tasks.

6 Conclusion

In this work, we develop an end-to-end simulta-
neous translation system for both text-to-text and
speech-to-text tasks by using the wait-k method
and the meta-learning approach. We evaluate the
proposed system with different data settings and
latency regimes. We explore the effectiveness of
the meta-learning approach for the online transla-
tion tasks. The meta-learning approach proves to
be essential in settings where the training data is
scarce. Compared to the baseline provided in the
competition, both online text-to-text and speech-
to-text models achieved significant BLEU score
improvements.
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Abstract

We describe the DiDi Labs system submitted
for the IWSLT 2020 Offline Speech Transla-
tion Task (Ansari et al., 2020). We trained an
end-to-end system that translates audio from
English TED talks to German text, without
producing intermediate English text. Our base
system used the S-Transformer architecture
(Di Gangi et al., 2019b), trained using the
MuST-C dataset (Di Gangi et al., 2019a). We
extended the system via decoder pre-training,
pre-trained speech features, and text transla-
tion, but these extensions did not yield im-
proved results.

1 Introduction

The performance of end-to-end speech translation
systems at IWSLT has been approaching that of
cascaded systems, with the gap shrinking to 1.5
BLEU points in 2019 (Niehues et al., 2019). With
additional effort, end-to-end systems could finally
surpass cascaded systems. The 2020 task required
participants to translate audio from English TED
talks to German text.

We trained several different end-to-end speech
translation systems. We used the MuST-C dataset
to train models for speech translation and speech
recognition, the Europarl-ST dataset for speech
recognition (Iranzo-Sánchez et al., 2019), and the
WMT-19 news commentary dataset for text trans-
lation (Tiedemann, 2012). Our best performing
model used an encoder that was first pre-trained
for English speech recognition, and then fine-
tuned for speech translation. This system scored
17.1 BLEU on the MuST-C test set.

2 Experimental Framework

Our models used the S-Transformer architecture
of Di Gangi et al.. This is an adaptation of the
Transformer architecture (Vaswani et al., 2017)

for speech inputs. The encoder performs a 2-
D convolution on the audio input before apply-
ing self-attention as in the Transformer. An-
other distinction is that the decoder operates at
the character level, instead on the byte-pair encod-
ing (BPE) tokenization that is typically used with
transformer models for text. The system uses a
512-dimensional embedding in the self-attention
layers. Each of the encoder and decoder have 8-
headed attention and 6 self-attention layers. The
models have 32,132,040 parameters.

Each of our models were run on a single Nvidia
Tesla P-100 GPU. We used a batch size of 8, and
the Adam optimizer with a learning rate of 0.005
and an inverse square root warm-up schedule start-
ing from 0.0003 for the first 4000 training steps.
Each model was trained for up to 50 epochs, stop-
ping early when validation loss had not decreased
for 10 consecutive epochs.

We trained 6 models using different methods.
We used the German transcripts and German audio
from Europarl-ST for decoder pre-training. We
used the WMT News Commentary parallel corpus
for text translation. All other experiments used the
MuST-C dataset. Table 1 contains the statistics for
the corpora we used.

3 Extending S-Transformer

3.1 Naı̈ve Model

Our simplest model was the S-Transformer,
trained end-to-end on the MuST-C corpus using
English audio inputs and German text outputs.
This model was not able to successfully learn the
task, achieving a score of 0 BLEU on the MuST-
C test set. This is not surprising, as the relation-
ship between the English audio and German text
is not obvious without prior knowledge, even to
most humans. This model effectively learned to
memorize the most common output sentence from
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Dataset Segments Input Output
MuST-C training 229,703 EN Audio EN, DE Text
MuST-C dev 1,423 EN Audio EN, DE Text
MuST-C test 2,641 EN Audio EN, DE Text
WMT news commentary 338,285 EN Text DE Text
Europarl-ST training 12,904 DE Audio DE Text
Europarl-ST dev 2,603 DE Audio DE Text

Table 1: Details of the datasets we use in our experiments

the training set (“Vielen Dank”), and produced this
as output every time.

3.2 Encoder Pre-Training

The task was too difficult for a naı̈ve system to
learn from scratch, so we tried training it in two
stages. First, the system was trained to predict En-
glish text given the English audio inputs from the
MuST-C dataset. This model successfully learned
to transcribe English audio, achieving a BLEU

score on the MuST-C validation set of 60.45. 1

We then discarded the decoder from this En-
glish ASR system. The rest of the model was then
fine-tuned to predict German text from English au-
dio. We were thus able to train an end-to-end sys-
tem in stages without having the intermediate in-
puts and outputs inherent to a cascaded system.

By first learning the simpler task of speech
recognition, the system was able to make sense
of the audio input before attempting to learn to
translate it. This system was the strongest that
we trained, achieving a BLEU score of 17.1 on the
MuST-C test set.

3.3 Decoder Pre-Training

Pre-training the encoder using the simpler speech
recognition task was successful, so we attempted
to similarly pre-train just the decoder, except for
German speech recognition instead.

We started by training a German ASR system
using the same initial S-Transformer architecture
as in Section 3.2. Here we trained the ASR sys-
tem on German audio inputs and German text out-
puts from the Europarl-ST dataset. This system
successfully learned to transcribe German audio,
achieving a score on the Europarl-ST validation
set of 36.9 BLEU.

The rest of the training was analogous to the
pre-trained encoder system: the encoder of this

1We used the BLEU score instead of standard ASR met-
rics to simplify our implementation. This metric was mainly
used to determine whether or not the model was useful as a
starting point for fine-tuning; the value of the score was less
significant.

model was discarded, then the model was trained
on the speech translation task. However, this
model performed similarly to the naı̈ve system.

This suggests that just learning the input audio
without a corresponding text in the same language
remains a key challenge. This is perhaps not sur-
prising, as audio input and a text transcript operate
at different timescales: text inputs have atomic el-
ements, but audio inputs are not only subdivisible
via faster sampling, but also overlapping in time if
the stride distance is short.

3.4 Combining Pre-Trained Encoder and
Pre-Trained Decoder

Although we were not able to fine-tune the pre-
trained decoder system of Section 3.3 to produce
a strong speech translation model, we wondered if
it could still could be a useful addition to a system
with a pre-trained encoder. We fine-tuned an end-
to-end model that started with the encoder trained
for English ASR, and the decoder trained for Ger-
man ASR. However, this model was only about as
good as using only the pre-trained encoder. Per-
haps this approach could produce stronger results
if the encoded representations of the encoder and
decoder were aligned to one another, as occurs
when learning seq2seq models from scratch.

4 Using wav2vec Inputs

The MuST-C corpus represents the input au-
dio using 40-dimensional Mel-Filterbank features.
Schneider et al. (2019) presented wav2vec: un-
supervised pre-training to learn speech represen-
tations, with improved speech recognition results.
We attempted to apply this same approach to
speech translation, replacing the Mel-Filterbank
features with wav2vec features as input to the
system.

We use the pre-trained model released in the
fairseq library2 to compute features for the

2https://github.com/pytorch/fairseq/
tree/master/examples/wav2vec
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MuST-C dataset. wav2vec features are 512-
dimensional vectors, but the Mel-Filterbank fea-
tures are 40-element vectors. We applied prin-
cipal component analysis (PCA) to reduce the
wav2vec vectors to 40 dimensions to match the
existing architecture. To reduce the computational
load, we simply computed the PCA transforma-
tion on the first segment of the training set, and
then applied the same transformation matrix to
each subsequent sample.

We then attempted to pre-train the encoder for
English ASR using the same S-Transformer archi-
tecture as before, in Section 3.2. However, this
model does not successfully learn to transcribe En-
glish audio during pre-training. After fine-tuning,
it cannot translate English audio and also gets a
score of 0 BLEU.

We suspected our dimensionality reduction
from 512 to 40 was too crude, losing too much in-
formation. To see if this was the case, we also at-
tempted to use the full 512-dimensional wav2vec
features as input, and increased the system layer
widths accordingly. However, computational con-
straints limited us to only training on 20,000 seg-
ments of the MuST-C training set. However, this
model also does not successfully learn to tran-
scribe English audio during pre-training. After
fine-tuning, it still cannot translate English audio
and also gets a score of 0 BLEU.

5 Text translation multi-task training

Strong text translation systems are often trained
on many millions of sentences, if they are avail-
able. Transcribing audio and translating is more
expensive than finding parallel sentences, so the
MuST-C corpus is considerably smaller than text
translation corpora. We hypothesized that addi-
tional training on translation data would improve
performance.

We pre-trained an English to German MT
system that shared the decoder with our S-
Transformer system in Section 3.2, in order to
improve the decoder’s translation ability. This
model used a standard transformer encoder, not
the S-Transformer. Unfortunately after training,
this model was not able to successfully learn to
translate text, though this same corpus has been
successfully used in previous work (Barrault et al.,
2019). We did not conduct further experiments
trying to use the shared decoder in this model for
speech translation.

Model BLEU
1. Baseline S-Transformer model 0.00
2. #1 + encoder pre-trained on English ASR 17.1
3. #1 + decoder pre-trained on German ASR 0.00
4. #1 + #2 + #3 16.8
5. #2 + wav2vec preprocessing 0.00
6. #1 + text translation multi-task training 0.00

Table 2: BLEU scores of our experiments, evaluated on
the MuST-C test set

6 Results and Conclusion

Table 2 contains our experimental results. The
model using an encoder pre-trained for English
speech recognition performed best. Combining
this model with a decoder pre-trained for German
speech recognition performed roughly similarly.

We have presented several different experi-
ments in training end-to-end speech translation
system based on the S-Transformer architecture.
Unfortunately, none of the experiments we pre-
sented were able to improve performance on the
MuST-C test set relative to the models of Di Gangi
et al. (2019c). With more work, the ideas we at-
tempted could produce stronger systems in the fu-
ture.
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Abstract

In this paper, we describe the system sub-
mitted to the IWSLT 2020 Offline Speech
Translation Task. We adopt the Transformer
architecture coupled with the meta-learning
approach to build our end-to-end Speech-
to-Text Translation (ST) system. Our
meta-learning approach tackles the data
scarcity of the ST task by leveraging the data
available from Automatic Speech Recognition
(ASR) and Machine Translation (MT) tasks.
The meta-learning approach combined with
synthetic data augmentation techniques
improves the model performance significantly
and achieves BLEU scores of 24.58, 27.51,
and 27.61 on IWSLT test 2015, MuST-C test,
and Europarl-ST test sets respectively.

1 Introduction

The goal of the IWSLT 2020 Offline Speech Trans-
lation challenge(Ansari et al., 2020) is to check
the feasibility of end-to-end models for translat-
ing audio speech of one language into text of a
different target language. The success of end-to-
end neural models for ASR (Graves et al., 2013)
and MT (Bahdanau et al., 2015) inspired to build
end-to-end neural models for the more challeng-
ing Speech-to-Text translation (ST) task (Bérard
et al., 2016). Traditionally the ST systems are built
by cascading ASR and MT systems (Ney, 1999).
However, the cascaded system suffers from error
propagation, latency, and memory requirement is-
sues. Although these issues can be addressed using
end-to-end ST models, it is hard to collect such
data for training these models.

In this work, we build an end-to-end ST sys-
tem which not only addresses the issues of a cas-
caded system but also works with limited training
data. The proposed system is fine-tuned towards

* The two authors contributed equally to this paper

IWSLT 2020 Offline Speech-Translation Task 1.
However, the proposed training strategies and the
data augmentation techniques can be adopted into
existing and future ST models. We adopt the meta-
learning approach proposed for ST task (Indurthi
et al., 2019) to train our system. The meta-learning
based training approach not only allows us to lever-
age huge amounts of training data available in ASR
and MT tasks but also helps to find a good initial-
ization point for the target ST task.

We conduct several experiments involving ASR,
MT, and ST corpora to test our model performance
on the IWSLT 2020, MuST-C, and Europarl-ST
English-German (En-De) ST tasks. Our experi-
ments reveal that the proposed model trained us-
ing the meta-learning approach achieves significant
performance gains over the model which only uti-
lizes the ST data for training. Our model achieves
4.81, 5.37, and 8.46 BLEU score improvements
on IWSLT test 2015, MuST-C test, Europarl-ST
test sets compared to the models trained without
using the meta-learning approach for training. Our
best system attains 24.58, 27.51, and 27.61 BLEU
scores on IWSLT test 2015, MuST-C test, and
Europarl-ST test sets, respectively.

2 Model Architecture

We use the Transformer model as a base Sequence-
to-Sequence (seq2seq) model to train the ASR, MT,
and ST tasks. In this section, we describe briefly
about the Transformer architecture and how it is
adopted to ASR and ST tasks. In Section 2.2, we
describe the meta-learning algorithm used to train
our seq2seq model.

2.1 Base Architecture
A general seq2seq architecture (Sutskever et al.,
2014) generates a target sequence y =

1The International Conference on Spoken Language Trans-
lation ACL - 17th IWSLT 2020
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{y1, · · · , yn} given a source sequence x =
{x1, · · · , xm} by modeling the conditional proba-
bility, p(y|x, θ). The MT task is one example of
seq2seq problems where x represents the input se-
quence in the source language and y represents the
translated output sequence in the target language.

The non-recurrent Transformer network
(Vaswani et al., 2017) has been extensively used
to solve general seq2seq problems, especially
the MT task. The Transformer is based on
an encoder-decoder architecture (Cho et al.,
2014). The encoder and decoder blocks of the
Transformer network are composed of stacks
of N, M identical layers. Each encoder layer
has two sub-layers, the first being a multi-head
self-attention mechanism, and the second sub-layer
being a position-wise fully connected feed-forward
network. Similarly, each decoder has these two
sub-layers. In addition to these two sub-layers,
the decoder contains an additional sub-layer for
computing the encoder-decoder attention vector
based on soft attention mechanism (Bahdanau
et al., 2015).

2.2 MAML

Meta-Learning approach is proven to be very useful
to mitigate the data scarcity issue in low resource
tasks. Due to the scarcity of ST data in our task, we
use the variant of meta-learning approach called
Modality Agnostic Meta-Learning (MAML) (Finn
et al., 2017a) to leverage high resource tasks when
training on low resource tasks. Here, we briefly
describe the MAML approach for the ST task. For
more details about the meta-learning approach for
the ST task, please refer to (Indurthi et al., 2019).

The MAML approach involves two phases: (1)
Meta-Learning Phase, (2) Fine-tuning Phase. In
the meta-learning phase, we use a set of related
high resource tasks as source tasks to train the
model. In this phase, the model captures the gen-
eral learning aspects of the tasks involved. During
the fine-tuning phase, we tune the model towards
the specific target task after initializing the model
from the parameters learned in the meta-learning
phase.

Meta-Learning Phase: In this phase, we
use the high resource tasks as source tasks
{τ1, · · · , τ s} to find a good parameter initializa-
tion point θ0 for the low resource target task τ0.
For each step in this phase, we first uniformly sam-
ple one source task τ at random from the set of

source tasks {τ1, · · · , τ s}. We then sample two
batches(Dτ and D

′
τ ) of training examples from

this task τ . The Dτ is used to train the model to
learn the task specific distribution and this step is
called meta-train step. In each meta-train step, we
create auxiliary parameters (θaτ ) initialized from
the original model parameters (θm). We update
the auxiliary parameters during this step using Dτ

while keeping original parameters intact. The auxil-
iary parameters (θa) are updated using the gradient-
decent step and it is given by,

θaτ = θm − α∇θm`(Dτ ; θ
m). (1)

After the meta-train step, the auxiliary parame-
ters (θa) are evaluated on D

′
τ to compute the loss.

This step is called meta-test and the computed loss
is used to update the original model parameters
(θm).

θmτ = θm − β∇θa`(D
′
τ ; θ

a).‘ (2)

Note that the meta-test step is performed over
the model parameters (θm), whereas the loss is
computed using the auxiliary parameters (θa). In
effect, the meta-learning phase aims to optimize
the model parameters such that a new low resource
target task can be quickly learned during the fine-
tuning phase.

Fine-tuning Phase: During fine-tuning phase,
the model is initialized from the meta-learned pa-
rameters (θm) and trained on specific target task.
In this phase, the model training is done like a
usual neural network training without involving the
auxiliary parameters.

Exposing the model parameters to vast
amounts of data from high resource source
tasks {τ1, · · · , τ s} during the meta-learning phase
makes them suitable to act as a good initialization
point for the target task τ0.

2.3 Speech-to-text Translation:
We adopt the basic Transformer (Vaswani et al.,
2017) architecture described in Section 2.1 to train
ASR and ST tasks. We represent the speech
sequence in these tasks using the Log Mel 80-
dimensional features. The speech sequences are
usually a few times longer than the text sequences.
Thus, we add a compression layer at the beginning
of the Transformer network to compress and extract
structure locality from the speech sequences. This
compressed signal is given as input to the Trans-
former encoder. The compression layer comprises
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of a stack of CNN layers. The text sequences in all
the ASR, MT, and ST tasks are represented using
word piece vocabulary.

The limited amount of training data in the ST
task can result in over-fitting and leads to an infe-
rior performance. Hence, we use the meta-learning
approach described in the Section 2.2. The meta-
learning approach for ST task proposed by (In-
durthi et al., 2019) suggests high resource tasks
such as Automatic Speech Recognition (ASR) and
Machine Translation (MT) as source tasks during
meta-learning phase. Unlike (Indurthi et al., 2019),
we include ST task as one of the source tasks during
the meta-learning phase to leverage the ST training
data as well. So, the set of source tasks in our meta-
learning phase are {ASR,MT, ST} and the target
task τ0 during the fine-tuning phase is ST. We dy-
namically disable the compression layer whenever
we sample the MT task during the meta-learning
phase. This allows us to train the model on the
tasks with different input-output modalities.

During the meta-learning phase, the parameters
of the model (θm) are exposed to vast amounts
of speech-to-transcripts and text-to-text translation
examples via ASR and MT tasks along with the
original ST tasks’ speech-to-text translation exam-
ples. This allows the parameters of all the sub-
layers in the model such as compression, encoder,
decoder, encoder-decoder attention, and output lay-
ers to learn the individual language representations
and translation relations between them.

2.4 Training

The speech-to-text translation models are trained
on a dataset D of parallel sequences to maximize
the the log likelihood:

`(D; θ) =
1

|D|

|D|∑

i=1

log p
(
yi|xi; θ

)
(3)

where θ denotes the parameters of the model. To
facilitate the training on multiple languages and
tasks, we create a universal vocabulary by follow-
ing (Gu et al., 2018). The universal vocabulary
is created based on all the tasks involved in the
meta-learning and fine-tuning phases.

3 Datasets

3.1 Dataset composition

Datasets used to train our model come from three
different tasks, ASR, MT, and ST. All of these

Task Corpus # hours # Examples
MT Open Subtitles N/A 22,512,639
MT WMT 19 N/A 4,592,289
ASR LibriSpeech 982 232,958
ASR IWSLT 19 ST(filtered) 220 145,372
ASR MuST-C 400 229,702
ASR TED-LIUM 3 452 286,263
ST Europarl-ST 89 32,628
ST IWSLT 19 ST(filtered) 220 145,372
ST MuST-C 400 229,703

Table 1: Number of original training examples in each
dataset.

datasets are used during the meta-learning phase,
while only the ST task dataset is used for fine-
tuning. All the corpora we used are from the
IWSLT 2020’s allowed training data. The details
of all the datasets are given in the Table 1.

ST Task: For ST task, we used Europarl-
ST(Iranzo-Sánchez et al., 2019), IWSLT 19(fil-
tered), and MuST-C(Di Gangi et al., 2019) datasets.
The total number of examples from these three
datasets is 407K, where as the size of the ASR
corpora is 894K examples. To resolve the ST data
scarcity issue, we augment the training data for ST
with various approaches described in the Section
3.2. Thus, we increased the size of the ST training
data from 407K examples to 2.2M examples.

ASR Task: We used four different datasets to
train the ASR English task, IWSLT 19(filtered),
LibriSpeech(Panayotov et al., 2015), MuST-C, and
TED-LIUM 3(Hernandez et al., 2018), which adds
a total of 894K English speech-to-text transcripts.
Although, IWSLT 19(filtered), MuST-C, and TED-
LIUM 3 are ST corpora, they also have the English
transcripts, so we include them into ASR tasks as
well. We do not augment the ASR datasets with
synthetic data, unlike the ST datasets. Adding more
synthetic data for ASR task may bias the model
towards ASR task rather than target ST task.

MT Task: WMT 19 and Open Subtitles(Lison
et al., 2019) corpora are used for the MT task. The
examples used for training MT come from Com-
mon Crawls, Europarl v9, and News Commentary
v14 sets of WMT 19, which amounts to 27M train-
ing examples.

3.2 Data augmentation

For the data augmentation on the text side, we
use two English-to-German NMT model and top-
2 beam results to generate synthetic German se-
quences from the corresponding English sequences.
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Corpus Use
original data

Speech
Augmentation

Text
Augmentation # Pairs # Examples

Europarl-ST Y ×2 ×2 3 pairs 97,884
IWSLT 19 ST(filtered) Y ×4 ×4 5 pairs 726,380
MuST-C Y ×3 None 4 pairs 918,812
TED-LIUM 3 N ×2 ×2 2 pairs 536,526

Table 2: Data augmentation strategies for the ST task.

For speech sequence, we use the Sox library to
generate the speech signal using different values
of speed, echo, and tempo parameters similar to
(Potapczyk et al., 2019). The parameter values
are uniformly sampled using these ranges : tempo
∈ (0.85, 1.3), speed ∈ (0.95, 1.05), echo delay
∈ (20, 200), and echo decay ∈ (0.05, 0.2). We
increase the size of the IWSLT 19(filtered) ST
dataset to five times of the original size by augment-
ing 4X data – four text sequences using the NMT
models and four speech signals using the Sox pa-
rameter ranges. For the Europarl-ST, we augment
2X examples to triple the size. The TED-LIUM
3 dataset does not contain speech-to-text transla-
tion examples originally, hence, we create 2X syn-
thetic speech-to-text translations using speech-to-
text transcripts. Finally, for the MuST-C datasest,
we use synthetic speech to increase the dataset size
to 4X. Overall, we created the synthetic training
data of size roughly equal to four times the original
data using data augmentation techniques described
above. The details of these synthetic datasets are
given in the Table 2. During training, we also tried
SpecAugment(Park et al., 2019) to increase the
speech data, but it did not help to boost overall
performance.

3.3 Data processing

In order to deal with different input and output
modalities, we use universal vocabulary (Gu et al.,
2018) generated from all the text data, i.e. ASR
transcripts, MT source and target text and ST trans-
lations. For input speech signal in ASR and ST
tasks, we use Log Mel 80-dimensional features to
process the input speech. Additionally, to remove
noisy data in IWSLT 19 ST dataset, we use a pre-
trained ASR model to filter examples with word
error rate (WER) ≥ 70.

Dev/Test set # Examples
IWSLT Test 2010 1,568
IWSLT Test 2015 1,080

MuST-C Dev 1,423
MuST-C Test 2,641

Europarl-ST Dev 1,320
Europarl-ST Test 1,253

Table 3: The number of examples of dev and test sets.

4 Experiments

4.1 Implementation Details

We trained all our models on 4*NVIDIA V100
GPUs. The MAML model is implemented based
on the Tensor2Tensor framework (Vaswani et al.,
2018). We train the models in the meta-learning
phase for 1600k steps and then finetune for 400k
steps. The compression layer is composed of three
CNN layers. The number of encoder and decoder
layers(N and M) in the base transformer model is
set to 10 and 8, respectively. In all the experiments,
a dropout rate of 0.2 is used. We use a batch size
of 1.5M frames for the speech sequences and a
batch size of 4096 tokens for the text sequences.
In order to deal with small batches due to long
speech signals, we use Multistep Adam optimizer
(Saunders et al., 2018) in our experiments, with the
gradients accumulated over 32 steps.

4.2 Results

In this section, we report the performance of our
models on different ST datasets. We report the
performance of models on IWSLT tst 2010, tst
2015, MuST-C dev, MuST-C test, Europarl-ST dev,
and Europarl-ST test sets. The number of examples
in these test sets are reported in the Table 3.

We trained one model using only ST datasets
shown in Table 2, called woML (without Meta-
Learn) from here on. This model woML is trained
without using the meta-learning approach. We
trained another model, called wML (with Meta-
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Model
IWSLT MuST-C Europarl-ST

tst 2010 tst 2015 Dev Test Dev Test
woML (without Meta-Learn) 20.21 19.77 16.8 22.14 19.23 19.15
wML (with Meta-Learn) 25.98 24.4 22 26.77 25.8 26.8
Model Averaging 26.43 24.58 23.59 27.51 26.88 27.61

Table 4: Performance of models trained using with/without meta-learning approach on various datasets.

Learn), in which we first pre-train the model using
the meta-learning approach described in the Sec-
tion 2.2 using all the ASR, MT, ST tasks. We then
finetune the model from the meta-learned parame-
ters on the ST task. As we can see from the Table 4,
the wML model achieves a better BLEU score than
woML on all the ST datasets. We see that the wML
model out-performs woML by achieving a BLEU
score of 24.4 on IWSLT 2015 test set as compared
to the 19.77 BLEU score achieved by woML. These
results clearly show that the meta-learning phase
helps to leverage the data from ASR, MT datasets
and helps to learn the individual language represen-
tations and the relations between them.

We got further improvements on the ST BLEU
score by averaging 10 checkpoints around the best
model. In the Table 4, one can see that ensem-
ble model attained an improvement of 0.18 BLEU
score on IWSLT 2015 test set, 0.74 BLEU score on
MuST-C test set, 0.81 BLEU score on Europarl-ST
test sets. The ensemble model achieved a perfor-
mance of 24.58 BLEU score on IWSLT 2015 test
set by using meta-learning, data augmentation and
average checkpoint techniques.

5 Related Work

End-to-end Speech Translation: Previously,
speech translation leveraged the success of MT and
ASR systems to build the cascade speech transla-
tion system(Post et al., 2013). The cascade models
mostly suffer from problems such as propagating
errors between models and high latency during de-
coding. In order to overcome these limitations, vari-
ous attempts have been made to develop end-to-end
ST models by aligning source speech signal and
target text translation without using intermediate
transcripts(Duong et al., 2016). However, due to
the limited availability of training data unlike ASR
or MT corpora, various data augmentation strate-
gies have been proposed to leverage the data from
ASR or MT tasks to improve the end-to-end ST(Jia
et al., 2019; Pino et al., 2019) performance. Re-
cently, several learning approaches such as multi-

task learning using either ASR+ST or MT+ST data
pairs have been suggested and explored. However,
in these approaches, the parameters of the model
are updated independently based on individual task
performance, which may lead to sub-optimal so-
lutions. Indurthi et al. (2019) proposed a meta-
learning approach to overcome these limitations.

Meta-Learning: Meta-learning algorithms are
used to adapt quickly to new tasks with relatively
few examples as the main goal of the algorithm is
learning to learn. Unlike the past meta-learning
approaches which focused on learning a meta pol-
icy(Ha et al., 2016; Andrychowicz et al., 2016),
(Finn et al., 2017b) recently proposed a meta-
learning algorithm which puts more weight on find-
ing a good initialization point for new target tasks.

6 Conclusion

In this work, we improve the performance of end-
to-end speech translation system based on the data
available from the IWSLT2020 Offline Speech
Translation Task. We train end-to-end models to
solve the complex task of speech translation. We
leverage the large out-of-domain training data from
the ASR, MT tasks to improve the performance
of the ST task. We adopt Model Agnostic Meta-
Learning(MAML) and data augmentation tech-
niques to achieve a performance of 24.58, 27.51,
27.61 BLEU scores on IWSLT test 2015, MuST-C
test, and Europarl-ST test sets respectively.
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Abstract

This paper describes FBK’s participation in
the IWSLT 2020 offline speech translation
(ST) task. The task evaluates systems’ ability
to translate English TED talks audio into Ger-
man texts. The test talks are provided in two
versions: one contains the data already seg-
mented with automatic tools and the other is
the raw data without any segmentation. Par-
ticipants can decide whether to work on cus-
tom segmentation or not. We used the pro-
vided segmentation. Our system is an end-
to-end model based on an adaptation of the
Transformer for speech data. Its training pro-
cess is the main focus of this paper and it is
based on: i) transfer learning (ASR pretraining
and knowledge distillation), ii) data augmenta-
tion (SpecAugment, time stretch and synthetic
data), iii) combining synthetic and real data
marked as different domains, and iv) multi-
task learning using the CTC loss. Finally, af-
ter the training with word-level knowledge dis-
tillation is complete, our ST models are fine-
tuned using label smoothed cross entropy. Our
best model scored 29 BLEU on the MuST-C
En-De test set, which is an excellent result
compared to recent papers, and 23.7 BLEU on
the same data segmented with VAD, showing
the need for researching solutions addressing
this specific data condition.

1 Introduction

The offline speech translation task consists in gen-
erating the text translation of speech audio record-
ings into a different language. In particular, the
IWSLT2020 task (Ansari et al., 2020) evaluates
German translation of English recordings extracted
from TED talks. The test dataset is provided to
participants both segmented in a sentence-like for-
mat using a Voice Activity Detector (VAD) and
in the original unsegmented form. Although cus-
tom segmentation of the data can provide drastic

improvements in the final scores, in our work we
have not addressed it, participating only with the
provided segmentation.

Two main approaches are possible to face the
speech translation task. The classic one is the cas-
cade solution, which includes automatic speech
recognition (ASR) and machine translation (MT)
components. The other option is an end-to-end
(E2E) solution, which performs ST with a single
sequence-to-sequence model. Both of them are al-
lowed for the IWSLT2020 task, but our submission
is based on an E2E model.

E2E ST models gained popularity in the last few
years. Their rise is due to the lack of error propaga-
tion and the reduced latency in generating the out-
put compared to the traditional cascaded approach.
Despite these appealing properties, they failed so
far to reach the same results obtained by cascade
systems, as shown also by last year’s IWSLT cam-
paign (Niehues et al., 2019). One reason for this is
the limited amount of parallel corpora compared to
those used to separately train ASR and MT com-
ponents. Moreover, training an E2E ST system is
more difficult because the task is more complex,
since it deals with understanding the content of
the input audio and translating it into a different
language directly and without recurring to interme-
diate representations.

The above-mentioned observations have led re-
searchers to focus on transferring knowledge from
MT and ASR systems to improve the ST models.
A traditional approach consists in pretraining com-
ponents: the ST encoder is initialized with the ASR
encoder and the ST decoder with the MT decoder.
The encoder pretraining has indeed proved to be
effective (Bansal et al., 2019), while the decoder
pretraining has not demonstrated to be as effective,
unless with the addition of adaptation layers (Bahar
et al., 2019a). A more promising way to transfer
knowledge from an MT model is to use the MT as
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a teacher to distill knowledge for the ST training
(Liu et al., 2019). This is the approach we explore
in the paper.

Despite its demonstrated effectiveness, ASR pre-
training has been replaced in some works by mul-
titask learning (Weiss et al., 2017). In this case,
the model is jointly trained with two (or more) loss
functions and usually the model is composed of
3 components: i) a shared encoder, ii) a decoder
which generates the transcription, and iii) a de-
coder which generates the translation. We adopt
the slightly different approach introduced by (Ba-
har et al., 2019a), which does not introduce an
additional decoder but relies on the CTC loss in or-
der to predict the transcriptions (Kim et al., 2017).
As this multi-task learning has been proposed for
speech recognition and has demonstrated to be use-
ful in that scenario, we also include the CTC loss
in ASR pretraining.

Another topic that received considerable atten-
tion is data augmentation. Many techniques have
been proposed: in this work we focus on SpecAug-
ment (Park et al., 2019), time stretch and sub-
sequence sampling (Nguyen et al., 2020). More-
over, we used synthetic data generated by automat-
ically translating the ASR datasets with our MT
model. This process can also be considered as a
sequence-level knowledge distillation technique,
named Sequence KD (Kim and Rush, 2016).

In this paper, we explore different ways to com-
bine synthetic and real data. We also check if the
benefits of the techniques mentioned above are or-
thogonal and joining them leads to better results.

Our experiments show that:

• knowledge distillation, ASR pretraining,
multi-task learning and data augmentation are
complementary , i.e. they cooperate to pro-
duce a better model;

• combining synthetic and real data marking
them with different tags (Caswell et al., 2019)
leads to a model which generalizes better;

• fine-tuning a model trained with word-level
knowledge distillation using the more clas-
sical label smoothed cross entropy (Szegedy
et al., 2016) significantly improves the results;

• there is a huge performance gap between data
segmented in sentences and data segmented
with VAD. Indeed, on the same test set, the
score on VAD-segmented data is lower by 5.5
BLEU.

To summarize, our submission is characterized
by tagged synthetic data, multi-task with CTC loss
on the transcriptions, data augmentation and word-
level knowledge distillation.

2 Training data

This section describes the data used to build our
models. They include: i) MT corpora (English-
German sentence pairs), for the model used in
knowledge distillation; ii) ASR corpora (audio and
English transcriptions), for generating a pretrained
encoder for the ST task; iii) ST corpora (audios
with corresponding English transcription and Ger-
man translation), for the training of our ST models.
For each task, we used all the relevant datasets
allowed by the evaluation campaign1.

MT. All datasets allowed in WMT 2019 (Bar-
rault et al., 2019) were used for the MT training,
with the addition of OpenSubtitles2018 (Lison and
Tiedemann, 2016). These datasets contain spuri-
ous sentence pairs: some target sentences are in
a language different from German (often in En-
glish) or are unrelated to the corresponding English
source or contain unexpected characters (such as
ideograms). As a consequence, an initial training
on them caused the model to produce some English
sentences, instead of German, in the output. Hence,
we cleaned our MT training data using Modern
MT (Bertoldi et al., 2017)2, in order to remove sen-
tences whose language is not the correct one. We
further filtered out sentences containing ideograms
with a custom script. Overall, we removed roughly
25% of the data and the final dataset used in the
training contains nearly 49 million sentence pairs.

ASR. For this task, we used both pure ASR and
ST available corpora. They include TED-LIUM
3 (Hernandez et al., 2018), Librispeech (Panay-
otov et al., 2015), Mozilla Common Voice3, How2
(Sanabria et al., 2018), the En-De section of MuST-
C (Di Gangi et al., 2019a), the Speech-Translation
TED corpus provided by the task organizers1 and
the En-De section of Europarl-ST (Iranzo-Sánchez
et al., 2020). All data was lowercased and punctua-
tion was removed.

ST. In addition to the allowed ST corpora (MuST-
C, Europarl-ST and the Speech-Translation TED

1http://iwslt.org/doku.php?id=offline_
speech_translation

2We run the CleaningPipelineMain class of MMT.
3https://voice.mozilla.org/
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corpus), we generated synthetic data using Se-
quence KD (see Section 3.2) for all the ASR
datasets missing the German reference. Moreover,
we generated synthetic data for the En-Fr section
of MuST-C. Overall, the combination of real and
generated data resulted in a ST training set of 1.5
million samples.

All texts were preprocessed by tokenizing them,
de-escaping special characters and normalizing
punctuation with the scripts in the Moses toolkit
(Koehn et al., 2007). The words in both languages
were segmented using BPE with 8,000 merge rules
learned jointly on the two languages of the MT
training data (Sennrich et al., 2016). The audio
was converted into 40 log Mel-filter banks with
speaker normalization using XNMT (Neubig et al.,
2018). We discarded samples with more than 2,000
filter-banks in order to prevent memory issues.

3 Models and training

3.1 Architectures

The models we trained are based on Transformer
(Vaswani et al., 2017). The MT model is a plain
Transformer with 6 layers for both the encoder and
the decoder, 16 attention heads, 1,024 features for
the attention layers and 4,096 hidden units in feed-
forward layers.

2D Self-Attention Encoder Decoder BLEU
2 6 6 16.50
0 8 6 16.90
2 9 6 17.08
2 9 4 17.06
2 12 4 17.31

Table 1: Results on Librispeech with Word KD varying
the number of layers.

The ASR and ST models are a revisited version
of the S-Transformer introduced by (Di Gangi et al.,
2019c). In preliminary experiments on Librispeech
(see Table 1), we observed that replacing 2D self-
attention layers with additional Transformer en-
coder layers was beneficial to the final score. More-
over, we noticed that adding more layers in the
encoder improves the results, while removing few
layers of the decoder does not harm performance.
Hence, the models used in this work process the
input with two 2D CNNs, whose output is pro-
jected into the higher-dimensional space used by
the Transformer encoder layers. The projected out-
put is summed with positional embeddings before
being fed to the Transformer encoder layers, which

use logarithmic distance penalty.
Both our ASR and ST models have 8 attention

heads, 512 features for the attention layers and
2,048 hidden units in FFN layers. The ASR model
has 8 encoder layers and 6 decoder layers, while
the ST model has 11 encoder layers and 4 decoder
layers. The ST encoder is initialized with the ASR
encoder (except for the additional 3 layers that are
initialized with random values). The decision of
having a different number of encoder layers in the
two encoders is motivated by the idea of introduc-
ing adaptation layers, which (Bahar et al., 2019a)
reported to be essential when initializing the de-
coder with that of a pretrained MT model.

3.2 Data augmentation

One of the main problems for end-to-end ST is the
scarcity of parallel corpora. In order to mitigate this
issue, we explored the following data augmentation
strategies in our participation.

SpecAugment. SpecAugment is a data augmen-
tation technique originally introduced for ASR,
whose effectiveness has also been demonstrated for
ST (Bahar et al., 2019b). It operates on the input
filterbanks and it consists in masking consecutive
portions of the input both in the frequency and in
the time dimensions. On every input, at each itera-
tion, SpecAugment is applied with probability p. In
case of application, it generates frequency masking
num masks on the frequency axis and time mask-
ing num masks on the time axis. Each mask has
a starting index, which is sampled from a uniform
distribution, and a number of consecutive items to
mask, which is a random number between 0 and
respectively frequency masking pars and time mask-
ing pars. Masked items are set to 0. In our work,
we always applied SpecAugment to both the ASR
pretraining and the ST training. The configuration
we used are: p = 0.5, frequency masking pars = 13,
time masking pars = 20, frequency masking num =
2 and time masking num = 2.

Time stretch. Time stretch (Nguyen et al., 2020)
is another technique which operates directly on the
filterbanks, aiming at generating the same effect of
speed perturbation. It divides the input sequence in
windows of w features and re-samples each of them
by a random factor s drawn by a uniform distribu-
tion between 0.8 and 1.25 (in our implementation,
the lower bound is set to 1.0 in case of an input
sequence with length lower than 10). In this work,
we perturb an input sample using time stretch with
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probability 0.3.
Sub-sequence sampling. As mentioned in the

introduction, there is a huge gap in model’s perfor-
mance when translating data split in well-formed
sentences and data split with VAD. In order to re-
duce this difference, we tried to train the model
on sentences which are not always well-formed by
using sub-sequence sampling (Nguyen et al., 2020).
Sub-sequence sampling requires the alignments be-
tween the speech and the target text at word level.
As this information is not possible to obtain for the
translations, we created the sub-sequences with the
alignments between the audio and the transcription,
and then we translated the obtained transcription
with our MT model to get the target German trans-
lation. For every input sentence, we generated three
segments: i) one starting at the beginning of the
sentence and ending at a random word in the sec-
ond half of the sentence, ii) one starting at a random
word in the first half of the sentence and ending
at the end of the sentence, and iii) one starting at
a random word in the first quarter of the sentence
and ending at a random word in the last quarter of
the sentence.

In our experiments, this technique has not pro-
vided significant improvements (the gain was less
than 0.1 BLEU on the VAD-segmented test set).
Hence, it was not included in our final models.

Synthetic data. Finally, we generated synthetic
translations for the data in the ASR datasets to cre-
ate parallel audio-translation pairs to be included in
the ST trainings. The missing target sentences were
produced by translating the transcript of each audio
sample with our MT model, as in (Jia et al., 2019).
If the transcription of a dataset was provided with
punctuation and correct casing, this was fed to the
MT model; otherwise, we had to use the lowercase
transcription without punctuation.

Top K BLEU
4 16.43
8 16.50

64 16.37
1024 16.34

Table 2: Results on Librispeech with different K values,
where K is the number of tokens considered for Word
KD.

3.3 Knowledge distillation
While the ASR and MT models are optimized on
label smoothed cross entropy with smoothing fac-
tor 0.1, our ST models are trained with word-level

knowledge distillation (Word KD). In Word KD,
the model being trained is named student and the
goal is to teach it to produce the same output dis-
tribution of another - pretrained - model, named
teacher. This is obtained by computing the KL
divergence (Kullback and Leibler, 1951) between
the distribution produced by the student and the
distribution produced by the teacher. The ratio-
nale of knowledge distillation resides in providing
additional information to the student, as the out-
put probabilities produced by the teacher reflect its
hidden knowledge (the so-called dark knowledge),
and in the fact that the soft labels produced by the
teacher are an easier target to match for the student
than cross entropy.

In this work, we follow (Liu et al., 2019), so the
teacher model is our MT model and the student
is the ST model. Compared to (Liu et al., 2019),
we make the training more efficient by extracting
only the top 8 tokens from the teacher distribution.
In this way, we can precompute and store the MT
output instead of computing it at each training it-
eration, since its size is reduced by three orders of
magnitude. Moreover, this approach does not affect
negatively the final score, as shown by (Tan et al.,
2019) and confirmed for ST by our experiments in
Table 2).

Moreover, once the training with Word KD is
terminated, we perform a fine-tuning of the ST
model using the label smoothed cross entropy. Fine-
tuning on a different target is an approach whose
effectiveness has been shown by (Kim and Rush,
2016). Nevertheless, they applied a fine-tuning
on knowledge distillation after a pretraining with
the cross entropy loss, while here we do the op-
posite. Preliminary experiments on Librispeech
showed that there is no difference in the order of
the trainings (16.79 vs 16.81 BLEU, compared to
16.5 BLEU before the fine-tuning). In the fine-
tuning, we train both on real and synthetic data,
but we do not use the other data augmentation tech-
niques.

3.4 Training scheme

A key aspect is the training scheme used to combine
the real and synthetic datasets. In this paper, we
explore two alternatives:

• Sequence KD + Finetune: this is the training
scheme suggested in (He et al., 2020). The
model is first trained with Sequence KD and
Word KD on the synthetic datasets and then it
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is fine-tuned on the datasets with ground-truth
targets using Word KD.

• Multi-domain: similarly to our last year sub-
mission (Di Gangi et al., 2019b), the training
is executed on all data at once, but we intro-
duce three tokens representing the three types
of data, namely: i) those whose ground-truth
translations are provided, ii) those generated
from true case transcriptions with punctuation,
iii) those generated from lowercase transcrip-
tions without punctuation. We explore the
two most promising approaches according to
(Di Gangi et al., 2019d) to integrate the token
with the data, i.e. summing the token to all in-
put data and summing the token to all decoder
input embeddings.

3.5 Multi-task training
We found that adding the CTC loss (Graves et al.,
2006) to the training objective gives better results
both in ASR and ST, although it slows down the
training by nearly a factor of 2. During the ASR
training, we added the CTC loss on the output of
the last layer of the encoder. During the ST train-
ing, instead, the CTC loss was computed using the
output of the last layer pretrained with the ASR en-
coder, ie. the 8th layer. In this way, the ST encoder
has three additional layers which can transform the
representation into features which are more conve-
nient for the ST task, as Bahar et al. (2019a) did
introducing an adaptation layer.

4 Experimental settings

For our experiments, we used the described training
sets and we picked the best model according to
the perplexity on MuST-C En-De validation set.
We evaluated our models on three benchmarks: i)
the MuST-C En-De test set segmented at sentence
level, ii) the same test set segmented with a VAD
(Meignier and Merlin, 2010), and iii) the IWSLT
2015 test set (Cettolo et al., 2015).

We trained with Adam (Kingma and Ba, 2015)
(betas (0.9, 0.98)). Unless stated otherwise, the
learning rate was set to increase linearly from 3e-4
to 5e-4 in the first 5,000 steps and then decay with
an inverse square root policy. For fine-tuning, the
learning rate was kept fixed at 1e-4. A 0.1 dropout
was applied.

Each GPU processed mini-batches containing up
to 12K tokens or 8 samples and updates were per-
formed every 8 mini-batches. As we had 8 GPUs,

the actual batch size was about 512. In the case
of multi-domain training, a batch for each domain
was processed before an update: since we have
three domains, the overall batch size was about
1,536. Moreover, the datasets in the different do-
mains had different sizes, so the smaller ones were
oversampled to match the size of the largest.

As the truncation of the output values of the
teacher model to the top 8 leads to a more peaked
distribution, we checked if contrasting this bias is
beneficial or not. Hence, we tuned the value of
the temperature at generation time in the interval
0.8-1.5. The temperature T is a parameter which is
used to divide the logits before the softmax and
determines whether to output a softer (if T > 1)
or a sharper (if T < 1) distribution (Hinton et al.,
2015). By default T is 1, returning an unmodified
distribution. The generation of the results reported
in this paper was performed using T = 1.3 for the
models trained on Word KD. This usually provided
a 0.1-0.5 BLEU increase on our benchmarks com-
pared to T = 1, confirming our hypothesis that a
compensation of the bias towards a sharper distri-
bution is useful. Instead, the T was set to 1 dur-
ing the generation with models trained with label
smoothed cross entropy, as in this case a higher (or
lower) temperature caused performance losses up
to 1 BLEU point.

All experiments were executed on a single ma-
chine with 8 Tesla K80 with 11GB RAM. Our
implementation is built on top of fairseq (Ott et al.,
2019), an open source tool based on PyTorch
(Paszke et al., 2019).

5 Results

The MT model used as teacher for Sequence KD
and Word KD scored 32.09 BLEU on the MuST-
C En-De test set. We trained also a smaller MT
model to initialize the ST decoder with it. More-
over, we trained two ASR models. One without the
multitask CTC loss and one with it. They scored
respectively 14.67 and 10.21 WER. All the ST sys-
tems having CTC loss were initialized with the
latter, while the others were initialized with the
former.

Table 3 shows our ST models’ results computed
on the MuST-C En-De and IWSLT2015 test set.
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Model MuST-C
sentence

MuST-C
VAD

IWSLT
2015

Seq KD+FT (w/o TS) 25.80 20.94 17.18
+ FT w/o KD 27.55 19.64 16.93

Multi ENC (w/o TS) 25.79 21.37 19.07
+ FT w/o KD 27.24 20.87 19.08

Multi ENC+DEC PT 25.30 20.80 16.76
+ FT w/o KD 27.40 21.90 18.55

Multi ENC+CTC 27.06 21.58 20.23
+ FT w/o KD (1) 27.98 22.51 20.58

Multi ENC+CTC (5e-3) 25.44 20.41 16.36
+ FT w/o KD 29.08 23.70 20.83
+ AVG 5 (2) 28.82 23.66 21.42

Multi DEC+CTC (5e-3) 26.10 19.94 17.92
+ FT w/o KD 28.22 22.61 18.31

Ensemble (1) and (2) 29.18 23.77 21.83

Table 3: Case sensitive BLEU scores for our E2E ST
models. Notes: Seq KD: Sequence KD; FT: finetuning
on ground-truth datasets; TS: time stretch; Multi ENC:
multi-domain model with sum of the language token
to the encoder input; Multi DEC: multi-domain model
with sum of the language token to the decoder input;
DEC PT: pretraining of the decoder with that of an MT
model; CTC: multitask training with CTC loss on the
8th encoder layer in addition to the target loss; FT w/o
KD: finetuning on all data with label smoothed cross
entropy; 5e-3: indicates the learning rate used; AVG 5:
average 5 checkpoints around the best.

5.1 Sequence KD + Finetune VS
Multi-domain

First, we compare the two training schemes ex-
amined. As shown in Table 3, Sequence KD +
Finetune [Seq KD+FT] has the same performance
as Multi-domain with language token summed to
the input [Multi ENC] (or even slightly better) on
the MuST-C test set, but it is significantly worse on
the two test set segmented with VAD. This can be
explained by the higher generalization capability
of the Multi-domain model. Indeed, Sequence KD
+ Finetune seems to overfit more the training data;
thus, on data coming from a different distribution,
as VAD-segmented data are, its performance drops
significantly. For this reason, all the following ex-
periments use the Multi-domain training scheme.

5.2 Decoder pretraining and time stretch

The pretraining of the decoder with that of an MT
model does not bring consistent and significant im-
provements across the test sets [Multi ENC+DEC
PT]. Before the fine-tuning with label smoothed
cross entropy, indeed, the model performs worse
on all test sets. The fine-tuning, though, helps im-
proving performances on all test sets, which was
not the case with the previous training. This can

be related to the introduction of time stretch, which
reduces the overfitting to the training data. There-
fore, we decided to discard the MT pretraining and
keep time stretch.

5.3 CTC loss and learning rate

The multitask training with CTC loss, instead, im-
proves the results consistently. The model trained
with it [Multi ENC+CTC] outperforms all the oth-
ers on all test sets by up to 1.5 BLEU points. Dur-
ing the fine-tuning of these models, we do not per-
form multitask training with the CTC loss, so the
fine-tuning training is exactly the same as for pre-
vious models.

Interestingly, increasing the learning rate [Multi
ENC+CTC (5e-3)], the performance before the
fine-tuning is worse, but the fine-tuning of this mod-
els brings an impressive improvement over all test
sets. The reason of this behavior is probably related
to a better initial exploration of the solution space
thanks to the higher learning rate, which, on the
other side, prevents to get very close to the local
optimum found. In this scenario, the fine-tuning
with a lower learning rate helps getting closer to
the local optimum, in addition to the usual benefits.

5.4 Token integration strategy

Finally, we tried adding the language token to the
embeddings provided to the decoder, instead of
the input data [Multi DEC+CTC (5e-3)]. This was
motivated by the idea that propagating this infor-
mation through the decoder may be more difficult
due to the CTC loss, which is not dependent on that
information so it may hide it to higher layers. The
experiments disproved this hypothesis, as after the
fine-tuning the results are lower on all benchmarks.

5.5 Submissions

We averaged our best model over 5 checkpoints,
centered in the best according to the validation loss.
We also created an ensemble with the resulting
model and the best among the others. Both oper-
ations were not useful on the two variants of the
MuST-C test set, but improved the score on the
IWSLT2015 test set. We argue this means that they
are more robust and generalize better.

Our primary submission has been obtained with
the ensemble of two models, scoring 20.75 BLEU
on the 2020 test set and 19.52 BLEU on the 2019
test set. Our contrastive submission has been gen-
erated with the 5 checkpoints average of our best
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model, scoring 20.25 BLEU on the 2020 test set
and 18.92 BLEU on the 2019 test set.

6 Conclusions

We described FBK’s participation in IWSLT2020
offline speech translation evaluation campaign
(Ansari et al., 2020). Our work focused on the
integration of transfer learning, data augmentation,
multi-task training and the training scheme used
to combine real and synthetic data. Based on the
results of our experiments, our submission is char-
acterized by a multi-domain training scheme, with
additional CTC loss on the transcriptions and word-
level knowledge distillation, followed by a fine-
tuning on label smoothed cross entropy.

Overall, the paper demonstrates that the com-
bination of the above-mentioned techniques can
improve the performance of end-to-end ST models
so that they can be competitive with cascaded solu-
tions. Moreover, it shows that i) tagged synthetic
data leads to more robust models than a pretrain-
ing on synthetic data followed by a fine-tuning
on datasets with ground-truth targets and ii) fine-
tuning on label smoothed cross entropy after a train-
ing with knowledge distillation brings significant
improvements. The huge gap (5.5 BLEU) between
data segmented in sentences and data segmented
with VAD highlights the need of custom solutions
for the latter. In light of these considerations, our
future research will focus on techniques to improve
the results when the audio segmentation is chal-
lenging for ST models.

Acknowledgments

This work is part of the “End-to-end Spoken
Language Translation in Rich Data Conditions”
project,4 which is financially supported by an Ama-
zon AWS ML Grant.

References
Ebrahim Ansari, Amittai Axelrod, Nguyen Bach, On-

drej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
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Abstract
This paper describes the submission to IWSLT
2020(Ansari et al., 2020) End-to-End speech
translation task by Samsung R&D Institute,
Poland. We took part in the offline End-to-End
English to German TED lectures translation
task. We based our solution on our last year’s
submission(Potapczyk et al., 2019). We used
a slightly altered Transformer(Vaswani et al.,
2017) architecture with ResNet-like(He et al.,
2016) convolutional layer preparing the audio
input to Transformer encoder. To improve the
model’s quality of translation we introduced
two regularization techniques and trained
on machine translated Librispeech(Panayotov
et al., 2015) corpus in addition to iwslt-
corpus, TEDLIUM2(Rousseau et al., 2014)
and Must C(Di Gangi et al., 2019) corpora.
Our best model scored almost 3 BLEU higher
than last year’s model. To segment 2020 test
set we used exactly the same procedure as last
year.

1 Introduction

This paper describes the submission to IWSLT
2020 End-to-End Speech Translation task by Sam-
sung R&D Institute, Poland.

We propose a few improvements to our previous
system. Introducing additional training data gave
us 0.7 BLEU improvement. Spectrogram augmen-
tation techniques increased quality by 0.2 BLEU.
Encoder layer depth of 12 layers gives an increase
of BLEU by 1 point and 1.8 points when combined
with additional training data and two spectrogram
augmentation techniques. Replacing simpler con-
volutions with ResNet-like convolutional layers
gave around 0.5 BLEU improvement. Combining
all of these and increasing embedding size to 512
resulted in almost 3 BLEU improvement compared
to our last year’s model.

Document structure is as follows. Firstly we de-
scribe data preparation and augmentation. Then

we provide system specification and training pro-
cedure used in our experiments. We describe data
segmentation algorithm used to segment test sets
TED 2019 and TED 2020. We show results of our
experiments. Finally we conclude our results.

2 Training Data

To train our system we used only IWSLT 2020 per-
missible audio corpora - iwslt-corpus, TEDLIUM2
(Rousseau et al., 2014), Must C corpus(Di Gangi
et al., 2019) and machine translated Librispeech
(Panayotov et al., 2015) corpus. We did not do any
further data preparation in case of iwslt-corpus and
TEDLIUM2, we used the same data as in 2019. In
case of Must C corpus, this year we ran a train-
ing with half of translations being synthetic. This
improved the score by 0.35 BLEU. We used the
same text translation models as last year to gen-
erate synthetic translations. Both models scored
around 33.8 and 31.1 BLEU on tst2010 and tst2015
sets respectively.

2.1 Data filtration
We trained English ASR system that was used to
filter iwslt-corpus and TEDLIUM2 corpora. We
removed cases where WER score exceeded 75%
when comparing ASR output and English refer-
ence. We decided that Must C corpus does not need
filtration. Additionally, we filtered iwslt-corpus
with regard to quality of translation using statisti-
cal dictionary-based methods. Size of the corpora
before and after filtration is shown in Table 1. We
did not filter Librispeech corpus.

2.2 Synthetic target data
TEDLIUM2 corpus did not provide any German
translations, therefore we generated synthetic tar-
gets using two Transformer Big MT systems
trained with different hyperparameters on WMT
data - Paracrawl, Europarl and OpenSubtitles.
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Corpora Size Filtered Length

iwslt-corpus(ASR) 171121 158737 224h
+ trans. quality 158737 126817 188h
TEDLIUM2 92973 90715 197h
Must-C 229703 229703 400h
Librispeech 281241 281241 1000h

Table 1: Size (number of audio utterances) of the train-
ing corpora before and after filtration. Iwslt-corpus
(ASR) is corpus filtered by ASR only. The last column
is total audio length after filtration.

Training data for these systems has been prepared
with our in-house data preparation pipeline. We
also used synthetic translations as an alternative
translation in iwslt-corpus when augmenting it. To
diversify target data as much as possible, for each
example created in augmentation process, we gen-
erated 4 translations, 2 per each MT model. Such a
technique was described in (Jia et al., 2019). Num-
ber of training examples with synthetic data are
shown in Table 6. Last year we did not exam-
ine the effectiveness of synthetic translations on
our models. This year we altered our corpus and
included synthetic translations of Must C corpus.
This corpus was augmented 3 times and in the case
of 2 versions out of 4, synthetic translations were
used.

Corpora Ref. MT-1 MT-2

iwslt-corpus 126817 2x158737 2x158737
TEDLIUM2 0 3x90715 3x90715
Must C 229703 229703 229703
Librispeech 281241 281241 281241

Table 2: Size (number of text lines) of the training cor-
pora with synthetic data. For each model two or three
best beam results have been used.

2.3 Data Augmentation

We augmented the data by processing the audio
files with three Sox’s effects: tempo, speed and
echo. We sampled the parameters with uniform
distribution within ranges presented in Table 3.

For each file we repeated the process four times.
Librispeech was augmented only once because it
is the largest corpus and it is out of domain. As a
result we had nearly five times larger audio corpus.
The range of speed option is very small because we
did not want our model to train on an unnaturally

Option Min value Max value

tempo 0.85 1.3
speed 0.95 1.05
echo delay 20 200
echo decay 5 20

Table 3: Sox parameters value ranges used in process-
ing of audio data. Echo effect is parametrized by two
values.

sounding samples. The rationale behind using echo
option is the fact that many TED lectures have a
significant echo.

Final number of training audio examples is
shown in Table 4.

Corpora Orig.&Augm. Length

iwslt-corpus 761765 1084h
TEDLIUM2 544290 1182h
Must C 918812 1600h
Librispeech 562482 2000h

Total 2787349 5866h

Table 4: Size of the training audio corpora with data
augmentation. Number of distinct audio and text pairs.

3 E2E Speech Translation System

In this section we will describe the architecture
and training techniques of our end-to-end spoken
language translation system. Some of these were
used in our 2019 system.

3.1 ASR Transformer for SLT
As a baseline system we used our last year’s Trans-
former architecture implemented in TensorFlow.
The Baseline Transformer has hidden layer of size
384, convolutional (kernel size 9) feed forward
layer of size 1536, 8-head self-attention, 6 encoder
layers and 4 decoder layers. Audio data is turned
into log mel spectrogram with frame size of 25
ms, frame step 10 ms and 80 filters. To log mel
spectrograms we apply 2D 3x3 convolution twice
with stride 2x2 and 256 filters and then 3x20 con-
volution to reduce the spectrogram to a 384 di-
mentional vector, exactly like in the case of ASR.
Apart from baseline, we propose changes to con-
volutional layer and increase number of encoder
layers and embedding size. Finally, our best system
has ResNet-like convolutional layer, 12 encoder
layers and embedding size of 512.
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3.2 Dual learning: ASR and SLT tasks
This year we also introduced a second decoder with
ASR task, making it a multitask setup similar to
(Anastasopoulos and Chiang, 2018). A separate
dictionary of size 32k was used for this task. In
such a setup loss is calculated with two targets -
one in English and one in German. Two decoders
with different weights are simultaneously trained
on these targets; convolutional layers and encoder
are shared. An early experiment on non-augmented
data showed almost 2 BLEU increase (15.23 vs
17.15 on tst2010) compared to the same model
trained on a single task. All our trainings this year
used dual learning.

Figure 1: Dual learning architecture

3.3 Spectrogram augmentation
To augment data we implemented spectrogram
masking technique described in (Park et al., 2019)
This technique involves masking the spectrogram
for a range of frequencies and periods of time. In
our implementation we chose to introduce three
such masks for frequency. The width of frequency
range is selected randomly between values 5 and
10. This means that out of 80 filters 15 to 30 are
masked. In time we chose one mask for every 300
time steps. Again, the length of such mask is ran-
dom between 10 and 20 time steps. Apart from
last year’s data augmentation techniques used in
2019, we introduced additional regularization tech-
niques - warp (Figure 2) and spectrogram noise.
We implemented warping technique similar to Park
et al.(Park et al., 2019). For each 10 time steps
in spectrogram we delete one random time step
and insert a step which is an average of two neigh-
boring steps. The result is very similar to warp
distortion - some parts of a spectrogram are shifted
to the right and some are shifted to the left. We also

Figure 2: Original and warped spectrograms. The bot-
tom figure is an exaggerated version of warping where
much more insertions/deletions were used.

introduced a multiplicative noise on spectrogram
with a value of +- 1%. Table 5 below shows the
results of these techniques. We experimented with
randomly varying step and window size of spec-
trograms during the training. Step size was varied
between 8 and 12 ms and window size between 23
and 27 ms. This however gave mixed results and
we did not include it in the final model. Figure 5
shows clear advantage of models with warp and
spectrogram noise. The advantage of the model
with varied step/window size is dubious.

Model tst2010 tst2015 average

baseline1 26.5 21.87 24.15
warp 26.63 22.42 24.41
spec. noise 26.81 21.87 24.34
step/window 26.22 22.15 24.2

Table 5: Maximal BLEU scores on two tests sets. The
last column is maximal average of two test sets for one
checkpoint.

3.4 Synthetic Must C and Librispeech data

Addition of synthetic Must C translations improved
BLEU score by over 0.35 BLEU. Addition of Lib-
rispeech corpus further improved BLEU by 0.35.
Table 6 below shows the results.

1the same model as 2019 primary submission but trained
for 1.2M steps which resulted with higher score than previ-
ously reported
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Figure 3: Comparison of warped and noised trainings
to baseline. Y axis is average BLEU on tst2010 and
tst2015. X axis is number of steps.

Model tst2010 tst2015 average

base 26.5 21.87 24.15
synth mc 27.08 22.04 24.5
+ libri 27.91 21.81 24.86

Table 6: Maximal BLEU scores on two test sets for
baseline, additional Must C synthetic targets and addi-
tional Librispeech data. The last column is maximal
average of two tests set for one checkpoint.

3.5 12 layer encoder
Our experience with text translation suggests it is
more efficient to increase number of layer in the
encoder rather than decoder therefore we increased
number of encoder layers to 12. Number of decoder
layers stayed the same at 4 layers. This increased
BLEU score by 1 point. Introducing warping, noise
and Librispeech corpus increased BLEU by another
0.8 BLEU. Table 7 shows the results.

Model tst2010 tst2015 average

base 26.5 21.87 24.15
12layer 27.48 22.92 25.14
12 wal 28.4 23.63 25.97

Table 7: Maximal BLEU scores on two test sets. Model
12 wal is the model with 12 layers and trained on
noised and warped data with Librispeech corpus. The
last column is maximal average of two tests set for one
checkpoint.

3.6 ResNet-like convolutional layers
Another improvement to our model is ResNet-like
convolutional layers processing the spectrogram
input. The idea is to make the convolutional lay-
ers deeper instead of using large number of chan-
nels. The spectrogram input is shrinked gradually

in both axis using 2x2 pooling. As the spectrogram
is shrinked channel, size is increasing. We start
with a smaller channel size compared to the previ-
ous solution - 64 channels instead of 256 and end
the convolutional processing with 256 channels.
Figure 4 shows architectural diagram of our solu-
tion. Replacing previous architecture with ResNet
improved the model by around 0.5 BLEU. Table
8 shows the results. Note that strictly maximal
scores do not show the improvement well. Figure
5 shows a plot of the results which proofs stable
advantage (around 0.5) of ResNet solution. We
experimented with a version without the residual
connections however decided not to include it in
the final model.

Figure 4: Convolutional layers architecture

Model tst2010 tst2015 average

base 26.5 21.87 24.15
resnet 27.15 21.81 24.33
- residual 27.05 21.96 24.5

Table 8: Maximal BLEU scores on two test sets. The
third row is same as ResNet model but without residual
connections. The last column is maximal average of
two tests set for one checkpoint.

3.7 Training process
We trained our models on 4 GTX 1080 Ti GPUs for
about one and a half week, which resulted in 1.2M
steps. 12layer models were trained slightly longer -
for 3 weeks because the training was slower. They
were also trained on two NVIDIA Quadro 8000
GPUs because of its memory size. Batch size
was 400000 timesteps for trainings on 1080 Ti and
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Figure 5: Comparison of Resnet trainings to baseline.
Y axis is average BLEU on tst2010 and tst2015. X axis
is number of steps.

3000000 timesteps on Quadro 8000. In the case of
all trainings (except one) 10% dropout was applied.
The final model with 12 layer and 512 embedding
size used 20% dropout. Adam Multistep optimiser
was used, effective batch size was increased 32
times.

3.8 Model averaging

For the final validation we averaged last 7 check-
points of the training. Averaging checkpoints al-
most always resulted in higher BLEU scores. We
experimented with continuation of training after
averaging but it did not give any better results.

4 Final model

In this paper we presented improvements on sim-
pler models. The final model uses a combination of
all the promising techniques together with a larger
embedding size. It would be unfeasible to perform
all of these experiments on such a large model as
its training took almost a month. However we are
very satisfied with the end result which is 3 BLEU
improvements compared to our baseline. The im-
provements from individual techniques cumulated
very well.

Model tst2010 tst2015 average

base 26.5 21.87 24.15
12 wal 28.4 23.63 25.97
+resnet2 28.26 23.77 26.02
+512 (final) 29.44 24.6 27.02

Table 9: Maximal BLEU scores on two test sets. The
fourth row is our final submitted system. The last col-
umn is maximal average of two tests set for one check-
point.

5 Segmentation

This year we used the same segmentation technique
as last year. It relies on dividing the audio input
densely using silence detection tool. These small
fragments are then joined together up to a certain
length depending on the length of the silence be-
tween them. Shorter distances between segments
are joined earlier. This procedure is repeated until
further joining results in segments longer than max-
imal length. Last year we determined such length
should be 11s. However, for our current best model
this distance turned out to be 15s. We used tst2015
to optimize the process. We present the result in
Table 10.

6 Evaluation

We have improved our score on tst2019 by 4 BLEU
compared to our last year’s submission. It is import-
nat to notice the difference between given and our
custom segmentation. Our method produces longer
segments than the ones in the given segmentation.
Our models seem to work much better on these
longer segments giving around 3.9 BLEU higher
scores.

tst2019 tst2019* tst2020 tst2020*

20.1 23.96 21.49 25.3

Table 10: BLEU scores for our final model. * test sets
use our custom segmentation

7 Conclusions

In this paper we have presented a significant im-
provement of translation quality of our end-to-
end model. We have shown that despite lim-
ited parallel training data, end-to-end systems can
compete with traditional pipeline systems. Using
a longer segmentation, our model outscored the
best IWSLT2019 pipeline system on tst2019(iws,
2019).
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Abstract

This paper describes the University of Helsinki
Language Technology group’s participation in
the IWSLT 2020 offline speech translation
task, addressing the translation of English au-
dio into German text. In line with this year’s
task objective, we train both cascade and end-
to-end systems for spoken language transla-
tion. We opt for an end-to-end multitasking ar-
chitecture with shared internal representations
and a cascade approach that follows a stan-
dard procedure consisting of ASR, correction,
and MT stages. We also describe the exper-
iments that served as a basis for the submit-
ted systems. Our experiments reveal that mul-
titasking training with shared internal repre-
sentations is not only possible but allows for
knowledge-transfer across modalities.

1 Introduction

An effective solution for performing spoken lan-
guage translation (SLT) must deal with the evident
challenge of transferring the implicit semantics be-
tween audio and text modalities. An end-to-end
SLT system must hence appropriately address this
problem while simultaneously performing accurate
machine translation (MT) (Sulubacak et al., 2018).

In last year’s IWSLT challenge, both end-to-
end and cascade systems yielded similar results
(Niehues et al., 2019). It follows that this year’s
IWSLT offline speech translation challenge focuses
on whether ”the cascaded solution is still the dom-
inant technology in spoken language translation”
(Ansari et al., 2020). For our participation on this
task, we train both cascade and end-to-end sys-
tems for SLT. For the end-to-end system, we use a
multimodal approach trained in a multitask fashion,
which maps the internal representations of different
encoders into a shared space before decoding. For
the cascade approach, we use a pipeline of three
stages: (i) automatic speech recognition (ASR),

(ii) punctuation and letter-case restoration, and (iii)
MT.

We focus on exploiting the knowledge-transfer
capabilities of a multitasking architecture based
on language-specific encoders-decoders (Lu et al.,
2018; Schwenk and Douze, 2017; Luong et al.,
2016). This idea has been proposed and studied
in the multilingual scenario (Vázquez et al., 2020;
Subramanian et al., 2018; Firat et al., 2017), how-
ever, we adapt it to be used in a multimodal sce-
nario. Regarding different modalities (in this case,
audio and text) as different languages when train-
ing the model, allows us to employ a cross-modal
intermediate shared layer for performing SLT in an
end-to-end fashion. By jointly training this layer,
we aim for the the model to combine the semantic
information provided in the text-to-text MT tasks
with the ability to generate text from audio in the
ASR tasks.

2 Proposed Systems

End-to-end SLT

We use an inner-attention based architecture pro-
posed by Vázquez et al. (2020). In a nutshell, it
follows the conventional structure of an encoder-
decoder model of MT (Bahdanau et al., 2015; Lu-
ong et al., 2016) enabled with multilingual train-
ing by incorporating language-specific encoders
and decoders trainable with a language-rotating
scheduler (Dong et al., 2015; Schwenk and Douze,
2017), and an intermediate shared inner-attention
layer (Cı́fka and Bojar, 2018; Lu et al., 2018). We
implement our model on top of an OpenNMT-py
(Klein et al., 2017) fork, which we make available
for reproducibility purposes.1

The text encoders and the decoders (always text
output) are transformers (Vaswani et al., 2017).

1https://github.com/Helsinki-NLP/
OpenNMT-py/tree/iwslt2020
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We implement the transformer-based audio en-
coders inspired by the SLT architecture with tied
layer structure from Tu et al. (2019) and the R-
Transformer from Di Gangi et al. (2019b). It con-
sists of n CNN layers; the first one taking k stacked
Mel filterbank features as input channels, and the
following ones 32 input channels. Afterwards, a
linear layer corrects the shape of the embeddings
and is concatenated with the positional embeddings
to be fed as input to m transformer layers.

Given the multimodal nature of the task, we mod-
ified the source-target rotating scheduler. Instead of
a uniform distribution over the language pairs, we
propose using a weighted sampling scheme based
on the inverse of the batch size of the modalities.
This modification allows us to have a more bal-
anced training because audio inputs tend to be con-
siderably longer than text inputs, and a transformer-
based encoder could not possibly handle the 4096
tokens conventionally used as the ad-hoc choice of
batch size for a text-based transformer.

Cascade approach

The ASR stage of our pipeline is trained with an S-
Transformer (Di Gangi et al., 2019b); an adaptation
of the transformer architecture to end-to-end SLT.
The encoder in this architecture makes it possible
to process audio features. It consists of two 2-
dimensional CNN-blocks meant to downsample the
input, followed by two 2-dimensional self-attention
layers to model the long-range context, an attention
layer that concatenates its output with the positional
encodings of the input, and six transformer-based
layers.

The output of the ASR stage is followed by the
restoration stage for punctuation and letter case
restoration. Since the training data for the ASR
model mixes different training sets with different
formatting, the raw output from the ASR block can
have stylistic differences from the input seen during
the training of the translation stage. The restoration
stage involves the use of an auxiliary transformer-
based MT model to perform “intralingual transla-
tion” from lowercased text without punctuation into
fully-cased and punctuated text. Stripping punc-
tuation on the ASR output, converting the text to
lowercase, and processing the result through the
restoration stage ensures that the output conforms
to the same format that the translation stage was
optimized for.

As the last step, the translation stage uses an-

other transformer to translate the processed ASR
output to German. Both this transformer model
and the one used in the restoration stage are based
on the freely available Marian NMT implementa-
tion (Junczys-Dowmunt et al., 2018). Our config-
uration uses a learning rate of 0.0003 with linear
warmup through the first 16 000 batches, decay-
ing afterwards. The decoder normalizes scores by
translation length (normalization exponent of 1.0)
during beam search. All other options use the de-
fault values.

3 Data Preprocessing

The MT, ASR and end-to-end SLT systems have
been trained on different subsets of the allowed
training corpora. For the cascade approach SLT
system

Corpora # utterances Length

Europarl-ST 40,141 89 hrs
IWSLT2018 166,214 271 hrs
How2 189,366 297 hrs
MuST-C 264,036 400 hrs
Mozilla

854,430 1,118 hrs
Common Voice

Table 1: Size of audio data used.

Data for the end-to-end SLT system. We use
Europarl-ST (Iranzo-Sánchez et al.), IWSLT2018
(Niehues et al., 2019) and MuST-C (Di Gangi et al.,
2019a), a total of 433k utterances after cleaning
some corrupt files or with other problems in the
sampling. We extracted 80-dimensional Mel filter-
bank features for each sentence-like segment using
our own implementation.

Text data for the end-to-end SLT system. For
the text data of the multimodal end-to-end SLT
system, we use a total of ∼51M sentence pairs
from corpora specified in Table 2. Instead of using
all of this data, we first filter out noisy translations.
OpenSubtitles2018, which consists of subtitle trans-
lations, and corpora gathered by crawling the inter-
net, Common Crawl and ParaCrawl, are especially
likely to contain noisy data. For filtering the cor-
pora, we utilize OpusFilter (Aulamo et al., 2020),
a toolbox for creating clean parallel corpora.

First, we extract six feature values for each of
the sentence pairs. In particular, we apply the fol-
lowing features: CharacterScore, CrossEntropy,
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LanguageID, NonZeroNumeral, TerminalPunctu-
ation and WordAlign, each of which is defined
in Aulamo et al. (2020). Secondly, we train a lo-
gistic regression classifier based on those features.
The classifier is trained only on WIT3, MuST-C,
Europarl-ST and IWSLT18, which are multimodal
datasets with speech-to-text and text-to-text data.
This allows the system to adapt to text translations
that are associated with speech translations. Fi-
nally, we use the classifier to assign a cleanness
score ranging from 0 to 1 for all sentence pairs in
all corpora. The data is then ranked based on the
cleanness score, after which a portion of noisy pairs
is removed from the tail. Our preliminary transla-
tion experiments showed that removing up to 40%
of the data improves the translation quality, leaving
us ∼30.5M sentence pairs of training data, which
are then used in all our end-to-end experiments.

Corpora # sentences

WIT3 196,112
MuST-C train 229,703
Rapid 2019 1,480,789
Europarl v9 1,817,763
OpenSubtitles2018 11,621,073
News Commentary v14 365,340
Common Crawl 2,399,123
Europarl-ST 32,628
WikiTitles 1,305,078
IWSLT2018 171,025
ParaCrawl v3 31,360,203
Total 50,978,837
Filtered 30,540,267

Table 2: Text training data used for end-to-end sys-
tems.

Audio for the cascade system. We have ex-
tracted 40-dimensional Filterbank features with
speaker normalization for each sentence-like
segment of the MuST-C, How2 (Sanabria et al.,
2018) and Mozilla Common Voice (Ardila et al.,
2019) corpora using XNMT (Neubig et al., 2018).
After getting rid of audio files that were too short
(less than 0.4 seconds), corrupted, or no longer
available for download from YouTube, some 1.2M
clean utterances remained for training the ASR
system, and 30k for validation.

On the target side, we use two contrastive pre-
processing pipelines:

i) the same subword segmentation used for the
MT system
_it _& apos ; s _a _lobster _made

_of _play d ough _that _& apos ; s

_afraid _of _the _dark _.

ii) character level segmentation
I t <space> ’ s <space> a <space>
l o b s t e r <space> m a d e <space>
o f <space> p l a y d o u g h <space>
t h a t <space> ’ s <space> a f r a i d
<space> o f <space> t h e <space>
d a r k <space> .

Text data for the cascade system. In our SLT
pipeline, the data we applied for our restoration and
translation models have some overlap and some
differences. For training, both models use the
text data from the IWSLT 2018 speech translation
corpus, the MuST-C training set, News Commen-
tary v14, Europarl v9, and Rapid 2019. The trans-
lation model also uses data from the OpenSubti-
tles2018 dataset, which the restoration model does
not since this dataset is particularly noisy in terms
of punctuation and letter cases. Conversely, the
restoration model also uses data from the How2 and
Mozilla Common Voice datasets, which the transla-
tion model does not use as they do not contain Ger-
man text. The translation model uses the IWSLT
development set from 2010 and test sets from 2011–
2015 as validation data, while the restoration model
uses them as supplementary training data in order
to reinforce domain bias, using only the MuST-C
development set for validation.

Initially, we “clean” the output of our ASR
model to remove segments containing musical note
characters (� �), and repeating phrases that were
consistently hallucinated during silence, applause,
laughter or noise in the audio (e.g. in our case,
“Shake. Fold.”), as well as parts of segments that
designate the speaker (e.g. “Audience: ...”). Sub-
sequently, we use the same preprocessing pipeline
for the cleaned ASR output as we do for all of
our text data. For this, we start by removing non-
printing characters, normalizing punctuation, and
retokenizing the text using the corresponding util-
ities from the Moses toolkit (Koehn et al., 2007).
Afterwards, we apply subword segmentation via
SentencePiece (Kudo and Richardson, 2018), using
a joint English–German BPE model with a vocabu-
lary size of 32 000 for all of our translation models,
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Figure 1: Configurations tested for multitask training.

and an English unigram model with a vocabulary
size of 24 000 for the restoration stage of our cas-
cade SLT, both trained on all of the data used for
the translation and restoration models combined.

Before the training of the restoration model, the
training data was run through a Moses truecaser
model (trained on the same selection of training
data as the restoration model) as an additional step
before segmentation. This step removes sentence-
initial capitalization for words that would not be
capitalized otherwise, ensuring that differences in
distributions of words appearing in sentence-initial
positions does not influence case restoration for the
model. Once truecased and segmented, we assign
the processed data as the target for the restoration
model, and continue to strip punctuation and low-
ercase the target to generate the source. This con-
figuration comes with the useful side effect of the
model learning to generate truecased output, which
may be beneficial for MT.

4 Experiments

In this section we report on the experiments that
lead up to our final submissions. The experi-
ments on this section have been trained, validated
and tested on the respective splits of the MuST-C
dataset.

As a first stage, we focused on selecting the mul-
titask training strategy that performed better. Hav-
ing the three modalities ENAUDIO, ENTEXT and
DETEXT as possible inputs, and both text modal-
ities as possible outputs, there can be up to 64
combinations where audio is an input2 without tak-
ing into account the cases where the text encoder
is shared between German and English. We con-
sidered the 5 scenarios depicted in Figure 1 and
present its results in Table 3 together with the num-
ber of steps it took for them to converge.

All the models were trained using the same set
of hyperparameters. At the time we ran these ex-
periments, the final version of the audio encoder
was not ready for deployment, so we used a 4-

264 is the total number of bipartite graphs that can be
defined on sets of three and two vertices.

layered pyramidal CNN+RNN encoder adaptation
from Amodei et al. (2016) with 512 hidden units
and pooling factors of (1,1,2,2) after each layer,
respectively. For the text encoders, we applied em-
bedding layers of 512 dimensions, four stacked
bidirectional LSTM layers with 512 hidden units
(256 per direction). We use attentive text decoders
composed of two unidirectional LSTM layers with
512 units. Regarding the shared attention bridge
layer, we used 100 attention heads with 1024 hid-
den units each. Training is performed using the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 0.0002 and batch size 32 for all
source-target pairs, for at most 100,000 steps per
language pair3. At this stage, we apply a uniform
language-rotating scheduler. Isolating the effect
of multitasking from the effect of weighting the
scheduling distribution helped us understand the
importance of weighting it with respect to the batch
size.

Configuration BLEU Steps

opt3 5.00 330K
opt5shareEnc 4.94 250K
opt2shareEnc 4.84 250K
opt4 4.50 300K
opt1 4.30 220K
opt2 3.62 190K

Table 3: Training steps and best BLEU scores ob-
tained with end-to-end systems on the German part fo
the MuST-C test set.

Our preliminary BLEU scores4 for these mod-
els are low. We, however, justify our choice to
include them given the low performance of other
experiments in similar scenarios reported in the
literature. Namely, Tu et al. (2019) reported 9.55
BLEU training on the same set with a transformer
based architecture, the only paper that trains and
tests on the same set, and thus the only truly com-

3Model configuration 3, for instance, has 4 language pairs
was trained for at most 400K steps

4We use the multi-bleu-detok.pl+ Moses script,
that uses sentence smoothing for detokenized input.
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System status de BLEU en BLEU WER Steps

end-to-end opt6
submission time 12.90 56.65 36 172K
converged 14.38 59.22 33 294K

end-to-end opt3
submission time 9.47 44.12 48 32K
converged 11.71 52.91 40 72K

cascade bpe37k 22.20 60.87 29 -
cascade char-level 20.90 54.49 55 -

Table 4: Scores of our primary and contrastive submissions on on the MuST-C test set.

parable results. In addition, Di Gangi et al. (2019a)
reported 12.25 BLEU training MuST-C together
with IWSLT18 and initialized their system with the
ASR system.

The well-known sensitivity to hyperperparam-
eter choice of the transformer architecture is also
visible in our transformer-based audio encoders.
We performed hyperparameter tuning on opt3 mul-
titask training configuration (Figure 1 (d)). This
resulted in a performance of a 9.53 BLEU score
on German translations and 47.63 on the English,
a clear increase from the untuned models that got
at most 1 BLEU point in any of them. The final
hyperparameter setup consists of:

• text encoders and decoders using 3 layered
transformer architecture with 8 heads, 512
dimensional embeddings, 2048 feedforward
hidden dimensions, and a batch size of 4096
tokens;

• audio encoders as described in Section 2 with
2 CNN layers with stride of 2 and kernel width
of, the first of which takes a single input chan-
nel, three 8-headed transformer layers, posi-
tional embeddings of size 512 concatenated
to the output of a linear layer for being passed
to the transformer layers, a batch size of 32
utterances; and

• an attention bridge of size 100 with a hidden
dimension of 1024.

Training was done with 8,000 warmup steps, using
an Adam optimizer with learning rate 2 and Noam
decay method, accumulation count of 8 to have
an approximate effective batch size of 256 for the
audio utterances, dropping utterances above the
length of 5500, and a language rotating scheduler
that uses the inverse of the batch size as weights 5.

5In case of training opt3, the weights assigned to ENAU-

We also tried other strategies such as (i) using 3,
4 and 6 stacked filterbanks as different channel in-
puts for the CNNs to reduce the input size instead
of dropping utterances, (ii) using SpecAugment
(Park et al., 2019) layers (2 frequency masks of
width 20 and 2 time masks of width 50) to pro-
duce a data augmentation effect while training, (iii)
including layer normalization after the attention
bridge, (iv) using the positional embeddings of our
transformer-based audio encoder in other places
of the encoder or not using them at all. Unfortu-
nately, none of them produced as effective improve-
ments as what we describe above. We note that it
is probable that using milder hyperparameters for
SpecAugment could be beneficial.

5 Results

From the insights gained out of our experiments
on the MuST-C dataset, for our submission, we
train a system using the data as described in section
3 with the training configuration opt3 (see Figure
1 (d)) and the hyperparameters that yielded the best
results. Further, we decided to try out an addi-
tional training configuration we had not previously
tried out: ENAUDIO as input and DETEXT and
ENTEXT as output, which we refer to as opt6. Con-
figurations from Figure 1 use both modalities as
input, whereas opt6 separates them by using only-
audio input and only-text output. This might be the
reason why opt6 outperformed them when tested
on the MuST-C test set. Further experimentation
would be required to make this statement conclu-
sive. One of our main aims in participating in this
task is to test our multitask architecture; for this
reason we submit our best SLT system as primary
system and the cascade approach with subword seg-
mentation as contrastive baseline. We would like to
DIO → {DETEXT,ENTEXT} are 0.42 each and both text-to-
text pairs get 0.08 because the average sentence length of
MuST-C is around 24, which implies that 4096 tokens are
about 170 sentences.
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note that, unfortunately, at the time of submission,
our end-to-end systems had not converged yet.

For the sake of consistency, these have been
benchmarked with the MuST-C test set as well.
The results are reported in Table 4, where we also
report BLEU and WER for English, corresponding
to the ASR task.

6 Conclusion

In this paper we present our work for the
IWSLT2020 offline speech translation task, along
with the set of experiments that led to our final
systems. Our submission includes both a cascaded
baseline and a multimodal system trainable in a
multitask fashion. Our work shows that it is pos-
sible to train a system that shares internal repre-
sentations for transferring the implicit semantics
between audio and text modalities. The nature of
the architecture enables end-to-end SLT, while at
the same time providing a system capable of per-
forming ASR and MT. Although this represents
an important step in multimodal MT, there is still
a lot of room for improvement in the proposed
systems. In future work, we would like to imple-
ment more sophisticated audio encoders, such as
the S-Transformer. This, along with using the same
amount of data during training, will allow us to
draw a truly fair comparison between both end-to-
end and cascade approaches.
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Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. 3rd Interna-
tional Conference for Learning Representations.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senel-
lart, and Alexander M. Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
In Proceedings of ACL 2017, System Demonstra-
tions, Vancouver, Canada.

Philipp Koehn, Richard Zens, Chris Dyer, Ondřej
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Abstract
This report summarizes the Air Force Re-
search Laboratory (AFRL) submission to the
offline spoken language translation (SLT) task
as part of the IWSLT 2020 evaluation cam-
paign. As in previous years, we chose to adopt
the cascade approach of using separate sys-
tems to perform speech activity detection, au-
tomatic speech recognition, sentence segmen-
tation, and machine translation. All systems
were neural based, including a fully-connected
neural network for speech activity detection,
a Kaldi factorized time delay neural network
with recurrent neural network (RNN) language
model rescoring for speech recognition, a bidi-
rectional RNN with attention mechanism for
sentence segmentation, and transformer net-
works trained with OpenNMT and Marian for
machine translation. Our primary submission
yielded BLEU scores of 21.28 on tst2019 and
23.33 on tst2020.

1 Introduction

As part of the evaluation campaign for the 2020 In-
ternational Workshop on Spoken Language Trans-
lation (IWSLT) (Ansari et al., 2020), the AFRLHu-
man Language Technology team submitted an en-
try to the offline spoken language translation (SLT)
task. The goal of this task is to automatically gener-
ate cased and punctuatedGerman translations from
English audio TED Talks using either a cascade
of systems or the end-to-end approach. We chose
to build upon our previous work (Ore et al., 2018;
Kazi et al., 2016) and adopt the cascade approach
of using separate systems to perform speech activ-
ity detection, automatic speech recognition (ASR),
sentence segmentation, and machine translation
(MT). Sections 2 and 3 describe our ASR and MT
systems, respectively. Section 4 presents our re-
sults on the development set when the data is man-
ually segmented into sentences, and Section 5 de-
scibes our approach to SLT on unsegmented data.

Section 6 provides a post-evaluation analysis of
our systems based on sentence length, and Section
7 presents our conclusions and future work.

2 Automatic Speech Recognition

This section describes the English ASR system
that was developed for the offline speech trans-
lation task. First, we sequestered all talks from
TEDLIUM-v3 (Hernandez et al., 2018) that were
present in tst2014, tst2015, and tst2018.
Next, language models (LMs) were estimated
on TEDLIUM-v3 and the same subsets of News
Crawl and News Discussions described in Ore
et al. (2018). The text was formatted as follows:

• Numbers and special symbols were converted
to words (e.g., “%” converted to “percent”,
“&” converted to “and”, “=” converted to
“equals”).

• Punctuation marks and any remaining sym-
bols were removed.

• All text was converted to lowercase.

We used the SRILM select-vocab tool1 to
choose a 100,000 word vocabulary. An interpo-
lated bigram language model (LM) was estimated
using the SRILM toolkit, and a recurrent neu-
ral network (RNN) LM was trained using Kaldi
(Povey et al., 2011).
Acoustic models were trained on TEDLIUM-

v3 using Kaldi. In a preliminary experiment, we
found that training on both TEDLIUM-v3 and
CommonVoice did not lead to a reduction in word
error rate (WER), so we decided to only use
TEDLIUM-v3. The Kaldi system used in these ex-
periments is a factorized time delay neural network
(TDNN) with residual network style skip connec-
tions. Input Mel frequency cepstral coefficient

1Available at: http://www.speech.sri.com/projects/srilm
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(MFCC) features have standard speed perturbation
applied (0.9 & 1.1 factor). The initial Kaldi finite
state transducer (FST) was built with the bigram
LM, and the resulting lattices were rescored us-
ing the pruned RNNLM lattice rescoring algorithm
(Xu et al., 2018).

3 Machine Translation

In order to translate the ASR output from the pre-
vious section, we construct an English–German
MT training corpus from allowable sources pro-
vided by the organizers2. We then prepare this
corpus in a similar manner as described in Gwin-
nup et al. (2018) and Gwinnup et al. (2019), espe-
cially focusing on fastText (Joulin et al., 2016a,b)
language-id filtering. As a contrast to Ore et al.
(2018) we prepare data for additional systems on
this same corpus where the source English text
has been transformed to resemble output from our
ASR systems. We then train transformer (Vaswani
et al., 2017) basedMT systemswith the OpenNMT
(Klein et al., 2018) andMarian (Junczys-Dowmunt
et al., 2018) toolkits.

3.1 OpenNMT

The OpenNMT-tf system trained for this task used
the default configuration for a transformer net-
work. Two copies of the training data described
above were concatenated together. One copy was
lowercase and non-punctuated in order to resem-
ble ASR output and an additional copy was cased
and with punctuation. This combined corpus was
processed with Sentencepiece (Kudo and Richard-
son, 2018) using a model trained only on the lower-
case and non-punctuated corpus. The network was
trained for 10 epochs of this training data using a
batch size of 1562 with an effective batch size of
24992 using the lazyAdam (Kingma andBa, 2015)
optimizer. The final system was an average of the
last 8 checkpoints of the training. Checkpoints
were saved every 5000 steps. Results using this
models for the punctuated test sets for the WMT
news translation task are shown in Table 1 Column
A. Column B is results with a model trained only
on the cased and punctuated data. Column C is the
results with amodel trained only on the lowercased
unpunctuated data.

2The majority of the training corpus comes from
the preprocessed WMT18 news-translation task data
available here: http://data.statmt.org/wmt18/translation-
task/preprocessed/de-en/

Test Set A B C

newstest2018 40.02 43.11 22.41
newstest2019 37.55 38.71 19.69

Table 1: OpenNMT system performance under differ-
ent training corpus conditions.

Results using this model on tst2014, tst2015,
and tst2018 with cased and punctuated input are
shown in Table 2 Column A. Column B is the
results with lowercase and non-punctuated input.
Column C is with a model trained only on the
cased and punctuated data, and Column D is the
results with a model trained only on lowercase non-
punctuated data.

Test Set A B C D

tst2014 27.67 26.99 28.43 26.48
tst2015 29.80 28.85 29.72 28.43
tst2018 27.46 25.53 27.81 25.81

Table 2: OpenNMT system performance under differ-
ent training corpus conditions.

3.2 Marian
Our Marian systems also utilize the transformer
(Vaswani et al., 2017) architecture. Network hy-
perparameters are the same as detailed in Gwinnup
et al. (2018). We use the WMT16 newstest2016
as the validation set during training.
We used the following network configuration:

• 6 layer encoder

• 6 layer decoder

• 8 transformer heads

• Tied embeddings for source, target and output
layers

• Layer normalization

• Label smoothing

• Learning rate warm-up and cool-down

A joint Sentencepiece vocabulary with 46k en-
tries was employed, informed by experimentation
performed for our WMT19 efforts. With lower-
case non-punctuated input, this system yielded the
following BLEU scores: 26.58 on tst2014, 28.47
on tst2015, and 26.57 on tst2018.
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Marian OpenNMT

tst2014 24.80 (6.4) 24.67 (6.2)
tst2015 26.44 (6.6) 26.14 (6.5)
tst2018 23.91 (9.1) 23.09 (8.6)

Table 3: BLEU scores and WERs (in parentheses) on
the manually segmented development sets. The MT
systems were trained on lowercase non-punctuated En-
glish text.

4 Manual Segmentation

In order to evaluate the effect of automatic sen-
tence segmentation on spoken language trans-
lation, we manually segmented the tst2014,
tst2015, and tst2018 development sets into sen-
tences using the provided reference files. This was
done by automatically aligning the reference text
using a Kaldi ASR system and then manually cor-
recting any errors. The Kaldi system described
in Section 2 was then used to generate ASR tran-
scripts for each utterance. Note that for ASR tasks,
a development set is typically used to select the
LM scale that minimizes the WER; however, in
this task our goal is to choose the best translation.
We decided to generate 8 different hypotheses for
each utterance by varying the ASR LM scale over
6, 8, 10, ..., 20, translating each utterance, and then
selecting the ASR LM scale that yields the best
overall BLEU score. Each ASR hypothesis was
translated using the MT systems trained on low-
ercase non-punctuated English text. Compared to
selecting the ASR LM scale to minimize WER,
this method yields a very minor improvement with
Marian (0.06 BLEU on tst2014 and tst2018,
0.17 BLEU on tst2015), but no improvement
with OpenNMT. Table 3 shows the case-sensitive
BLEU scores and correspondingWER in parenthe-
ses.
In a second set of experiments, an automatic

punctuator and text recaser were applied to the
English ASR text prior to performing translation.
Compared to the previous approach, one advan-
tage of this method is that we can train a single MT
system to translate both ASR transcripts and text
documents. The punctuator was a bidirectional
RNNwith attentionmechanism that was trained on
4M words of English TED data using the Python
fork of Ottokar Tilk’s punctuator.3 The punctuated
text was recased using Moses and then translated

3Available at: https://pypi.org/project/punctuator

OpenNMT

tst2014 23.77 (6.2)
tst2015 24.26 (6.5)
tst2018 22.90 (8.6)

Table 4: BLEU scores and WERs (in parentheses) on
the manually segmented development sets using the
OpenNMT system trained on cased and punctuated En-
glish text.

using the OpenNMT system that was trained on
cased and punctuated English. Table 4 shows the
BLEU scores and correspondingWER in parenthe-
ses. Comparing Tables 3 and 4, we can see that
using the translation models trained on lowercase
non-punctuated English text yields the best results;
therefore, we decided to use these MT systems for
all remaining experiments discussed in this paper.

5 Automatic Segmentation

In the previous section, we evaluated our ASR and
MT systems on audio clips that were manually
segmented into sentences. This section considers
the task where we are given an audio stream that
must be automatically segmented. First, we evalu-
ated a speech activity detector (SAD) on each au-
dio file. We used the same neural network based
SAD as described in our IWSLT 2018 paper. Auto-
matic segmentation of the test data was performed
by evaluating the SAD, applying a dynamic pro-
gramming algorithm to choose the best sequence
of states, and defining utterance boundaries at the
midpoint of each non-speech segment longer than
0.5 seconds. Next, the Kaldi ASR system was
evaluated on each utterance using the same ASR
LM scales found in the previous section. Two
different methods were investigated for partition-
ing the time-aligned words into sentences. In the
first method, we simply used the utterance bound-
aries from the SAD to define the sentence bound-
aries. For the second method, we evaluated the au-
tomatic punctuator from Section 4 on each utter-
ance, and then defined additional sentence bound-
aries at words that ended with a period, exclama-
tion, or question mark.
Table 5 shows the case-sensitive BLEU scores

and corresponding WER obtained using each
method. Comparing the two sentence segmen-
tation methods, we can see that defining addi-
tional sentence boundaries with the punctuator led
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Marian OpenNMT
SAD SAD+punctuator SAD SAD+punctuator

tst2014 23.32 (7.0) 22.52 (7.0) 22.52 (6.6) 22.86 (6.6)
tst2015 23.93 (6.7) 23.59 (6.7) 23.69 (6.5) 23.90 (6.5)
tst2018 21.60 (9.4) 21.56 (9.4) 20.86 (9.0) 21.32 (9.0)

Table 5: BLEU scores and WERs (in parentheses) obtained on the automatically segmented development sets.
Sentence boundaries were defined using (1) the SAD, or (2) a combination of the SAD marks and the automatic
punctuator.

to an overall decrease in BLEU when translating
with Marian, but an improvement with OpenNMT.
Compared to the results obtained with the man-
ual segments in Table 3, we find that the Mar-
ian BLEU score decreased by 1.48 on tst2014,
2.51 on tst2015, and 2.31 on tst2018; simi-
larly, the OpenNMT BLEU score decreased by
1.81 on tst2014, 2.24 on tst2015, and 1.77 on
tst2018. Lastly, if we compare the OpenNMT
systems (which used the same ASR LM scale to
minimize WER and maximize BLEU) in Tables 3
and 5, we can see that automatically segmenting
the data yields no change inWERon tst2015, and
an increase of 0.4% on tst2014 and tst2018.
Our primary submission to the IWSLT 2020 of-

fline speech translation task can be summarized as
follows. First, a neural network based SAD was
used to segment each audio file into utterances.
Next, ASR transcripts were generated using Kaldi
and an automatic punctuator was applied to fur-
ther split each utterance into sentences. Lastly, an
OpenNMT system was used to translate the lower-
case non-punctuated English into cased and punc-
tuated German. As a contrasting system, we also
submitted the translations obtained using Marian.
The processing pipeline for theMarian system was
identical to the OpenNMT system, except that we
did not apply the automatic punctuator (i.e., the
sentence boundaries were defined solely on the
pause durations from the SAD). The OpenNMT
system yielded BLEU scores of 21.28 on tst2019
and 23.33 on tst2020; the Marian system yielded
BLEU scores of 21.48 on tst2019 and 23.21 on
tst2020.

6 Post-Evaluation Analysis

In Section 5 we found that defining additional
sentence boundaries using an automatic punctua-
tor led to a worse performance with Marian, but
improved performance with OpenNMT. This led

#Words #Sentences Marian OpenNMT

1-9 2266 30.62 28.12
10-19 2889 28.57 28.71
20-29 1456 28.16 28.39
30-39 665 26.55 26.88
40-49 275 25.78 25.34
50+ 241 27.10 19.85

Table 6: BLEU scores on the reference text grouped by
sentence length.

us to wonder if the automatic punctuator was ac-
tually helping to identify more correct sentence
boundaries, or simply producing shorter sentences
that were better translated with OpenNMT. Based
on this idea, we decided to analyze how sen-
tence length affects translation performance with
each of our systems. First, the English reference
text from dev2010, tst2010, tst2013, tst2014,
tst2015, and tst2018 was processed using the
same steps as described in Section 2 to match the
expected MT input. Marian and OpenNMT were
then used to translate each sentence, and the BLEU
score was calculated for sentences where the En-
glish source included 1-9, 10-19, 20-29, 30-39, 40-
49, and 50+ words. Table 6 shows the results ob-
tained, including the number of sentences assigned
to each group. These results show that for sen-
tences longer than 50words, the BLEU score drops
substantially with the OpenNMT system.
As a final experiment, we re-evaluated our sub-

mitted OpenNMT system, but only inserted addi-
tional sentence boundaries if the English ASR ut-
terance was longer than 50 words. This yielded the
following BLEU scores: 23.21 on tst2014, 23.89
on tst2015, and 21.37 on tst2018. Compared
with the OpenNMT SAD+punctuator results in Ta-
ble 5, this represents a +0.35 BLEU improvement
on tst2014 and similar results on tst2015 and
tst2018.
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7 Conclusion and Future Work

With our systems, we found that automatic sen-
tence segmentation led to a decrease of up to -2.51
BLEU. The punctuator that we used provides func-
tionality to specify the pause duration after each
word when training the punctuator. This could
be obtained by automatically aligning the original
TED training transcripts; however, due to limited
computational resources while working at home,
we were not able to investigate this feature. In ad-
dition to text features and pause durations, other
acoustic features might also prove useful for auto-
matically identifying sentence boundaries. Alter-
natively, it may be interesting to resegment theMT
training data to better match the ASR segmenta-
tion, although this would probably have to be done
in an automatic fashion to take advantage of avail-
able text-only parallel corpora.
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Abstract

This paper describes the LIT Team’s submis-
sion to the IWSLT2020 open domain transla-
tion task, focusing primarily on Japanese-to-
Chinese translation direction. Our system is
based on the organizers’ baseline system, but
we do more works on improving the Trans-
former baseline system by elaborate data pre-
processing. We manage to obtain significant
improvements, and this paper aims to share
some data processing experiences in this trans-
lation task. Large-scale back-translation on
monolingual corpus is also investigated. In ad-
dition, we also try shared and exclusive word
embeddings, compare different granularity of
tokens like sub-word level. Our Japanese-to-
Chinese translation system achieves a perfor-
mance of BLEU=34.0 and ranks 2nd among
all participating systems.

1 Introduction

In recent years, the neural machine translation
(NMT) (Sun et al., 2019; Wu et al., 2016; Sen-
nrich et al., 2015) has made great progress based
on encoder-decoder architecture. We participate
in the IWSLT 2020 open domain translation task:
Japanese-to-Chinese. This paper describes the
NMT systems for the IWSLT 2020 Japanese-to-
Chinese machine translation task (Ansari et al.,
2020).

Our main efforts are data pre-processing, specifi-
cally parallel data filter and sentence alignment. By
elaborate data processing, we successfully improve
the quality of the training set and thus boost the
performance of our translation system. The back-
translation mechanism (Edunov et al., 2018) is also
investigated to extend the training corpus, we trans-
late Chinese to Japanese to get the Japanese-to-
Chinese training corpus, it is an effective approach
to exploit the corresponding monolingual data sets.

The transformer model (Vaswani et al., 2017)

based on multi-head attention has achieved excel-
lent performance in a variety of neural machine
translation tasks in the last three years. This kind
of NMT model surpasses the performance of the
traditional statistical machine translation and the
NMT performs particularly well especially with
rich resource corpus. In our system, we adopt big-
ger transformer architecture, since the performance
of the Transformer relies on model capacity, ex. the
number of dimensions of the feed-forward network.
To improve performance, we adopted the Rela-
tive Position Attention (Shaw et al., 2018). Also,
we conduct experiments to compare the shared
source and target word embeddings and exclu-
sive word embeddings, and whether to adopt the
shared embeddings relates to the translation direc-
tion. The Chinese-to-Japanese direction achieves
higher scores when adopting shared word embed-
dings, however, the Japanese-to-Chinese direction
produces opposite results.

The paper is structured as follows: Section 2
will present a detailed description of our data pre-
processing, back-translation is introduced in Sec-
tion 3, the model of our system will be introduced
in Section 4, the main results of our experiment
will be shown in Section 5. Section 6 will draw a
brief conclusion of our work for the IWSLT 2020
open domain translation task.

2 Data and Pre-processing

On the whole, our system follows the standard
Transformer-based translation pipeline, and our sys-
tem implementation is based on the official baseline
1. Most of our efforts in this competition are fo-
cused on data pre-processing and back-translation.
We adopt the same strategies as the official baseline
if we don’t point out explicitly.

1https://github.com/didi/iwslt2020_
open_domain_translation
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Corpus Original Re-Filtered
Part A 2.0M 0.8M
Part B 19.0M 8.8M
Part C 161.5M 10.0M
Part D - 2.7M
Monolingual - 200M

Table 1: Statistics of the parallel sentence pairs used for
training models in this paper. The monolingual data is
used for back-translation.

2.1 Datasets
In Japanese-Chinese bidirectional machine transla-
tion competition(Ansari et al., 2020), the organiz-
ers provide a large, noisy set of Japanese-Chinese
segment pairs built from web data. There are four
parts:

Part A A small but relatively clean Japanese-
Chinese parallel corpus, which is obtained from cu-
rating existing Japanese-Chinese parallel datasets.

Part B A pre-filtered dataset of the sentences
that the organizers obtained from crawling the Web,
aligning, and filtering.

Part C An unfiltered parallel web crawled cor-
pus which is much noisier than previous datasets.

Part D A huge file of the unaligned scraped web
pages with the document boundaries.

The following subsections detail how we handle
these four parts of web data respectively. Besides,
we conduct data augmentation by back-translation
using extra monolingual data, which will be dis-
cussed in Section 3. Table 1 shows the statistics of
the training data.

2.2 Parallel Data Filter
Although the organizers have filtered parts of the
data, there are still many mismatched sentence
pairs, i.e. the target sentence is not the correspond-
ing translation of the source sentence. For the three
aligned datasets, we re-filter them by the following
rules.

• Remove empty or duplicated sentences.

• Remove sentence pairs when the source sen-
tence and the target sentence are same.

• Convert all Chinese characters into simplified
Chinese.

• Remove sentence pairs when there is no com-
mon Chinese character (Chu et al., 2014) be-
tween source sentence and target sentence.

• Remove sentences in which the number of
non-English and non-punctuation characters
is less than half of the length of the whole
sentence.

• The maximum length ratio of sentence pairs
is 1.8.

• Japanese (Chinese) sentence should be rec-
ognized as Japanese (Chinese) by fasttext’s
language identification model (Joulin et al.,
2016b,a).

After that, we have a pre-processed bilingual
training data consisting of 22.3 million parallel
sentences. Note that we adjust filter rules many
times, and finally adopt the above relatively strict
rules, resulting in the training data is reduced sig-
nificantly. Besides, the fast align 2 toolkit is
popular for computing the alignment score for par-
allel sentences, but the models trained on the train-
ing data filtered by fast align become worse.
We suspect that its scores may be highly related to
the length of the sentences, this results in qualified
long sentences are discarded. So we didn’t use
fast align in this paper.

2.3 Web Crawled Sentence Alignment
The organizers provide us a huge corpus of more
than 15 million unaligned bilingual document pairs.
To extract the parallel sentences, we consider each
sentence of a document as an element and adopt
the longest common sub-sequence algorithm to
find Ja-Zh sentence pairs with the highest character
F1 similarity. Algorithm 1 shows the alignment
process, in which we define the alignment score
score(Ci, Jj) between two sentences by the F1
value of their character overlap.

Unfortunately, this part of data is highly dupli-
cated. After performing Algorithm 1 and filter al-
gorithm mentioned in Section 2.2, we successfully
obtained about 50 million parallel sentences pairs.
But only 2.7 million sentence pairs are remained af-
ter deduplicating. Something is better than nothing,
we still add the 2.7 million data into our training
set.

3 Back-translation

In recent works, the back-translation mechanism
(Edunov et al., 2018) has been proved as an effec-
tive method to improve machine translation sys-
tems by utilizing large-scale monolingual corpus.

2https://github.com/clab/fast_align

110



Algorithm 1 Align bilingual sentences from two
documents.
Require: Chinese sentences C1, C2, · · · , CN ;

Japanese sentences J1, J2, · · · , JM ;
Ensure: Aligned sentence pairs set A

1: Initialize all auxiliary variables s to zero;
2: for i = 1→ N do
3: for j = 1→M do
4: if si−1,j ≥ si,j then
5: si,j ← si−1,j , trace(i, j)← 0
6: end if
7: if si,j−1 ≥ si,j then
8: si,j ← si,j−1, trace(i, j)← 1
9: end if

10: if si−1,j−1 ≥ si,j then
11: si,j ← si−1,j−1, trace(i, j)← 2
12: end if
13: if si−1,j−1+score(Ci, Jj) > si,j then
14: si,j ← si−1,j−1 + score(Ci, Jj)
15: trace(i, j)← 3
16: end if
17: end for
18: end for
19: i← N, j ←M
20: while i > 0 and j > 0 do
21: if trace(i, j) = 0 then
22: i← i− 1
23: else if trace(i, j) = 1 then
24: j ← j − 1
25: else if trace(i, j) = 2 then
26: i← i− 1, j ← j − 1
27: else if trace(i, j) = 3 then
28: add sentence pair (Ci, Jj) to set A
29: i← i− 1, j ← j − 1
30: end if
31: end while

In this paper, we follow the successful experiences
in Edunov et al. (2018) to further extend our train-
ing data. Chinese monolingual data is extracted
from the unaligned scraped web pages (Part D),
and we select 200 million sentences to reduce train-
ing time.

3.1 Chinese-to-Japanese Translation

In order to generate a synthetic bilingual corpus,
we trained a Chinese-to-Japanese transformer on
the filtered parallel data mentioned in Section 2.2.
Different from the Japanese-to-Chinese translation,
we find that sharing BPE (Sennrich et al., 2015)
tokens between Chinese and Japanese can produce

Model Share Truncate BLEU

ZH to JA
× × 32.4
× √

32.6√ √
33.5

Table 2: Vocabulary strategy on Chinese-to-Japanese
translation. The evaluation metric is 4-gram character
BLEU score on the development set. In truncated ver-
sion, the vocabulary is truncated to 40K BPE tokens.

better translation results. Besides, we can truncate
the vocabulary size to accelerate model training.
Table 2 shows the comparison of different vocabu-
lary strategy. The number of BPE merge operations
is 30k. In truncated version, the vocabulary is trun-
cated to 40K BPE tokens.

3.2 Constructing Augmented Training Data
Following the work of Edunov et al. (2018), noise
is added to the back-translation data. We delete a
word with probability 10%, replace a word by a
placeholder token with probability 10%, and swap
words no further than three positions apart. Besides,
we use bilingual data upsampling factor 4 to make
the model pay more attention to the high-quality
parallel data.

4 Model

We think the Transformer model is a strong model
with excellent performance. So, we only take some
small tricks on this model. In this section, we de-
scribe two different methods to enhance our model
performance in this competition. All of them come
from previous work (Sun et al., 2019; Shaw et al.,
2018) and all of these methods help us to improve
the baseline model. In the subsection, we will de-
scribe these methods briefly.

4.1 Bigger Transformer
In the work of (Sun et al., 2019), they proposed a
method that increases the model capacity on the
translation model and gets progress. Thus, we can
think about if the model becomes wider, the perfor-
mance may be better. We implement to increase
the inner dimension of the feed-forward network in
a big transformer model, from 4096 to 8192. Also,
thinking about the overfitting problem, we increase
the relu dropout value from 0.1 to 0.3.

4.2 Relative Position Representation
Recent empirical work shows that in the self-
attention mechanism, it is better to use relative
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System Clean Filtered Re-Filtered BT Dev BLEU Test BLEU

Baseline

√
20.0 22.0√ √
26.9 -√ √ √
28.6 -√ √ √ √
29.6 -

Bigger + RP∗ √ √ √ √
30.3 34.0

Table 3: Results obtained by different data pre-processing methods and combinations. “Clean” denotes the data
of Part A, “Filtered” denotes all training data filtered by the organizers, “Re-Filtered” denotes our re-filter method,
“BT” is the abbreviation of back-translation, and “RP” means relative position. (* denotes our submitted system)

position (Shaw et al., 2018) to reflect the sequential
relationship of words. In original ways, the Trans-
former only uses absolute position information in
word embeddings. With the relative position fea-
ture, we compare the result and find it has better
performance.

5 Submission to IWSLT 2020

5.1 Experiment

We compare the performance of our system on dif-
ferent data sets to show the effectiveness of data
processing. In general, we adopt the default hyper-
parameters of transformer relative big
in tensor2tensor 3. Except that we set the inner
dimension of the feed-forward network to 8192,
and set relu dropout to 0.3. We conduct our ex-
periments on a machine with 8 Nvidia P40 GPUs.
The model is updated 500K times in 9 days. Model
parameters are saved every 1000 steps, and the last
three checkpoints are averaged to obtain the final
model. In decoding, we search the best decoding
configuration on the released development set and
fix the beam size as 6, alpha as 0.8. It is regretful
that because of limited computational resources,
we only trained a single model and didn’t conduct
model ensemble experiments.

As for post-processing, we process the decoding
results by removing “UNK” token and Japanese
kana characters from translated Chinese texts.

5.2 Japanese-to-Chinese Translation Results

Table 3 lists results obtained by using different
training data. We use the official baseline system to
test the effects of data processing. In the table, data
size increases from the left columns to the right
columns, and the performance is also improved.
This shows the importance of extending training
data in this task and validates the necessity of data

3https://github.com/tensorflow/
tensor2tensor

pre-processing in boosting translation system ac-
curacy. Also, the submitted system adopts a larger
inner dimension and relative position, which shows
the highest BLEU score in our systems.

6 Conclusion

We participated in the Japanese-to-Chinese trans-
lation direction in the IWSLT 2020 open domain
translation task. We focus on improving the Trans-
former baseline system by doing elaborate data
pre-processing, and we manage to obtain signifi-
cant improvements. Experiments also show that in-
creasing model capacity is beneficial on large train-
ing data. Finally, our submission of Japanese-to-
Chinese translation achieves the 2nd highest BLEU
score among all the submissions.
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Abstract

In this paper, we demonstrate our machine
translation system applied for the Chinese
Japanese bidirectional translation task (aka.
open domain translation task) for the IWSLT
2020 (Ansari et al., 2020). Our model is based
on Transformer (Vaswani et al., 2017), with the
help of many popular, widelyproved effective
data preprocessing and augmentation methods.
Experiments show that these methods can im
prove the baseline model steadily and signifi
cantly.

1 Introduction

Machine translation, proposed even before the first
computer was invented (Hutchins, 2007), has been
always a famous research topic of computer sci
ence. In the recently years, with the renaissance
of neural network and the emergence of atten
tionmechanism (Sutskever et al., 2014) (Bahdanau
et al., 2014), the old area has stepped into a new
era. Furthermore, the Transformer architecture,
after being published, has immediately attracted
much attention nowadays and is dominating the
whole field now.
Although Transformer has achieved many

SOTA results, it has tremendous amount of param
eters so is hard to be fit on small datasets, there
fore it has a high demand on good and large data
source. Despite of the lack of high quality data
of parallel corpus, the document level comparable
data is relatively easy to be crawled, so exploring
an effective and accurate way of mining aligned
sentence pairs from such large but noisy data, to
enrich the small parallel corpus, could benefit the
machine translation system a lot. Besides, cur
rently, most open access big volumemachine trans
lation datasets are based on English, and many of
them are translated to/from another European lan
guage – As many popular European languages are

fusional languages, most corpus are composed by
two fusional languages together. To understand
whether the existing model architectures and train
ing skills can be applied on the translation between
Asian languages and other type of languages , such
as between an analytic language like Chinese and
an agglutinative language like Japanese, interest
us.
In this paper, we demonstrate our system ap

plied for the IWSLT 2020 open domain text transla
tion task, which aims to translate Chinese from/to
Japanese 1. Besides describing how we trained the
model that is used to generate the final result, this
paper also introduces how do we mine extra paral
lel sentences from a large but noisy data released
by the organizer, and several experiments inspired
by the writing systems of Chinese and Japanese.

2 Data Preprocessing

Four pairs of parallel data are provided in the cam
paign, which are

• The very original file, which is crawled from
various websites, and is very huge. Ac
cording to the information of the campaign
page, the corpus contains 15.7 million docu
ments, which are composed by 941.3 million
Japanese sentences and 928.7millionChinese
sentences — From the counts of sentences it
can be immediately observed that the original
corpus is not parallel, so cannot be directly
used for the model. Mining parallel corpus
from this mega size file is another work we
have done during the campaign, which will
be covered in another section of this report.

• A prefiltered file, consists of 161.5 million
“parallel” sentences. We tried to filter this

1In some cases later in the report, the two languages are
noted by their ISO 6391 codes, zh and ja respectively
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dataset to extract parallel lines, and this work
will also be presented later.

• A filtered file, which has 19 million sen
tences, is aligned officially from the data de
scribed in the previous item. And,

• An existing parallel file, which contains 1.96
million pairs of sentences, is obtained by
the provider from current existing Japanese
Chinese parallel datasets.

However, per our investigation, even the sen
tences in the existing parallel file are actually not
fully aligned. For example, a sentence “1994年 2
月、ジャスコはつるまいの全株式を取得。”
(means “Jasco bought all shares in February, 1994”
) in the corpus is translated into “次年 6 月乌迪
内斯买断了他的全部所有权。”, which means
“Udinese bought out all his ownership in June in
the next year”, so here is clearly a noise. Since
deep neural network demands high quality input
data, we combined the filtered file and the existing
parallel file into a 20million pairs dataset (noted as
combined dataset afterwards) , and made a further
data preprocessing, including two main steps:

2.1 Rule Based Preprocessing and Filtering
We first feed the combined dataset to a data prepro
cessing pipeline, including the following steps:

• Converting Latin letters to lower case. This
step helps to decrease the size of the
vocabularies, but since the evaluation is
casesensitive, we applied a further post
processing step: Having generated the results
from the model, we extract all Latin words
from the sources and the hypotheses, and con
vert the words in the hypo side according to
the case forms of their counterparts in the
source side.

• For Chinese, converting traditional Chinese
characters to simplified form; for Japanese,
converting simplified Chinese characters to
kanji.

• Converting full width characters to half
width.

• Normalizing punctuations and other special
characters, e.g. different forms of hyphen “”.

• Unescaping html characters.

• Removing html tags.

• Removing extra spaces around the dot symbol
of float numbers

• Removing unnecessary spaces

Because both Chinese language and Japanese
language don’t use spaces to mark borders of
words, we applied segmentation on each side (A
branched experiment will be presented later in this
report). For Chinese, we use PKUSEG (Luo et al.,
2019) and for Japanese it is mecab2. After having
observed the preprocessed data, sentence pairs are
filtered out according to the following orders:

1. Sentences that contain too many nonsense
symbols (including emojis ,kaomojis and
emoticons, such as “(＠＾ �＾)”. Although
these symbols could bring semantic informa
tion, we don’t consider they are important to
machine translation system)

2. Sentence pairs that have abnormal length ra
tio, here “length” is the count of words of
a sentence. As Chinese character is also an
important constituent of Japanese writing sys
tem, we don’t expect the Japanese sentences
will be toomuch longer than the Chinese side;
however in another hand, since Japanese is
an agglutinative language, it always needs
several additional (sub)words to express its
own syntactical structure, so the Japanese sen
tences can neither be too short. We set the
upper bound of words count ratio between
Japanese and Chinese to 2.4 and the corre
sponding lower bound is 0.8.

3. Sentence pairs that occur more than once. We
deduplicated and left only one single pair.

4. Sentence pairs that target is simply a replica
of the source sentence.

5. Sentence pairs that target sentence shares the
same beginning or ending 10 characters with
source sentence.

6. Sentence pairs that the amount of Chinese
words is less than 40% of the total word count
in the Chinese side. Here “Chinese word” is
defined as a word which is composed by Chi
nese characters only.

2https://taku910.github.io/mecab/

115



7. Sentence pairs that the amount of Japanese
words is less than 40% of the total word count
in the Japanese side. Here “Japanese word” is
defined as a word which is composed by kan
jis or kanas only. As Chinese language and
Japanese language each has its own special
“alphabets”, this step together with the pre
vious one can be seen as a way of language
detection.

8. Sentence pairs that the count difference be
tween numbers in Chinese side and numbers
in Japanese side is greater than or equal to 3

9. Sentence pairs that cannot be aligned on num
bers and Latin letters.

2.2 Alignment Information Based Filtering
Processing rules listed in the previous subsection
can be applied to filter out sentence pairs that have
obvious noises, but some pairs still have subtle
noises that cannot be directly discovered. There
fore we use fast_align to align the source and tar
get sentences, generate alignment score in the sen
tence level and word level 3, then further filter the
combined dataset by the alignment results. For the
sentence level alignment score, the threshold was
set to 16 and for the word level it was 2.5. After
multiple rounds cleaning, 75%of the data provided
are swiped out, leaving about 5.4M sentence pairs
as the foundation of our experiments described in
the next section.

3 Main Task Experiments

Taking the 5.4M corpus in the hand, we further di
vided thewords in the text into subwords (Sennrich
et al., 2016b). BPE code is trained on the Chinese
and Japanese corpus jointly, with 32,000 merging
operations, but the vocabulary is extracted for each
language individually, so for Chinese the size of its
vocabulary is 31k and for Japanese it is 30k. Vocab
ularies for both two directions (ja-zh and zh-ja)
are shared. We trained 8 heads Transformer Big
models with Facebook FAIR’s fairseq (Ott et al.,
2019) using the following configuration:

• learning rate: 0.001

• learning rate schedule: inverse square root
3To get a word level alignment score, we divide the sen

tence level score by the average length of source sentence and
target sentence

• optimizer: Adam (Kingma and Ba, 2014)

• warmup steps: 4000

• dropout: 0.3

• clipnorm: 0.1

The first model trained on the filtered genuine
parallel corpus (i.e. the 5.4M corpus) is not only
seen as the baseline model of the consequent exper
iments, but also used as a scorer4. We rescored the
alignment scores of the sentences using this model,
and again filtered away about one quarters data.
Themodel trained on the refined data improved the
BLEU score by 1.7 for zh-ja and 0.5 for ja-zh.
As many works proved, backtranslation (BT)

(Sennrich et al., 2016a) is a common data augmen
tation method in the machine translation research.
Besides, (Edunov et al., 2018) also provides some
other ways to backtranslate. We applied both of
them and in our experiments, top10 sampling is
effective on zh-ja direction and for ja-zh tradi
tional argmaxbased beam search is still better.
Firstly, 4M data in the original corpus is se

lected by the alignment score and translated by the
models (models for the different directions) got in
the previous step to build synthetic corpus, then
for each direction a new model is trained on the
augmented dataset (contains 5.4M + 4M + 4M =
13.4M pairs). To get a better translation result,
we used ensemble model to augment the dataset.
One more thing could be clarified that, in this aug
mentation step we not only introduced 4M back
translated data, but also generated 4M synthetic tar
get sentences by applying knowledge distillation
(KD) (Freitag et al., 2017).
On this genuineBTKD mixture dataset, we

tried one more round of backtranslation and
knowledge distillation, but just saw a minor im
provement. Afterwards we trained language
model on the 5.4M parallel corpus for each lan
guage using kenlm (Heafield, 2011). With the
help of the language model, 3M Chinese sentences
and 4M Japanese sentences with the highest scores
are selected from the unaligned monolingual cor
pus as the new input of BT models, augmented
the mixture dataset to 20.4M pairs (noted as final
augmented dataset, which will be referenced later

4Many relatedworks used to train amodel in the very early
stage, for example train from the rawest, uncleaned dataset.
We did considered doing so at first but since the original
dataset is too noisy, we decided to clean the corpus first to
achieve a more meaningful baseline score.
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in the report), and we did another round of back
translation and knowledge distillation. After these
three rounds iterative BT (Hoang et al., 2018) and
KD, several best single models are further com
posed together to an ensemble model. In the last
step, following (Yee et al., 2019), we use both back
ward model (for zh-ja task, model from ja-zh
is its backward model, and vice versa) and Trans
former language model to rerank the nbest candi
dates of the output from the ensemble model, to
generate the final results.
Detailed results on the dev dataset of each inter

mediate step is shown in table 1. We strictly fol
lowed the organizer’s requirement to build a con
strained system, means that we didn’t add in any
external data, nor made use of the test data in any
other form besides of generating the final result.

4 Branched Task Experiments

Besides themain task experiments demonstrated in
the previous section, as the introduction part says,
we are also interested in how to mine or extract par
allel data from such huge but noisy datasets, and
explore some special skills on translating fromChi
nese to Japanese (and also vice versa). This section
will mainly discuss our work on these two parts.

4.1 Filtering the Noisy Dataset
We first tried to extract parallel sentences from
the prefiltered, 161.5 million dataset. Since this
dataset is “nearly aligned”, it is assumed that for a
given sentence pair, if the target side doesn’t match
the source, the whole pair can be safely dropped
because the counterpart of the source doesn’t exist
in other places of the corpus. We first use CLD as
the language detector to remove sentences that are
neither Chinese nor Japanese — only in this step
nearly 110 million pairs are filtered out. Next, we
feed the data into the preprocessing pipeline which
is the same as the one introduced in the Preprocess
ing section. The preprocessed corpus are then fil
tered in a similar way described in the Preprocess
ing section, with the following additional steps:

• We compared the url counts of each side and
remove the inconsistent line pairs.

• We kept a set of common special characters
as a white list, removed all other special char
acters

• We removed the sentence pairs that the source
side is too similar to the target side. Con

cretely, we compared the Levenshtein dis
tance between the sentences, divided it by the
average length (count of characters) of the
text in the pair. If this ratio is above 0.9, we
consider the source and the target are too sim
ilar.

After the filtering, 14.92 million sentence pairs
are kept, and based on them we trained a model
by Marian (JunczysDowmunt et al., 2018) using
Transformer base model, see it as the baseline
model for the current task. 36k BPE merge opera
tions are applied on the remained sentence pairs, in
dependently for each language, led to two vocabu
laries each contains 50k words. We use Adam opti
mizer with learning rate set to 3×10−4 and 16,000
warmup steps, clipnorm set to 0.5, dropout of at
tention set to 0.05, label smoothing set to 0.1. De
coder searches with a 6 beamwidth and the length
normalization is 0.8. 5
To filter the noisy parallel corpora, We followed

dual conditional crossentropy filtering proposed
by (JunczysDowmunt, 2018): for a parallel cor
pus D, in which the source language is noted as
X and the target language is noted as Y , two trans
lation models can be trained: model A is trained
from X to Y and model B is trained in the re
versed direction. Given a sentence pair (x, y) ∈ D
and a translation model M , the conditional cross
entropy of the sentence pair normalized by target
sentence length can be calculated:

HM (y|x) = − 1

|y| logPM (y|x)

= − 1

|y|

|y|∑

t=1

logPM (yt|y<t, x)

As we have two models A and B, two scores
achieved by each can be combined to calculate the
maximal symmetric agreement (MSA) of the sen
tence pair, following:

MSA(x, y) =|HA(y|x)−HB(x|y)|

+
1

2
(HA(y|x) +HB(x|y))

5In the branched experiments, the machine translation
framework and hyperparameters applied are all different
from those used in the main task. The reason is these exper
iments were taken concurrently by different team members,
so they have each own hyperparameter settings.
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zh-ja BLEU ja-zh BLEU
Baseline 34.6 32.6
+ Filtered by alignment information from baseline model 36.3 (+1.7, +1.7) 33.2 (+0.6, +0.6)
+ 1st round BT using genuine parallel corpus (13.4M pairs) 37.5 (+2.9, +1.2) 34.6 (+2.0, +1.4)
+ 2nd round BT using genuine parallel corpus (13.4M pairs) 37.6 (+3.0, +0.1) 34.6 (+2.0, +0.0)
+ BT using monolingual corpus (20.4M pairs) 38.8 (+4.2, +1.2) 35.4 (+2.8, +0.8)
+ 3rd round BT using both parallel and monolingual corpus
(20.4M pairs)

39.2 (+4.6, +0.4) 36.0 (+3.4, +0.6)

+ Ensemble 40.1 (+5.5, +0.9) 36.6 (+4.0, +0.6)
+ Reranking 40.8 (+6.2, +0.7) 37.2 (+4.6, +0.6)

Table 1: Results of the main task experiments, evaluation is taken on the validation dataset provided officially. The
improvement amount of each row is expressed in two forms: absolute improvement (current score  baseline score)
and relative improvement (current score  previous step score). Note to get a more strict BLEU score, we used
SacreBLEU (Post, 2018) to calculate the final BLEU score, and we didn’t split words composed by Latin letters
and numbers into characters, which differs from the official evaluation process. If the same splitting is applied,
and evaluated by multibleu (https://github.com/mosessmt/mosesdecoder/blob/master/scripts/generic/multibleu
detok.perl) which is officially designated, the score could be higher by 1.x points

Since MSA(x, y) ∈ [0,+∞), we can rescale
the score to (0, 1], by

adq(x, y) = exp(−MSA(x, y))

This method is noted as “adq” adapting the no
tation proposed in the original paper. We took a se
ries of experiments on the direction zh-ja, but the
results are not so good as we expected. Detailed in
formation is listed in table 2. We also added dataset
C mentioned in table 2 to the original dataset used
for training baseline model of the main task, but
still didn’t see too much improvement. Using the
configuration introduced in the main task section,
the model’s BLEU score is 34.7, only 0.1 points
higher than the baseline score listed in table 1.

4.2 Mining the Unaligned Dataset
Besides the officially released prefiltered dataset,
we also paid our attention on the very original,
huge but dirty dataset, tried some methods to clean
it. As previously said, both Chinese and Japanese
have its own closed characters set respectively, so
we first simply remove the lines that don’t con
tain any Chinese characters (for Chinese corpus),
or those don’t contain any katas or kanjis (for
Japanese lines). This simple step directly removed
about 400 million lines. We also applied the same
preprocessing described before, like language de
tection, deduplication, and the cleaning pipeline.
This preprocessing reserved 460 million lines.
For the remained data, as they are not aligned,

we cannot follow the filtering process shown in the
previous subsection. However, we assumed that

for a Chinese sentence, if we can find its Japanese
counterpart, the corresponding line can only exist
in the same document. As the dataset gives doc
ument boundary, we split the whole dataset into
millions of documents, and use hunalign (Varga
et al., 2007) to mine aligned pairs in each doc
ument (dictionaries are extracted from a cleaned
version of the combined dataset). Although still
hold the intradocument alignment assumption, we
kept reading documents, didn’t perform hunalign
until the accumulated lines reached 100k (but we
don’t break the document), for the possible cross
document alignment. We kept all lines which have
alignment scores higher than 0.8, and of which the
words count ratio between source and target falls
into [0.5, 2]. Then we removed all lines contains
url, replaced numbers and English words which
have more than 3 letters with tags, and dedupli
cated again, leaving only 5.5 million lines. We
trained a Transformer base model using marian on
the dataset which is utilized for training the base
line model in the main task experiments, apply
ing the same configuration given in the previous
subsection, and ranked the results using bleualign
(Sennrich and Volk, 2010) (Sennrich and Volk,
2011), finally kept 4 million lines. This dataset is
patched to the original dataset which is used the
main task, and a minor improvement (+0.6 BLEU)
can be seen. However, due to the time limit this
part of data were not further used in the wholemain
task experiments.
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Filtering method BLEU on dev set
Baseline 27.1
A. adq, 8M data with highest scores 27.2 (+0.1)
B. adq, 5M data with highest scores 26.2 (0.9)
C. Filter A by fast_align scores and Japanese language models 26.8 (0.3)

Table 2: zh-ja experiments using data filtered from the prefiltered “parallel” corpus. BLEU is calculated by
sacreBLEU in the same way depicted in the main task experiments section

4.3 Character Based Models and Some
Variations

From the perspective of writing system research,
Chinese characters system is a typical logogram,
means a single character can also carry meaning
ful semantical information, which differs to phono
logic writing systems widely used in the world.
Previous research (Li et al., 2019) argues that for
Chinese, characterbasedmodel even performs bet
ter than subwordbased models. Moreover, For the
Japanese language, its literacy “was introduced to
Japan in the form of the Chinese writing system,
by way of Baekje before the 5th century” 6, even
today Chinese characters (Hanzi, in simplified Chi
nese 汉字, in traditional Chinese 漢字) are still
important components of Japanese writing system
(in Japanese called kanji, written as 漢字), so in
tuitively characters between two languages could
have strong mapping relationship. (ngo, 2019)
also shows that for JapaneseVietnamese machine
translation system, characterbased model takes
advantages to the traditional methods. As both
Vietnamese and Japanese are impacted by Chi
nese language, it is reasonable to try character
based machine translation systems on Chinese ⇔
Japanese language pairs.
Inspired from the intuition and the previous re

lated works, we further split the subwords in the
final augmented dataset (presented in the main
task experiments) into characters in three different
ways, which are

• Split CJK characters (hanzi in Chinese and
kanji in Japanese) only, since we assume
that the characters are highly related between
these two sets

• Split CJK characters and katakana (in kanji
片仮名). In Japanese writing system, be
sides kanji, another component is called kana
(in kanji 仮名), which belongs to syllabic

6https://en.wikipedia.org/wiki/Japanese_language
#Writing_system

system (one character is corresponding to a
syllable). Kana further consists of a pair
of syllabaries: hiragana (in kanji 平仮名)
and katakana, the latter is generally used
to transliterate loanword (including foreign
names). Although a single katakana charac
ter doesn’t carry semantical information, only
imitates the pronunciation, the same situation
exists in Chinese, too — when transliterating
foreign names, a single Chinese character is
only used to show the pronunciation, loses
themeans it could have. Therefore, katakanas
can also be roughly mapped to Chinese char
acters.

• Split CJK characters and all kanas

For each direction, we trained four different
Transformer Big models using the splitting meth
ods described above (another one is subword
based model as baseline). In this series of exper
iments, we used FAIR’s fairseq, set clipnorm to 0,
max tokens to 12,200, updatefreq to 8, dropout to
0.1, warmupupdates to 15,000. Length penalties
are different among all models, we set the optimal
value according to the results reported on the vali
dation set. However, surprisingly, there is still no
improvement can be observed, and for zh-ja di
rection models generally perform worse (detailed
results are listed in table 3). It needs some extra
work to find out the reason, one possible explana
tion is the big amount of backtranslated synthesis
corpus, which was generated by model based on
subwords, changed the latent data distribution.

5 Final Results

From the evaluation results provided by the orga
nizer officially, Our BLEU score for jazh direc
tion is 32.9, for zhja is 30.1.
However, per our observation on the dev

dataset, we found most of the numbers and Latin
words are styled in full width characters, so we
made an extra step in postprocessing to convert all
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Splitting method zh-ja BLEU ja-zh BLEU
zhja Baseline 39.0 35.1
Split cjk chars only 37.9 (1.1) 35.4 (+0.3)
+ katakanas 37.9 (1.1) 34.9 (0.2)
+ hiraganas 38.2 (0.8) 35.3 (+0.2)

Table 3: Experiments using characterbased models. BLEU is calculated by sacreBLEU in the same way depicted
in the main task experiments section. The “baseline” model here is trained on the 21M data after three rounds back
translation, compared to zh-ja 39.2/ja-zh 36.0 step in the main task experiments section, not to be confused with
the baseline demonstrated in the previous section

jazh BLEU zhja BLEU
55.8 43.0
34.0 34.8∗
32.9 34.3
32.5 33.0
32.3 31.7
30.9 31.2
29.4 30.1
26.9 29.9
26.2 28.4
25.3 26.3
22.6 25.9
11.6 7.1
1.8
0.1

Table 4: Leaderboard released officially
just after the submission. Scores shown in
the table are characterlevel BLEU calcu
lated by multibleu (https://github.com/moses
smt/mosesdecoder/blob/master/scripts/generic/multi
bleudetok.perl). Our results are styled in bold and the
contrastive one is marked with an additional asterisk
symbol ∗. At the date of submitting the cameraready
version report, the leaderboard hasn’t marked which
system(s) is/are unconstrained

the numbers and Latin words in our final submis
sion of zhja to full width characters. For exam
ple, “2008” was converted to “２００８”7. Our
contrastive result, in which all the numbers and
Latin words are composed by half width characters
(and this is the only difference compared with the
primary submission we made), was scored 34.8,
gained an improvement of nearly 5 points. The
contrastive result is generated by the same model
we trained on the constrained dataset. All the re
sults reported above is shown in table 4

7Whether a letter or a digit is styled in half width or full
width doesn’t change its meaning

6 Conclusion and Future Works
In this report, we demonstrate our work for the
ChineseJapanese and JapaneseChinese open do
main translation task. The system we submitted
is a neural MT model based on Transformer ar
chitecture. During the experiments, many tech
niques, such as backtranslation, ensemble, rerank
ing are applied and are proved to be effective for
theMT system. Parallel data extraction, noisy data
filtering methods and characterbased models are
also experienced and discussed, although currently
they are not integrated into our systems, there will
be still a lot work on them to find out proper ways
to optimize the procedure and models, or to prove
their limitations.
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Abstract

This paper describes the University of Ed-
inburgh’s neural machine translation systems
submitted to the IWSLT 2020 open domain
Japanese↔Chinese translation task. On top of
commonplace techniques like tokenisation and
corpus cleaning, we explore character map-
ping and unsupervised decoding-time adapta-
tion. Our techniques focus on leveraging the
provided data, and we show the positive im-
pact of each technique through the gradual im-
provement of BLEU.

1 Introduction

The University of Edinburgh presents its neural ma-
chine translation (NMT) systems for the IWSLT
2020 open domain translation task (Ansari et al.,
2020). The task requires participants to submit
systems to translate between Japanese (Ja) and Chi-
nese (Zh), where the sentences come from mixed
domains. For training purpose, 1.96 million ex-
isting sentence pairs and 59.49 million crawled
sentence pairs1 are provided, making the task a
high-resource one. In our experiments, we focused
on three aspects:

1. Corpus cleaning which consists of hand-
crafted rules and cross-entropy based meth-
ods.

2. Japanese and Chinese character mapping to
maximise vocabulary overlap and make em-
bedding tying more intuitive.

3. Unsupervised ad-hoc adaptation during de-
coding time to translate a multi-domain test
set, experimented at the sentence, cluster (sub-
document) and document levels.

1We mistakenly used an outdated dataset which is larger
but noisier. The dataset was extracted from crawled texts
with encoding issues and inconsistent handling of Japanese
characters “プ” and “で”.

Our techniques are mostly data-centric and each
technique improves translation in terms of BLEU
on our development set. In the final automatic
evaluation based on 4-gram character BLEU, our
systems rank 6th out of 14 for Ja→Zh and 7th out
of 11 for Zh→Ja.

2 Baseline with Rule-Based Cleaning

2.1 Preprocessing

We first tokenise our data at word-level, which is
commonly done for the Japanese and Chinese (Bar-
rault et al., 2019; Nakazawa et al., 2019). While
it is unclear whether word-level or character-level
models are superior (Bawden et al., 2019), word-
level segmentation could resolve ambiguity and
dramatically reduce sequence length. The tools we
use are KyTea (Neubig et al., 2011) for Japanese
and Jieba fast2 for Chinese.

2.2 Rule-based cleaning

We then apply a series of rule-based cleaning oper-
ations on both existing and crawled data to create
baseline models. These steps are mostly inspired
by submissions to the corpus filtering task at WMT
2018 (Koehn et al., 2018). The task shows that
effective corpus filtering brings substantial gain in
translation performance.

Language identification: One way of parallel
corpus filtering is to restrict source sentences to
be in the source language, and target sentences to
be in the target language. However, distinguishing
between Japanese and Chinese, particularly short
sentences, is tricky because both share a set of com-
mon characters. Hence, we decide to relax this rule
by keeping all sentences (pairs) which are identified
as either Chinese or Japanese using langid.py
(Lui and Baldwin, 2012). This inevitably leaves

2https://github.com/deepcs233/jieba fast, a faster imple-
mentation of Jieba
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some Chinese on the Japanese side and vice versa.
It might have a beneficial copying effect (Currey
et al., 2017), especially given the vocabulary over-
lap between the two languages.

Length ratio: We use the provided high-quality
existing data to estimate the average Japanese and
Chinese sentence lengths at character-level. We
find the length ratio of Japanese to Chinese is about
1.4 to 1. We remove sentence pairs which have a
length ratio outside the 3 standard deviations from
this mean. This a lenient choice in order to keep
short translations. This is applied to both existing
and crawled data.

Sentence length: We remove sentence pairs
with more than 70 tokens on the Chinese side or
more than 100 tokens on the Japanese side, for both
existing and crawled data.

Chinese simplification: The Chinese datasets
contain both traditional and simplified characters,
so we use hanziconv3 to simplify them. This
rule-based converter has a minor flaw that it some-
times confuses on characters that are in both tradi-
tional and simplified Chinese. An example is “著”,
the traditional form of “着”, but also a simplified
character on its own with a different meaning.

2.3 Model training

For the baseline model, we try out three combina-
tions of data, namely existing only, crawled only
and both. For Ja→Zh and Zh→Ja, this results
in six models. As a comparison, we also train
vanilla models without previously described clean-
ing steps.

All models are Transformer-Base with de-
fault configurations (Vaswani et al., 2017). We
use Marian (Junczys-Dowmunt et al., 2018) to
train our systems, with SentencePiece (Kudo and
Richardson, 2018) applied on tokenised data. As
stated previously, Chinese and Japanese share some
characters, so it is intuitive to use a shared vocabu-
lary between source and target, and to enable three-
way weight-tying between source, target and output
embeddings (Press and Wolf, 2017).

We report character-level BLEU on development
set, using the evaluation script provided.4 The base-
line results are shown in Table 2 as “(1) vanilla”
and “(2) rule-based cleaning”. We see a significant
improvement in BLEU after applying rule-based

3https://github.com/berniey/hanziconv
4https://github.com/didi/iwslt2020 open domain

translation/tree/master/eval

cleaning. BLEU scores reported for the develop-
ment set are based on tokenised output, but we
perform de-tokenisation and normalisation of full-
width numbers and punctuation symbols for our
final submission to make the texts natural Chinese
or Japanese.

3 Chinese and Japanese Mapping

In ancient times, Japanese borrowed (at that time,
traditional) Chinese characters (Hanzi) to use as
a written form (Kanji). After a long time of co-
and separate evolution (e.g. Chinese simplifica-
tion), the relationship between Hanzi and Kanji
is complicated. Some Hanzi and Kanji stay un-
changed, some develop different meanings, and
some develop different written forms. A detailed
description is given by Chu et al. (2012). More
importantly, they released a Kanji to traditional and
simplified Hanzi mapping table. With each Kanji
being a key, there can be zero, one or many corre-
sponding traditional and simplified Hanzi. In total,
there are mapping entries for around 5700 Kanji to
simplified Hanzi. Chu et al. (2013) use this charac-
ter mapping to enhance word segmentation in sta-
tistical machine translation (SMT). Recently, Song
et al. (2020) map characters in a Chinese corpus
to Japanese, making it a pseudo-Japanese corpus
for the purpose of pre-training Japanese↔English
NMT.

In our work, we take a step forward to
map Chinese and Japanese to each other for
Chinese↔Japanese NMT directly. Without map-
ping as a data processing step, an NMT system
needs to learn the mapping between Kanji and
Hanzi implicitly. Therefore we hypothesise that
mapping them before training a model will:

1. maximise character overlap percentage, re-
duce vocabulary size and make embedding-
tying more effective, and

2. reduce the computation needed to learn to
model the mapping.

Since we already simplified all Chinese characters,
hereafter we refer to simplified Chinese as Hanzi.
Mapping from Kanji to Hanzi is straightforward
from the character mapping table. Next, according
to the mapping table, we re-construct a mapping
table indexed by Hanzi, but a minor difference is
that each Hanzi will have at least one correspond-
ing Kanji. It is not possible to get perfect one-to-
one mappings due to the existing many-to-many
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Chinese→Japanese Japanese→Chinese
Zh Ja Total Overlap Zh Ja Total Overlap

no mapping 21168 24387 15283 18502 24387 15283
conservative 20958 18502 24117 15343 21168 16659 22891 14936
aggressive 20560 24086 14976 16341 22759 14750

Table 1: Character statistics of Chinese (Zh) and Japanese (Ja)

relationship between Hanzi and Kanji. In order
to simplify post-processing. we only map source
characters to target, so the target outputs are always
in the genuine target language. Hence we map Chi-
nese to Japanese or Japanese to Chinese depending
on the translation direction. We design two simple
mapping scheme variants:

1. Conservative mapping: apply one-to-one
mapping and ignore all one-to-many cases.
All target characters must be constrained to
target corpus, in order not to introduce new
characters.

2. Aggressive mapping: apply one-to-one map-
ping, and for the one-to-many mapping cases,
pick the character that has the highest fre-
quency in the target corpus. The target con-
straint applies too.

Table 1 shows the counts of characters before
and after mapping in each language as well
as the total counts, for Chinese→Japanese and
Japanese→Chinese respectively, on all available
data. We only map characters on the respective
source side and leave the target side of the training
data as it is.

We then train models on the mapped data for
both directions, with results displayed in Table 2 as
“(3) mapping”. We observe that aggressive mapping
is marginally better than conservative on Ja→Zh
and much better on Zh→Ja. Thus, we pick aggres-
sive mapping for our following experiments.

4 Filtering Based on Cross-Entropy

Our initial rule-based cleaning shows its effective-
ness through improvement in BLEU scores. We
further adopt two filtering steps based on cross-
entropy proposed by Junczys-Dowmunt (2018):

4.1 Dual conditional cross-entropy
Dual conditional cross-entropy score is obtained
from the absolute difference between cross-
entropies of two translation models in inverse di-
rections, weighted by the sum of cross-entropies

of the two models. The score of a sentence pair
(x, y) is calculated according to Equation 1, where
Ha→b(b|a) is the cross-entropy from a translation
model that translates a to b. A lower score implies
a better sentence pair.

adequacy =
∣∣∣Hx→y(y|x)−Hy→x(x|y)

∣∣∣

+
1

2
(Hx→y(y|x) +Hy→x(x|y))

(1)

This step finds sentence pairs that are adequate,
and more importantly, equally adequate in both
directions. It effectively filters out non-parallel sen-
tences, or even machine translations which have
been optimised for just a single direction. We want
to score sentence pairs with the best translation
model we have, so we use the aggressive map-
ping models built in the previous section to score
mapped corpus for both directions.

4.2 Language model cross-entropy difference

The previous step ensures the adequacy of sentence
pairs, but it does not pick out unnatural sentences.
For example, a concatenation of texts from a web-
site’s navigation bar, together with its translation,
get a good score by fulfilling adequacy. To alleviate
this issue, we apply cross-entropy difference scor-
ing. The score for a single sentence a is calculated
according to Equation 2, where Hdesired(a) is the
cross-entropy from a language model trained on
desired data (clean, in-domain) and Hundesired(a)
is the cross-entropy from a language model trained
on undesired data (noisy, out-of-domain). It has an
interpretation that, a high-quality sentence should
be similar to the desired data but different from the
undesired data. We used KenLM (Heafield et al.,
2013) to build 4-gram language models on the ex-
isting and the crawled data respectively.

Hdesired(x)−Hundesired(x) (2)

Since our data serve both translation directions,
we score both sides of a sentence pair and take the

124



Category Data Transformer BLEU
size Ja→Zh Zh→Ja

(1) vanilla existing base 21.88 27.11

(2) rule-based
existing

base
26.57 26.59

cleaning
crawled 25.15 27.25

all 28.26 27.70
√

(3) mapping
conservative

base
29.09 24.37

aggressive 29.41 27.78
√

(4) cross-entropy
best 50M

base
29.66 28.84

filtering
best 35M 30.45 28.92
best 20M 30.58 29.67

√

(5) deeper models

best 20M

big

30.91 30.13
best 10M 30.65 30.42

√
(a)

best 10M 30.68 30.40 (b)
best 5M 30.35 29.94 (c)
best 5M 29.71 30.08 (d)

ensemble of (c) and (d) 30.63 30.55
(6) ensembles ensemble of (a) and (b) 31.55 30.86

ensemble of (a), (b), (c) and (d) 31.61 30.90

Table 2: Our models’ 4-gram character-level BLEU on development set.
A
√

symbol denotes the best configuration in each category.

sum to get an overall fluency score:

fluency =Hexisting ja(ja)−Hcrawled ja(ja)

+Hexisting zh(zh)−Hcrawled zh(zh)
(3)

4.3 Ranking and cut-off
To combine both filtering methods, Junczys-
Dowmunt (2018) negates the scores and exponen-
tiate them. Furthermore, extreme cross-entropy
difference scores are capped or cut to 0. Finally, a
product of the two determines the quality of sen-
tence pairs. After applying this procedure, we ob-
serve that the top-ranking sentences are dominated
by the ones with perfect adequacy but not fluency
(e.g. a translation of navigation bar). Thus we
keep multiplication but omit capping and cutting
to weight fluency more. Equation 4 shows how the
final score of a sentence pair is calculated.

score = exp(−adequacy)× exp(−fluency) (4)

After we rank all sentences pairs by their scores,
we empirically determine the data cut-off point.
We test with top 50, 35 and 20 million sentence
pairs with Transformer-Base architecture for both
translation directions. We report BLEU scores in
category “(4) cross-entropy filtering” in Table 2,

where we observe that translation performance im-
proves as the size of training data drops. Thus we
further experiment with 20, 10 and 5 million data
on Transformer-Big. Results are displayed in the
same table under category “(5) deeper models”. In
addition, we run ensemble decoding, combining
the models trained on 10 million and 5 million
sentences, and report results in the same table in
category “(6) ensembles”.

5 Ad-hoc Domain Adaptation

NMT is sensitive to domain mismatch (Koehn
and Knowles, 2017), and there are numerous tech-
niques for domain adaptation for NMT (Chu and
Wang, 2018). Some model and training techniques
require prior knowledge of the domain and can-
not be easily applied. Nonetheless, one method
that can be adopted during test sentence translation
is retrieving samples that are similar to the input
from the available training data, and fine-tuning
a trained generic model on these samples. Such
ad-hoc domain adaptation can be done at sentence
level (Farajian et al., 2017; Li et al., 2018) or docu-
ment level (Poncelas et al., 2018).

5.1 Similar sentence retrieval

A crucial factor for domain adaptation to work is
to accurately retrieval representative sentences of
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test sentences. Farajian et al. (2017) store train-
ing data in the Lucene search engine and take
the top-scoring outcomes ranked by sentence-level
BLEU. Li et al. (2018) use word-based reverse
indexing and explore three similarity measures:
Levenshtein Distance, cosine similarity between
average word embeddings, and cosine similarity be-
tween sentence embeddings from NMT. Addition-
ally, they suggest an alternative approach, phrase
coverage, inspired by phrase-based SMT, when no
high-scoring match is found.

Sentence-level adaptation is computationally ex-
pensive because, for each sentence, a separate
model needs to be fine-tuned. In contrast, Poncelas
et al. (2018) synthesise data similar to the whole
test set. They leverage a feature decay algorithm
to select monolingual data in the target language
that are similar to test sentences translated by a
generic source-to-target model. Then, the selected
sentences are back-translated to source language
(Sennrich et al., 2016), forming synthetic parallel
sentences for fine-tuning.

In our work, we adopt a pure phrase-coverage
approach, which is compatible for both sentence
and document level retrieval. As originally sug-
gested for phrase-pair extraction in phrase-based
SMT by Callison-Burch et al. (2005) and Zhang
and Vogel (2005), we index the source side of the
training data via a suffix array (Manber and My-
ers, 1990) for very fast identification of sentence
pairs that contain a given phrase. Then we simply
use the test data as a query to retrieval sentences
based on n-gram overlapping. Figure 1 shows how
efficiently our sentence retrieval method scales up.
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Figure 1: Average time to query one sentence against
number of sentences in the query.

We set a threshold T , such that n-grams which

occur more than T times in training data are dis-
regarded, under the assumption that the generic
model will already have learned to translate such
phrases adequately. This is similar to Li et al.
(2018)’s approach, but we try different T values.
For other n-grams, we always include all matching
sentences in the fine-tuning data.

5.2 Fine-tuning experiments

Due to time constraint, we only experiment our
on-the-fly fine-tuning on Ja→Zh. We pick the
generic baseline model to be the best-performing
one trained on 10 million data. We test three differ-
ent ways of doing the adaptation. First is the single-
sentence adaptation, where the generic model is
fine-tuned on selected training sentences for each
sentence in development (dev) set. However, care-
ful choice of hyperparameters is necessary to pre-
vent overfitting because only a small number of
sentences are retrieved. Next thing we try is to use
1 dev sentence and other 9 closet dev sentences
together as a query. To form such a cluster of 10
dev sentences, we convert all dev sentences into
n-gram TF-IDF vectors and score cosine similarity
in a pairwise manner. This allows us to find the
most similar sentences to any given one. For the
above two choices, we set the threshold T to be 20,
and fine-tune for 1 and 10 epochs separately. The
results are reported in Table 3.

We observe that BLEU drops even we only fine-
tune for a single epoch. Our intermediate con-
clusion is that there is overfitting or misfitting to
out-of-domain sentences that have been incorrectly
retrieved. Furthermore, sentence-level adaptation
is fairly expensive, which prevents us from per-
forming a grid search to find the most suitable con-
figurations. Hence, we move on to document-level
adaptation by using the whole dev set as a query to
find similar sentences. As a comparison, we also
use the whole test set, and a combination of dev and
test as queries. This results in hundreds of thou-
sands of sentences being retrieved, compared to
hundreds to thousands for sentence-level retrieval.
To prevent overfitting, we also raise threshold T to
120 and validate on dev set frequently instead of
specifying an epoch budget.

As Table 3 shows, using a query of both dev and
test data leads to the biggest improvement of 0.55.
Surprisingly, using the whole test set as a query to
retrieve sentence for dev set fine-tuning only leads
to a small drop of 0.19 BLEU. This shows that our
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Query T Epoch BLEU
generic baseline 30.65

1 sentence
20 1 26.60
20 10 26.25

a cluster of
10 sentences

20 1 25.81
20 10 27.24

dev set 120
N/A

31.09
test set 120 30.46

dev and test sets 120 31.20

ensemble
4 FT 32.12

4 FT & 4 non-FT 32.06

Table 3: Character-level BLEU of ad-hoc fine-tuning
experiments on Ja→Zh, at sentence, cluster and docu-
ment levels. FT denotes fine-tuned models.

document adaptation is conservative, thanks to a
large number of retrieved sentences. The considera-
tions underlying adaptation over the entire dev and
test sets (irrespective of the domain of individual
sentences) are as follows: very frequent phrases in-
cluding words, are the features of a language rather
than a domain. For phrases that are frequent in
some domains but not others, the generic model
will probably have learned to translate them ap-
propriately. What we are concerned about are the
phrases seen rarely during generic model training,
because of the bias in training data, or coming from
niche domains. Sentences that share such phrases,
we conjecture, are likely from the same or related
domains anyway, so fine-tuning on them all is effec-
tive. For sentences with no overlap in such words
and phrases, we are probably fine-tuning different
areas in the overall parameter space, which can be
harmless to each other.

6 Results and Conclusion

In our work, we explore a series of techniques
which lead to improvements on Ja↔Zh NMT.
Rule-based filtering brings a marginal increment in
BLEU for Zh→Ja but a significant one for Ja→Zh.
Character mapping, which increases source and tar-
get vocabulary overlap, has a tiny effect on Zh→Ja,
but makes 1 BLEU improvement for Ja→Zh. Next,
cross-entropy filtering adds 2.5 BLEU for Zh→Ja
and 2 BLEU for Ja→Zh. Ad-hoc fine-tuning, aim-
ing at enhancing open domain translation, delivers
another 0.55 BLEU. Finally, an ensemble of 4 fine-
tuned models boosts up 1 BLEU. Overall, our work
has improved 10 and more than 3 BLEU for Ja→Zh
and Zh→Ja respectively.

Character mapping between Japanese and Chi-
nese may inspire two directions of research: apply-
ing character mapping on other tasks, and trying
character mapping for other language pairs.

Due to time constraint, we could not perform
exhaustive experiments to find the best configura-
tion for sentence-level and cluster-level adaptation,
which can be further investigated. We also propose
to study further on cluster (sub-document) adap-
tation, where a system can group test sentences,
and fine-tune before translating them. This can
make adaptation more fine-grained compared to
document adaptation, without the huge risk of over-
fitting at sentence-level.
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Abstract
This paper describes the CASIA’s system
for the IWSLT 2020 open domain transla-
tion task. This year we participate in both
Chinese→Japanese and Japanese→Chinese
translation tasks. Our system is neural ma-
chine translation system based on Transformer
model. We augment the training data with
knowledge distillation and back translation to
improve the translation performance. Domain
data classification and weighted domain model
ensemble are introduced to generate the final
translation result. We compare and analyze the
performance on development data with differ-
ent model settings and different data process-
ing techniques.

1 Introduction

Neural machine translation(NMT) has been in-
troduced and made great success during the past
few years (Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015; Wu et al., 2016; Gehring
et al., 2017; Zhou et al., 2017; Vaswani et al.,
2017). Among those different neural network ar-
chitectures, the Transformer, which is based on
self-attention mechanism, has further improved the
translation quality due to the ability of feature ex-
traction and word sense disambiguation (Tang et al.,
2018a,b). In this paper, we describe our Trans-
former based neural machine translation system
submitted to the IWSLT 2020 Chinese→Japanese
and Japanese→Chinese open domain translation
task (Ansari et al., 2020).

Our system is built upon Transformer neural ma-
chine translation architecture. We also adopt Rel-
ative Position (Shaw et al., 2018) and Dynamic
Convolutions (Wu et al., 2019) to investigate the
performances of advanced model variations. For
the implementation, we extend the latest release of
Fairseq1 (Ott et al., 2019).

1https://github.com/pytorch/fairseq

For data pre-processing, we use byte-pair encod-
ing(BPE) segmentation (Sennrich et al., 2016b) for
the source side and character level segmentation for
the target side to improve the model performance
on rare words. We also investigate the influence
of different segmentation methods including word,
BPE and character segmentation for both sides.

To further improve the translation quality, we
utilize data augmentation techniques of back-
translation with a sub-selected monolingual corpus
to build additional pseudo parallel training data.
Sentence level knowledge distillation is used to
strengthen the performance of student model from
multi-policy teacher models including left→right,
right→left, source→target and target→source.

We also investigate the domain information of
the large training data by using a Bert based do-
main classifier, which is a masked language model
and has been shown effective in large scale text
classification tasks (Devlin et al., 2019). With the
in-domain data, we transfer the model of general
domain to each specific domain, and use weighted
domain model ensemble as decoding strategy.

2 System Description

Figure 1 depicts the whole process of our submis-
sion system, in which we pre-process the provided
data and train our advanced Transformer models on
the bilingual data together with synthetic corpora
from back-translation and knowledge distillation.
With domain classification and fine tuning tech-
niques, we obtain multiple models for ensemble
strategy and post-processing. In this section, we
will introduce each process step in detail.

2.1 NMT Baseline

In this work, we build our model based on the
powerful Transformer (Vaswani et al., 2017). The
Transformer is a sequence-to-sequence neural
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model that consists of two components: the en-
coder and the decoder, as shown in Figure 2. The
encoder network transforms an input sequence of
symbols into a sequence of continues representa-
tions. The decoder, on the other hand, produces
the target word sequence by predicting the words
using a combination of the previously predicted
word and relevant parts of the input sequence rep-
resentations. Particularly, relying entirely on the
multi-head attention mechanism, the Transformer
with beam search algorithm achieves the state-of-
the-art results for machine translation.

Multi-Head Attention We use the multi-head
attention with h heads, which allow the model to
jointly attend to information from different rep-
resentation subspaces at different positions. For-
mally, multi-head attention first obtains h different
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Figure 3: (left) Scaled Dot-Product Attention. (right)
Multi-Head Attention.

representations of (Qi,Ki, Vi). Specifically, for
each attention head i, we project the hidden state
matrix into distinct query, key and value represen-
tations Qi=QWQ

i , Ki=KWK
i , Vi=VW V

i respec-
tively. Then we perform scaled dot-product at-
tention for each representation, concatenate the
results, and project the concatenation with a feed-
forward layer.

MultiHead(Q,K, V ) = Concati(headi)WO

headi = Attention(QWQ
i ,KWK

i , V W V
i )

(1)
where WQ

i , WK
i , W V

i and WO are parameter ma-
trices .

Scaled Dot-Product Attention An attention
function can be described as a mapping from a
query and a set of key-value pairs to an output.
Specifically, we can multiply query Qi by key Ki

to obtain an attention weight matrix, which is then
multiplied by value Vi for each token to obtain the
self-attention token representation. As shown in
Figure 3, we compute the matrix of outputs as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2)

where dk is the dimension of the key. For the sake
of brevity, we refer the reader to Vaswani et al.
(2017) for more details.
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2.2 Back-Translation

Back-translation is an effective and commonly used
data augmentation technique to incorporate mono-
lingual data into a translation system (Sennrich
et al., 2016a; Zhang and Zong, 2016). Especially
for low-resource language tasks, it is indispensable
to augment the training data by mixing the pseudo
corpus with the parallel part. Back-translation first
trains an intermediate target-to-source system that
is used to translate monolingual target data into
additional synthetic parallel data. This data is used
in conjunction with human translated bitext data to
train the desired source-to-target system.

How to select the appropriate sentences from
the abundant monolingual data is a crucial issue
due to the limitation of equipment and huge over-
head time. We trained a n-gram based language
model on the target side of bilingual data to score
the monolingual sentences for each translation di-
rection.

Recent work (Edunov et al., 2018) has shown
that different methods of generating pseudo corpus
made discrepant influence on translation perfor-
mance. Edunov et al. (2018) indicated that sam-
pling or noisy synthetic data gives a much stronger
training signal than data generated by beam search
or greedy search. We adopt the back-translation
script from fairseq2 and generate back-translated
data with sampling for both translation directions.

2.3 Knowledge Distillation

The goal of knowledge distillation is to deliver
a student model that matches the accuracy of a
teacher model (Kim and Rush, 2016). Prior work
(Yang et al., 2018) demonstrates that student model
can surpass the accuracy of the teacher model. In
our experiments, we adopt sequence-level knowl-
edge distillation method and investigate four differ-
ent teacher models to boost the translation quality
of student model.

S2T+L2R Teacher Model: We translate the
source sentences of the parallel data into target
language using our source-to-target (briefly, S2T)
system described in Section 2.1 with left-to-right
(briefly, L2R) manner.

S2T+R2L Teacher Model: We translate the
source sentences of the parallel data into target
language using our S2T system with right-to-left
(briefly, R2L) manner.

2https://github.com/pytorch/fairseq/
tree/master/examples/backtranslation

T2S+L2R Teacher Model: We translate the tar-
get sentences of the parallel data into source lan-
guage using our target-to-source (briefly, T2S) sys-
tem with L2R manner.

T2S+R2L Teacher Model: We translate the tar-
get sentences of the parallel data into source lan-
guage using our T2S system with R2L manner.

In the final stage, we use the combination of the
translated pseudo corpus to improve the student
model. It is worth noting that we also mix the orig-
inal bilingual sentences into these pseudo training
corpus.

2.4 Model Ensemble and Reranking

Model ensemble is a method to integrate the proba-
bility distributions of multiple models before pre-
dicting next target word (Liu et al., 2018). We
average the last 20 checkpoints for single model
to avoid overfitting. One checkpoint is saved per
1000 steps. For model ensemble, we train six sep-
arate models. To achieve this, we fine-tune our
student model described in Section 2.3 and back
translation model described in Section 2.2 using
corpus from three different domains (Spoken do-
main, Wiki domain and News domain). We use
weighted ensemble to generate the translation re-
sult, in which the weights for each domain model is
calculated from a Bert based domain classifier. The
domain specific data for training the domain clas-
sifier and fine tuning the student translation model
will be described in detail in Section 3.4.

For reranking, we rescore 50-best lists output
from the ensemble model using a rescoring model,
which includes the models we trained with different
model sizes, different corpus portions and different
token granularities.

3 Data Preparation

This section introduces the methods we em-
ploy to prepare the provided parallel data
(18.9M web crawled corpus and 1.9M exist-
ing parallel sources) and monolingual sentences
(unaligned web crawled data). We also describe
how to prepare domain specific data to facilitate
translation.

The provided parallel corpus existing parallel
for the two translation directions consists of around
1.9M sentence pairs with around 33.5M characters
(Chinese side) in total. Furthermore, a large, noisy
set of Japanese-Chinese segment pairs built from
web data web crawled is also provided, which con-

132



sists of around 18.9M sentence pairs with around
493.9M characters (Chinese side) in total. We use
the provided development dataset as the validation
set during training, which consists of 5,304 sen-
tence pairs. The average length and length ratio
of the provided parallel corpus and development
dataset is shown as in Table 1.

3.1 Pre-processing and Post-processing

In the open domain translation task both on
Chinese→Japanese and Japanese→Chinese trans-
lation directions, we first implement pre-processing
on training corpus and then filter it.

Before pre-processing, We remove illegal sen-
tences in the provided Japanese-Chinese parallel
corpus which include duplicate sentences and sen-
tences in different languages other than source or
target (filtered by our language detector tools).

Pre-processing steps include escape character
transformation, text normalization, language fil-
tering and word segmentation. There are lots
of escape characters in the existing parallel and
web crawled which do not occur in development
set. As a result, we transform all these escape
characters into corresponding marks with a well
designed rule-based method to make it consistent
between the training and evaluation.

Text normalization step mainly focuses on nor-
malization of numbers and punctuation. Based
on analysis on development set, we found that in
Chinese, most of the punctuation are double byte
characters (DBC), while most of the numbers are
single byte characters (SBC). However, most of
the numbers and punctuation in Japanese are dou-
ble byte characters (DBC). Hence we normalize
the numbers and punctuation format to make it the
same as development set.

In word segmentation step, we apply Jieba3 as
our Chinese word segmentation tool for segmenting
Chinese parallel data and monolingual data. For
Japanese text, word segmentation is used Mecab
(Toshinori Sato and Okumura, 2017). After pre-
processing, we filter the training corpus as men-
tioned in section 3.2.

Finally, we apply Byte Pair Encoding (BPE)
(Sennrich et al., 2016b) on both Chinese and
Japanese text. Separate BPE models are trained for
Chinese and Japanese respectively. Based on the
comparison of BPE operations from 30k, 35k, 40k,
45k, 50k, we determine to use 40k BPE operations

3https://github.com/fxsjy/jieba

Length Statistic
Train Dev

Ja Zh Ja Zh
avg. length 17.56 14.52 10.12 7.82
avg. ratio 1.35 1.34

Table 1: The average length and length ratio (Ja/Zh) of
the provided parallel corpus and development dataset.

Filtering Methods # of sentences
original 20,929,833

remove illegal 18,073,574
filter by length and ratio 15,708,757

filter by alignment 15,679,247

Table 2: The number of the remaining sentence pairs
after each filtering operation.

in source language since it has the best performance
on preliminary machine translation experiments.
For target side, we determine to use character gran-
ular because character level decoder could perform
better in our preliminary experiments.

Post-processing steps are similar to pre-
processing without filtering. We apply escape char-
acter transformation, text normalization and un-
known words (UNK) processing steps on machine
translation results. The same methods are used to
implement escape character transformation and text
normalization as pre-processing. For UNK process-
ing, we find some of the numbers can not be well
translated by model and we replace these UNKs
with the numbers in source sentence. Otherwise,
we remove the UNK symbols.

3.2 Parallel Data Filtering
The following methods are applied to further filter
the parallel sentence pairs.

We remove sentences longer than 50 and se-
lect the parallel sentences where the length ratio
(Ja/Zh) is between 0.53 and 2.90. We then calcu-
late word alignment of each sentence pair by using
fast align4(Dyer et al., 2013). The percentage of
aligned words and alignment perplexities are used
as the metric where the thresholds are set as 0.4
and −30 respectively. Through the above filtering
procedure, the number of the remaining data is re-
duced from 20.9M to 15.7M, as shown in Table 2.

3.3 Monolingual Data Filtering
It is proven that back-translation is a simple but ef-
fective approach to enhance the translation quality

4https://github.com/clab/fast_align
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Figure 4: The domain data processing steps, including the NMT model trained on general domain data, the NMT
models fine tuned on specific domain, the domain classification and weighted ensemble in the decoding stage.

Filtering Methods Ja Zh
original 941,297,925 928,670,666

remove illegal 10,078,827 32,644,917
filter by length 8,175,157 30,415,964
filter by LM 6,128,443 16,374,195

Table 3: The number of the remaining monolingual sen-
tences for Japanese and Chinese after each filtering op-
eration.

as described in Section 2.2. To achieve that, we ex-
tract the high-quality monolingual sentences from
the provided unaligned web crawled data. After re-
moving illegal sentences from web crawled corpus,
we limit the maximum sentence length as 50 and
remove dirty data by a language model. Specially,
we use KenLM5 toolkit to train two language mod-
els with Japanese and Chinese monolingual data
extracted from the provided parallel corpus exist-
ing parallel. We then rank the sentences based
on the perplexities calculated by the trained lan-
guage models and filter by perplexity threshold of
4 for Chinese and 3 for Japanese. Note that the
perplexities are normalized by sentence lengths.
obtain 6.1M and 16.4M monolingual sentences for
Japanese and Chinese separately. The filtering re-
sults are presented in Table 3.

The obtained monolingual sentences are fed to
the trained model to generate pseudo parallel sen-
tence pairs, which are employed to boost the per-
formance of the model.

3.4 Domain Data Processing
Although the amount of provided training data is
large enough, it is a noise set of web data built
from multiple domain sources. Koehn and Knowles
(2017) have demonstrated that the NMT model per-
forms poorly when the test domain does not match

5https://github.com/kpu/kenlm

Domain Existing Web
Wiki 558,531 4,006,232

Spoken 1,290,796 9,534,754
News 21,661 2,444,884

Table 4: Statistics of domain data. Existing indicates
existing parallel which is used to train the domain clas-
sifier, while Web means web crawled parallel in which
the domain labels are predicted by the classifier.

the training data. Only the same or similar corpora
are typically able to improve translation perfor-
mance. Therefore, we apply domain adaptation
methods in this task.

Adaptation methods for neural machine transla-
tion have attracted much attention in the research
community (Britz et al., 2017; Wang et al., 2017;
Chu and Wang, 2018; Zhang and Xiong, 2018;
Wang et al., 2020). They can be roughly classi-
fied into two categories, namely data selection and
model adaptation. The former focuses on selecting
the similar training data from out-of-domain paral-
lel corpora, while the latter focuses on the internal
model to improve model performance. Following
these two categories, our domain data processing
takes the following steps, as shown in Figure 4.

Domain Label In this task, there are two kinds
of domain labels provided: domains in exist-
ing parallel and domains in web crawled parallel.
Since the later is mainly source document index
for each sentence pair, the former is more mean-
ingful for domain classification. We categorize the
domain label of existing parallel data into three
commonly used classes, namely Wiki, Spoken, and
News. The domain Wiki includes wiki facebook,
wiki zh ja tallip2015 and wiktionary. The label
Spoken includes ted and opensubtitles. The label
News includes global-voices, newscommentary and
tatoeba.
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Domain classification Data selection can be
conduct in supervised or unsupervised manners
(Dou et al., 2019). Since there is a provided data
source descriptive file in the existing parallel data
which can be regarded as domain labels, we choose
the supervised way here. We use two BERT models
pretrained on Chinese6 and Japanese7 data, respec-
tively. Then the BERT models are fine tuned as
a text classification task, based on the source and
target side of existing parallel with three domain
label we defined. Since the domain data is un-
even, we also adopt oversampling and use extra
data to enlarge News domain For the remaining
data in web crawled parallel, we use the classifica-
tion model to classify the total data into the three
different domains. The statistics of domain data we
used is shown in Table 4.

Decoding Stage Considering the test set is also
composed of a mixed-genre data, we first classify
the domain of each sentence in the test set and ob-
tain the probabilities corresponding to each domain.
Then we apply a weighted ensemble method to inte-
grate NMT models. Specifically, when computing
the output probability of the next word, we multi-
ply the output probability in each domain specific
translation model with the corresponding domain
probability of each sentence.

3.5 Other Data Resource

The task description says that the test data is a
mixture of genres but the provided development
set is mainly from spoken domain. Furthermore,
we find that the domain distribution of the training
data is severely unbalanced (as shown in Table
4). Especially, the data of News domain is quite
limited. Due to above two reasons, we decided to
crawl some data from other domains.

It is easy to find that hujiangjp 8 which is a web-
site helping people to study foreign languages con-
tains some parallel Chinese-Japanese sentences.
Accordingly, we crawled all the available data
in this website before test data release. The to-
tal amount of extra data consists of 12, 665 par-
allel sentences. We randomly select 4, 877 sen-
tence pairs to build an extra development set.
When training each domain model, all the ex-
tra data are used as part of News domain. We

6https://github.com/ymcui/
Chinese-BERT-wwm

7https://github.com/cl-tohoku/
bert-japanese

8https://https://jp.hjenglish.com/new/

find that 383 Chinese→Japanese pairs and 421
Japanese→Chinese pairs in the crawled data are
overlapped with the final test set. We just used the
originally trained model to decode the test set and
decided not to retrain our model since it will take
much time and the organizers remind that models
cannot be changed after the test set is released. Any-
way, we also suggest to test the translation quality
on the remaining test set excluding the overlapped
sentences.

4 Experiment Settings and Results

4.1 Experiment Setup

Our implementation of Transformer model is
based on the latest release of Fairseq. We use
Transformer-Big as basic setting, which contains
layers of N = 6 for both encoder and decoder.
Each layer consists of a multi-head attention sub-
layer with heads h = 16 and a feed-forward sub-
layer with inner dimension dff = 4096. The word
embedding dimensions for source and target and
the hidden state dimensions dmodel are set to 1024.
In the training phase, the dropout rate Pdrop is set
to 0.1. In the fine tuning phase, the dropout rate is
changed to 0.3 to prevent over-fitting.

We use cross entropy as loss function and apply
label smoothing of value ǫls = 0.1. For the opti-
mizer, we use Adam (Kingma and Ba, 2015) with
β1 = 0.9, β2 = 0.98 and ǫ = 10−8. The initial
learning rate is set to 10−4 for training and 10−5

for fine tuning.
The models with complete training data are

trained on 4 GPUs for 100,000 steps. For
the dataset with knowledge distillation or back-
translation, the models are trained for 150,000
steps. We validate the model every 1,000 mini-
batches on the development data and perform early
stop when the best loss is stable on validation set
for 10,000 steps. At the end of training phase, we
average last 20 checkpoints for each single model
of general domain. In fine tuning phase, we use the
averaged model of general domain as starting point
for initializing the domain model, and continue
training on 1 GPU with domain data for 50,000
steps without early stop. The batch sizes in training
and fine tuning are set to 32768 and 8192 respec-
tively.

4.2 Result

Table 5 shows the result on development
data of both Chinese→Japanese (ZH→JA) and
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Settings ZH→JA JA→ZH
Single System

Baseline 28.07 22.19
Complete Parallel Data 27.38 27.41
+Parallel data Filtering 33.46 27.69
+Back Translation 34.42 28.08
+Knowledge Distillation 34.00 29.50
+Domain Classification 34.96 30.14

System Combination
Ensemble Baseline 34.79 30.32
+ Weighted Ensemble 35.41 30.55
+ Reranking 34.92 30.41

Table 5: The BLEU scores of both directions on devel-
opment data.

Japanese→Chinese (JA→ZH) translation direc-
tions. We report the character BLEU score calcu-
lated with multi-bleu-detok.perl script. As shown
in the result, filtering with complete parallel data
plays an important role in our system. Techniques
of back translation and knowledge distillation con-
sistently improve the BLEU score. When applying
domain classification, we classify each sentence
using the Bert-based domain classifier and decode
each sentence with corresponding domain model.

As for combination methods, we build six sepa-
rate models with three domain (Wiki, Spoken and
News) fine tuned on two large synthetic data (back
translation and knowledge distillation). In ensem-
ble baseline, all of these models share the same
weight in predicting word distributions. Weighted
ensemble indicates we apply different weights for
the ensemble models, in which the weights are
obtained by the domain classifier. With weighted
domain ensemble, our system achieves the best per-
formance on development data in terms of BLEU,
and surpass the single baseline systems by 7.34
BLEU for Chinese→Japanese and 8.36 BLEU for
Japanese→Chinese.

We also find a performance drop with reranking.
The reason may be that we train the reranking mod-
els on the complete parallel data, which is from
general domain and may assign lower score for
domain specific translations. As a result, our sub-
mission is based on the weighted ensemble system,
which performs best in our experiments.

4.3 Analysis

We compare the performance of different
model variations and token granularities on

Model Architecture BLEU
Dynamic Convolutions (Big) 27.13
Transformer (Base) 27.16
Relative Position (Big) 27.41
Transformer (Big) 27.89

Table 6: The BLEU scores of Chinese→Japanese on
development data with different model settings and
variations.

Token Granularities BLEU
Word→Word 25.45
Character→Character 26.92
BPE→BPE 27.89
BPE→Character 28.07

Table 7: The BLEU scores of Chinese→Japanese on
development data with different token granularities.

Chinese→Japanese development data. The data
we used to train the models is existing parallel
data, which consists of 1.9M parallel sentences.

For the model variations, we compare Relative
Position (Shaw et al., 2018), Dynamic Convolu-
tions (Wu et al., 2019) and Transformer Base and
Big settings (Vaswani et al., 2017). As shown in
Table 6, The best result is produced by Transformer
Big setting, which is used as default when training
on large datasets.

For the token granularities, we report
the result with four tokenization methods:
Word→Word, Character→Character, BPE→BPE
and BPE→Character. As shown in table 7, adopt-
ing BPE in source side and Character in target
side performs better than other token granularities,
which is used in our submission systems.

We notice that there exits a large divergence be-
tween the two translation directions when using
complete parallel data and process with parallel
data filtering. We have verified the result and the
parallel data in depth. We find that the quality
of Japanese data is lower. For example, there are
sentences consist of punctuations only, which may
harm the target side language model learned by the
decoder. After parallel data filtering, the invalid
sentences are removed and thus the translation qual-
ity of ZH-JA is improved.

We also find that the provided development data
is mainly from spoken domain, and thus we use our
collected data as extra development set from other
domain to investigate the general performance of
single model. The result is shown in table 8. We
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Development data ZH→JA JA→ZH
Provided 34.00 29.50
Our collected 32.78 30.95

Table 8: The BLEU scores of best single model (with
knowlegde distillation) on provided development data
and our development data.

find there exists a small gap between provided de-
velopment data and our collected data, which in-
dicates that the domain information may further
improve the translation quality, and thus leads us
to utilize domain transfer and ensemble techniques.
Note that the extra development set is only used in
single models. When it comes to system combina-
tion, these data are added into News domain since
the size of News domain data in parallel dataset
is extremely smaller than other domains (Section
3.4).

5 Conclusion

We present the CASIA’s neural machine
translation system submitted to IWSLT 2020
Chinese→Japanese and Japanese→Chinese open
domain translation task. Our system is built with
Transformer architecture and incorporating the
following techniques:

• Deliberate data pre-processing and filtering

• Back-translation of selected monolingual cor-
pus

• Knowledge distillation from multi polity
teacher models

• Domain classification and weighted domain
model ensemble

As a result, our final system achieves substantial
improvements over baseline system.
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Abstract

We present in this report our submission
to IWSLT 2020 Open Domain Translation
Task(Ansari et al., 2020). We built a data pre-
processing pipeline to efficiently handle large
noisy web-crawled corpora, which boosts the
BLEU score of a widely used transformer
model in this translation task. To tackle
the open-domain nature of this task, back-
translation (Sennrich et al., 2016) is applied to
further improve the translation performance.

1 Introduction

Neural machine translation (NMT) is a well-
studied problem boosted in recent years by pow-
erful transformer models (Vaswani et al., 2017),
which find their ways to various sequence-to-
sequence tasks, such as automatic speech recog-
nition (ASR) (Dong et al., 2018), speech transla-
tion (Gangi et al., 2019), text-to-speech (Shin et al.,
2019), to name a few. Nevertheless, many chal-
lenges remain in training an efficient transformer
NMT model in practice, such as the following ones
raised in IWSLT 2020 Open Domain Translation
Task:

Handling noisy dataset Hassan et al. pointed
out that machine translation models are vulnerable
to noise even in small quantity. In practice, manual
correction of a massive corpora is prohibitive, thus
calling for an automatic data cleaning pipeline.

Leveraging monolingual data Compared to
parallel corpora, monolingual data can be acquired
at a much lower cost. Common ways of us-
ing monolingual data include language modeling
(Çaglar Gülçehre et al., 2015), back-translation
(Sennrich et al., 2016), and dual learning (He et al.,
2016), all exhibiting promising results; further-
more, they could be adopted in a complementary
way when carefully designed (Hassan et al., 2018).

Last but not least, massive pre-trained language
models like BERT perform strongly in NLP tasks
like question answering, reading comprehension
and text classification (Devlin et al., 2019), motivat-
ing our attempts to incorporate them in our NMT
system.

Domain mismatch NMT systems trained with
data from specific domains may translate poorly
in other domains (Freitag and Al-Onaizan, 2016).
Training the model with all available corpora,
and fine-tuning it on a specific domain generally
achieves best results in this domain (Chu et al.,
2017). In open domain cases, it’s impractical
to keep a dedicated model or to obtain enough
training data for every single domain. Hence Multi-
Domain NMT, where a single model generalizes
to multiple domains, is gaining interest in recent
research. For example, Tars and Fishel; Jiang
et al.; Zeng et al. injected domain information into
model input, leading to convincing and consistent
improvements, in which domain information may
be derived in both supervised and unsupervised
manners.

Our work consists of establishing an efficient
data pre-processing pipeline for large web-crawled
corpora to train a transformer model for NMT and
exploiting large amount of monolingual data with
back-translation and language modeling.

This report is organized as follows: Section 2
depicts the different techniques applied to improve
the official baseline model, whereas in Section 3
the experiments and results are described in greater
details. Finally, we conclude our work and suggest
a few future work directions in Section 4.
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2 System Overview

2.1 Noisy Data
According to Hassan et al., the common noises in
web-crawled corpora can be categorized into the
following groups:

• mis-aligned pairs,
• partially translated pairs,
• inaccurate or low-quality pairs,
• pairs in wrong languages, or as exact dupli-

cates.

Meanwhile, in the context of training Transformer
models with large-scale parallel data, Popel and
Bojar found out while clean and smaller datasets
help the model to converge faster, noisy and larger
datasets help in converging to a better result. Our
experiments indicate that with a pre-processing
pipeline, training larger datasets is of great help
in improving translation BLEU score.

2.2 NMT model
Our NMT model is identical to the baseline
of IWSLT 2020 Open Domain Translation Task
(Ansari et al., 2020), which is a common trans-
former architecture. The hyper-parameters of the
model are listed in Table 1.

Hyper-parameters
encoder layers 6
decoder layers 6
filter width 4096
attention width 1024
attention heads 16
token type BPE
source vocabulary size 30k
target vocabulary size 30k
Total Parameters 270M

Table 1: Hyper-parameters for our NMT model.

2.3 Language Modeling
Çaglar Gülçehre et al. proposed language model-
ing as a way of leveraging monolingual corpora
in the context of NMT. Given massive monolin-
gual data, language modeling helps in decoding
accuracy, thus ensuring improvements in iterative
back-translation training. Among various ways
of incorporating language models in an NMT sys-
tem, we conduct experiments on shallow fusion
and deep fusion, following the settings of Çaglar
Gülçehre et al..

A rescoring method put forward by Shin et al. is
also tested, where the translation candidates from
beam search are reranked using a weighed combi-
nation of original scores and scores calculated by a
pre-trained Japanese BERT model (Takeshi et al.,
2019).

2.4 Back-translation

Back-translation (Hoang et al., 2018) has been
proven to be an effective and highly applicable
way to achieve consistent improvements by in-
creasing both size and diversity of the training cor-
pora (Edunov et al., 2018); we follow their back-
translation setting in our experiments.

3 Experiments and Results

3.1 Data Acquisition and Pre-processing

All the datasets used in our experiments are listed in
Table 2. While larger datasets boost model perfor-
mance in general, we observe considerable amount
of noises in all the datasets in Table 2 apart from
the ”clean parallel” set. As mentioned in Section
2.1, these noises are of various nature, and show
negative impact in our primary experiments. To
deal with them, several pre-processing steps have
been applied as follows.

First, the noisy datasets turn out to contain a
lot of rare or meaningless characters. In order to
remove them, we define a valid Unicode range,
consisting of basic Latin, Greek alphabet, Japanese
alphabet and CJK symbols and punctuations. Then
we discard sentence pairs including more than 20%
of invalid characters, and delete the invalid symbols
in the remaining pairs.

Second, we normalize these sentences with ne-
ologdn1 to handle encoding issues and special punc-
tuations.

Third, a naive de-duplicate algorithm is applied
to get rid of redundancy in training data, which
also eliminates invalid text containing only error
messages.

Finally, the sentences in wrong languages in the
datasets are filtered by a pre-trained Fasttext lan-
guage classification model (Joulin et al., 2017),
where sentences with wrong language labels or low
confidence are removed.

The use of pre-processed noisy data results later
in a notable increase of BLEU score (see Table 4).

1https://github.com/ikegami-yukino/neologdn
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Dataset Size Source
training set
clean parallel 2M existing parallel
noisy parallel 17M pre-processed web crawled parallel filtered
monolingual(Ja) 10M unaligned documents
monolingual(Zh) 10M Large Scale Chinese Corpus for NLP (Xu, 2019)
validation set
basic expressions 5304 JEC Basic Sentence Data (Kurohashi-Kawahara Lab.)

Table 2: Datasets used in our experiments. The size is in number of sentence pairs for parallel datasets, and
number of sentences for monolingual ones.

3.2 Baseline Model

We train the transformer model in Section 2.2 on
clean data as baseline. We use Jieba2 and Mecab3

to tokenize the Chinese and Japanese text respec-
tively, and use subword-nmt4 to perform BPE en-
coding/decoding (Gage, 1994), with vocabulary
size approximately to 30k for each language. We
use Tensor2Tensor (Vaswani et al., 2018) imple-
mentation of Transformer, with 4 GPU and accumu-
lates gradient for 4 steps, resulting in an equivalent
batch-size of 32768.

3.3 Language Modeling

Here we attempt to acquire some improvements uti-
lizing unpaired data by means of language models
(LM). The methods tested are:

• shallow fusion with language model (Çaglar
Gülçehre et al., 2015)
• deep fusion with language model(Çaglar

Gülçehre et al., 2015)
• BERT rescoring (Shin et al., 2019)

As summarized in Table 3, none of the LM-based
methods leads to gain in BLEU score just yet, and
further research needs to be conducted to beat the
baseline with language models.

Methods Zh2Ja
baseline model 27.48
shallow fusion 26.79
deep fusion 21.84
BERT rescoring 24.80

Table 3: BLEU scores after incorporating with lan-
guage models.

2https://github.com/fxsjy/jieba
3https://taku910.github.io/mecab/
4https://github.com/rsennrich/subword-nmt

3.4 Back-translation
To generate a back-translation dataset, we first
augment clean target sentences using the exact
’beam + noise’ setting in (Edunov et al., 2018),
with p(deletion) = 0.1, p(substitution) = 0.1
for each token in the sentence; for substitution, we
randomly pick the ith token and draw a random
number n from uniform distribution of {-3, 2, -1,
1, 2, 3}, and replace this token with the (i+ n)th

token. We generate noisy source sentences using a
target-to-source NMT model trained from previous
steps, and construct a dataset using noisy source
sentences with their clean target counterparts. Dur-
ing training, parallel data and back-translated data
are sampled at 1:1 ratio.

3.5 Final Results
As is shown in previous sections, using large nor-
malized corpora and back-translation both improve
the baseline system in two translation directions.
The overall result on validation set is depicted in
Table 4. The final result on test dataset is depicted
in (Ansari et al., 2020).

To further confirm the effectiveness of our back-
translation approach acorss different domains, we
classify the validation set into 14 different topics
using a validated pre-trained bag-of-words model,
and compute the validation BLEU scores of each
topic before and after back-translation. In Figure 1,
an overall improvement is observed in all cate-
gories with a few exceptions, which is expected.

Methods Ja2Zh Zh2Ja
official baseline 20.28 26.57
clean parallel 20.37 27.48
+ noisy parallel 25.48 30.32
+ back-translation 27.79 35.87

Table 4: Overall BLEU Scores on Validation Set.
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Figure 1: BLEU score in different domains in the vali-
dation set

4 Conclusion and Future Work

In this paper we described our submission to
IWSLT 2020 open domain translation task. We
improved the baseline model with a large amount
of cleaned-up web-crawled data and the back-
translation technique. Our final system achieved
27.79 and 35.87 BLEU scores on Ja2Zh and Zh2Ja
tasks respectively, out running the official baseline
by about 35%.

For future work, we first plan to improve the
baseline model architecture, since it is left un-
changed in our current experiments (e.g. by follow-
ing (Sun et al., 2019)). Furthermore, loss masking
(Rusiecki, 2019) would also be appealing, which
ignores the samples of highest losses in each batch
during training. Proven to be effective for noisy-
label classification, loss masking may also be help-
ful to our NMT model trained with noisy sentence
pairs. Another possibility is to filter noisy data with
a learned representation in both languages (Hassan
et al., 2018), which can further eliminate incom-
plete or mismatched translation pairs and help with
model accuracy.

Initializing NMT decoder with a pre-trained
BERT model is also stated to be useful; this tech-
nique is named ’cold fusion’ in the context of
ASR(Sriram et al., 2017), and we expect to see
similar effects in the case of NMT. An alternative
way of incorporating pre-trained BERT into NMT
models is to merge hidden activations of these mod-
els together(Zhu et al., 2020). The results show that
such a fusion is an effective way to utilize mono-
lingual data as complementary to back-translation.

Finally, to tackle the multi-domain translation
scenario, specific loss functions and model struc-
tures exhibit promising results (Zeng et al., 2018;

Jiang et al., 2019); meanwhile, adding special do-
main tokens to source text may also achieve com-
parable results (Tars and Fishel, 2018).
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Abstract

In this paper, we introduce University of
Tsukuba’s submission to the IWSLT20
Open Domain Translation Task. We par-
ticipate in both Chinese→Japanese and
Japanese→Chinese directions. For both
directions, our machine translation systems
are based on the Transformer architecture.
Several techniques are integrated in order to
boost the performance of our models: data
filtering, large-scale noised training, model
ensemble, reranking and postprocessing.
Consequently, our efforts achieve 33.0 BLEU
scores for Chinese→Japanese translation and
32.3 BLEU scores for Japanese→Chinese
translation.

1 Introduction

In this paper, we introduce University of
Tsukuba’s submission to the IWSLT20 Open Do-
main Translation Task. The goal of this shared
task is to promote: the research on translation
between Asian languages, exploitation of noisy
web corpora for machine translation, and smart
processing of data and provenance. To have an
overview look of the IWSLT20 Open Domain
Translation Task, readers may refer to Ansari et al.
(2020) for further details. We participated in both
Chinese→Japanese and Japanese→Chinese direc-
tions.

It is widely acknowledged that a neural machine
translation (NMT) system requires a large amount
of training data. Meanwhile, the training process
of NMT models may consume a long period of
time and lots of computing resources. Consid-
ering the limitation of our computing power, our
goal is to boost the performance of NMT sys-
tems with fewer and smaller components that re-
quire less time and computing resources. Our

! Equal contribution.

models are based on the base Transformer as de-
scribed in Vaswani et al. (2017) without spe-
cial parameter fine-tuning. For data preprocess-
ing, firstly, various orthodox methods including
punctuation normalization, tokenization as well as
byte pair encoding (Sennrich et al., 2016a) which
have been widely used in recent researches are ap-
plied. Besides, we also apply manual rules, aim-
ing to clean the provided parallel data, the mono-
lingual data and the synthetic data which is gener-
ated by ourselves for data augmentation. For the
sake of a better use of all provided data, we do
a back-translation for either the source-side and
the target-side monolingual data. Meanwhile, in-
spired by noised training method (Edunov et al.,
2018; Wu et al., 2019; He et al., 2020), we add
noise to the source sentences of the synthetic par-
allel corpus to make the translation models more
robust and to improve its generalization ability. In
addition, in inference phrase, we apply the model
ensemble strategy while top n-best hypotheses are
kept for further multi-features reranking process.
At last, post-processing is applied to correct the
inconsistent punctuation form.

This paper is organized as follows: in Section 2,
we describe our data preprocessing and data filter-
ing. Details of each component of our systems are
described in Section 3. The results of the exper-
iments for each component and language pair are
summarized in Section 4.

2 Data

For all of our submissions, we only use
datasets provided by the organizers. For
training parallel data, we use the concate-
nation of web crawled parallel filtered and
existing parallel. For data augmentation, since
the unaligned data are extremely huge, we
choose to use the separate side of the pre-filtered
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sentences (web crawled parallel unfiltered) as
monolingual data. Also, development dataset
provided by the organizer is used for development
and model evaluation.

2.1 Data Preprocessing

The provided parallel training data contains dif-
ferent forms of characters, for example, full-width
form and half-width form. To get a normalized
form, we remove all the spaces between charac-
ters and perform NFKC-based text normalization.

Chinese sentences are segmented with the de-
fault mode of Jieba1 and Japanese sentences
are segmented with Mecab2 using mecab-ipadic-
NEologd3 dictionary. To limit the size of vocab-
ularies of NMT models, we use byte pair encod-
ing(BPE) (Sennrich et al., 2016b) with 32K split
operations separately for both side.

2.2 Data Filtering

The provided datasets built from the web data are
very noisy and can potentially decrease the perfor-
mance of a system. To get a clean form, we fil-
ter the parallel training corpus with the following
rules:

• Filter out duplicate sentence pairs.

• Filter out sentence pairs which have identical
source-side and target-side sentences.

• Filter out sentence pairs with more than 10
punctuations or imbalanced punctuation ra-
tio.

• Filter out sentence pairs which contains half
or more tokens that are numbers or letters.

• Filter out sentence pairs which contain
HTML tags or emoji.

• Filter out sentence pairs with wrong lan-
guages identified by langid.4

• Filter out sentence pairs exceeding length ra-
tio 1.5.

• Filter out sentence pairs with less than 3
words or more than 100 word.

1https://github.com/fxsjy/jieba
2https://taku910.github.io/mecab
3https://github.com/neologd/

mecab-ipadic-neologd
4https://github.com/saffsd/langid.py

Ja Zh
Parallel data(in sents.) 20.9M 20.9M
+ Filtering(in sents.) 9.8M 9.8M
+ Filtering(in subwords.) 164.5M 128.1M
Monolingual data(in sents.) 161.5M 161.5M
+ Filtering(in sents) 17.8M 17.6M
+ Filtering(in subwords.) 308.3M 254.9M

Table 1: Statistics of the provided data. Notice that we
treat two sides of the provided unfiltered dataset sep-
arately as monolingual data, therefore the number of
monolingual data in terms of sentence pairs are identi-
cal as before data filtering.

The same data filtering strategies except those
designed for sentence pairs are also employed on
monolingual data. Details of the preprocessed
dataset in terms of the amount of sentences and
BPE subwords are listed out in millions in Table 1.

3 System

3.1 Baseline System
We adopt the base Transformer as our machine
translation system following the settings as de-
scribed in Vaswani et al. (2017), consisting of 6
encoder layers, 6 decoder layers, 8 heads, with
an embedding dimension of 512 and feed-forward
network dimension of 2048. The dropout prob-
ability is 0.2. For all experiments, we adopt the
Adam optimizer (Kingma and Ba, 2014) using β1
= 0.9, β2 = 0.98, and ε = 1e-8. The learning rate
is scheduled using inverse square root schedule
with a maximum learning rate 0.0005 and 4000
warmup steps. We train all our models using
fairseq5 (Ott et al., 2019) on two NIVIDA 2080Ti
GPUs with a batch size of around 4096 tokens.
During training, we employ label smoothing of
value 0.1. We average the last 5 model check-
points and use it for decoding.

3.2 Large-scale Noised Training
It is widely known that the performance of a NMT
system relies heavily on the amount of parallel
training data. Back-translation (Sennrich et al.,
2016a) and Self-training (Zhang and Zong, 2016)
are effective and commonly used data augmenta-
tion techniques to leverage the monolingual data
to augment the original parallel dataset.

In our case, we leverage both the source-side
and target-side monolingual data to help the train-

5https://github.com/pytorch/fairseq
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ing. Specifically, we train a baseline NMT model
with the provided parallel corpus at first. Then,
target-side monolingual sentences are translated
by a target-to-source NMT model and source-side
monolingual sentences are translated by a source-
to-target NMT model.

Inspired by noised training method (Edunov
et al., 2018; Wu et al., 2019; He et al., 2020),
we add noise to the source sentences of the syn-
thetic parallel corpus to make the translation mod-
els more robust and to improve its generalization
ability. Specifically,

• We randomly replace a word by a special un-
known token with probability 0.1.

• We randomly delete the words with probabil-
ity 0.1.

• We randomly swap the words with constraint
that no further than 3 words apart.

Then we add the synthetic parallel data to original
parallel data and train a new NMT model.

3.3 Model Ensemble

Model ensemble is a common method to boost
translation performance. However, due to the huge
amount of training data and our limited comput-
ing power, we do not ensemble multiple strong
models with different random seeds. Instead, we
only combine three models trained on filtered data
with different random seeds and one model trained
through large-scale noised training. All individual
models used for model ensemble are the average
of the last 5 model checkpoints.

3.4 Reranking

Reranking is a method of improving translation
quality by rescoring a list of n-best hypotheses.
For our submissions, we generate n-best hypothe-
ses through a source-to-target NMT model and
then train a reranker using k-best MIRA (Cherry
and Foster, 2012). The features we use for rerank-
ing are:

• Left-to-right NMT Feature: We keep the
original perplexity by the original translation
model as a L2R reranking feature.

• Right-to-left NMT Feature: In order to ad-
dress exposure bias problem, we train a right-
to-left (R2L) NMT model using the same

Ja→Zh
System Dev Test
Baseline 28.19 22.0
+ Data filtering 28.60 –
+ Noised training 29.42 –
+ Model ensemble 30.03 –
+ Reranking 30.29 –
+ Postprocessing 30.53 –
Our Submission – 32.3

Table 2: BLEU scores on Japanese → Chinese.

Zh→Ja
System Dev Test
Baseline 27.29 26.3
+ Data filtering 32.37 –
+ Noised training 32.21 –
+ Model ensemble 32.82 –
+ Reranking 33.24 –
+ Postprocessing 33.26 –
Our Submission – 33.0

Table 3: BLEU scores on Chinese → Japanese.

training data but with inverted target word or-
der. We invert the hypothesis sequence and
use the perplexity score given by the right-to-
left NMT model as R2L feature.

• Target-to-Source NMT Feature: To reduce
inadequate translation, we use the perplex-
ity score given by the target-to-source NMT
model as T2S feature. In addition, we also
use the score generated by a target-to-source
right-to-left model as a reranking feature.

• Length Feature: We also design a length
feature that quantifies the difference between
the ratio of each sentence pair and the optimal
ratio. The optimal ratio is determined accord-
ing to the training parallel corpus.

3.5 Postprocessing

Since we perform NFKC-based text normalization
on the training corpus, we also employ a post-
processing algorithm on the generated hypothesis.
To be more specific, we change half-width punc-
tuations to full-width punctuations.

4 Results

Results and ablations for Ja→Zh and Zh→Ja are
shown in Table 2 and Table 3 respectively. We
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report character-based BLEU calculated with the
provided script. Reference for BLEU calculation
on development dataset is in the raw form which
has not been NFKC-normalized. Each line in the
table represents for the result yielded from the
model to which techniques declared in current line
and all previous lines are added.

4.1 Japanese→Chinese

For Ja→Zh, data filtering improves our base-
line performance on development data by + 0.41
BLEU scores. The addition of synthetic data and
large-scale noised training further improves model
performance by + 0.82 BLEU scores. We fur-
ther gain + 0.61 BLEU scores and + 0.26 BLEU
scores after applying model ensemble and rerank-
ing. Finally, applying postprocessing on top of
generated hypothesis gives another improvement
of 0.24 BLEU scores. The final BLEU score of
our submission is 32.3.

4.2 Chinese→Japanese

For Zh→Ja, data filtering plays an important role
and improves our baseline performance on devel-
opment data by + 5.08 BLEU scores. The addi-
tion of synthetic data and large-scale noised train-
ing slightly hurt the performance.6 After applying
model ensemble and reranking, we further gain +
0.61 BLEU scores and + 0.42 BLEU scores re-
spectively. Finally, applying postprocessing on
top of the generated hypothesis gives another 0.02
BLEU scores. The final BLEU score of our sub-
mission is 33.0.

5 Conclusion

This paper describes University of Tsukuba’s sub-
mission to IWSLT20 open domain translation
task. We trained standard Transformer models
and adopted various techniques for better perfor-
mance, including data filtering, large-scale noised
training, model ensemble, reranking and postpro-
cessing. We demonstrated the effectiveness of
our approach and achieved 33.0 BLEU scores
for Chinese→Japanese translation and 32.3 BLEU
scores for Japanese→Chinese translation.

6However, we also notice that, when BLEU is calcu-
lated with the NFKC-normalized reference it will be slightly
improved if large-scale noised training is added (33.83 vs.
33.97). Therefore, we still adopt large-scale noised training
for our final submission.
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Abstract

This paper describes the Xiaomi’s submissions
to the IWSLT20 shared open domain transla-
tion task for Chinese↔Japanese language pair.
We explore different model ensembling strate-
gies based on recent Transformer variants. We
also further strengthen our systems via some
first-line techniques, such as data filtering,
data selection, tagged back translation, do-
main adaptation, knowledge distillation, and
re-ranking. Our resulting Chinese→Japanese
primary system ranked second in terms of
character-level BLEU score among all submis-
sions. Our resulting Japanese→Chinese pri-
mary system also achieved a competitive per-
formance.

1 Introduction

In this paper, we describe the Xiaomi’s neu-
ral machine translation (NMT) systems eval-
uated at IWSLT 2020 (Ansari et al., 2020)
shared open domain translation task in two
directions, Chinese→Japanese (Zh→Ja) and
Japanese→Chinese (Ja→Zh).

The accuracy of NMT systems relies on the qual-
ity of training data, we first consider careful pre-
processing and discard the corrupted data from the
existing bilingual sentences according to rule-based
filtering and model-based scoring.

In the aspect of NMT architecture, we exploit
some recent Transformer variants, including dif-
ferent Transformer models with deeper layers
or wider inner dimension of feed-forward layers
than the standard Transformer-Big model, Trans-
former with a dynamic linear combination of layers
(DLCL) (Wang et al., 2019) and neural architecture
search (NAS) based Transformer-Evolved (So et al.,
2019), to increase the diversity of the system. We
further strengthen our systems by diversifying the
training data via some effective methods, includ-
ing back-translation (BT) (Sennrich et al., 2016b),

knowledge distillation (KD) (Hinton et al., 2015)
and right-to-left (R2L) NMT model. Finally, we
also explore re-rank the n-best translation candi-
dates generated by models ensembling with some
effective features, including target-to-source (T2S)
NMT model, left-to-right (L2R) NMT model, R2L
NMT model (Liu et al., 2016), bilingual sentence
BERT and language model (LM).

Through experiments, we evaluate how each sys-
tem feature affects the accuracy of NMT. Our result-
ing Chinese→Japanese primary system ranked sec-
ond in terms of character-level BLEU score among
all submissions. Our resulting Japanese→Chinese
primary system also achieved a competitive perfor-
mance.

2 Data

2.1 Pre-processing

Our pre-processing pipeline begins by removing
non-printable ASCII characters, lowercasing text,
normalizing additional white-space, and control
character and replacing any escaped characters
with the corresponding symbol by our in-house
script. All the data is further normalized so all
full-width Roman characters and digits are normal-
ized to half-width. All the traditional characters of
Chinese data are converted to simplified characters
using OpenCC1. For all corpora, Chinese sentences
are segmented by our in-house Chinese word seg-
menter, and Japanese sentences are first segmented
by the morphological analyzer Mecab (Kudo, 2006)
and then tokenized only for the non-Japanese part
by the Moses script2.

1https://github.com/BYVoid/OpenCC
2https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl
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2.2 Parallel Data Filtering
Though the NMT performance is highly correlated
to the huge amounts of training data, a robust body
of studies (Carpuat et al., 2017; Khayrallah and
Koehn, 2018; Wang et al., 2018; Koehn et al., 2018)
has shown the bad impact of noisy data on general
NMT translation accuracy. In addition to a small
amount of Japanese-Chinese parallel data3 from
various public sources, the organizers also provide
a large-scale but noisy parallel data4 extracted from
a non-parallel web-crawled data through some sim-
ilarity measures for parallel data mining. We ap-
ply a two-stage process consisting of rule-based
filtering and model-based scoring to further filter
harmful sentence pairs that are bound to negatively
affect the quality of NMT systems from the original
parallel corpora as follows.

2.2.1 Rule-based Filtering
During the first stage, we remove some illegal paral-
lel sentences by applying several rule-based heuris-
tics. A sentence pair is deleted from the corpus
if its source side or target side fails to obey any
of the following wild rules reflecting what ‘good
data’ should look like. Some of the heuristic filter-
ing methods can deal with aspects that can not be
captured with models.

• The token (i.e. character sequence between
two spaces) length of every sentence is limited
less than 50.

• Sentence pairs with a length ratio greater than
4 are removed.

• Chinese sentences with Chinese characters ra-
tio less than 0.15 or any character of other
than Chinese and English are removed. And
Japanese sentences with Japanese characters
ratio less than 0.25 or any character of other
than Chinese, Japanese, and English are re-
moved.

• Japanese sentences without any Hiragana or
Katakana character are removed.

• Sentence pairs with mismatched numbers of
length three or more digits or URLs are re-
moved.

3https://iwslt.oss-cn-beijing.aliyuncs.
com/existing_parallel.tgz

4https://iwslt.oss-cn-beijing.aliyuncs.
com/web_crawled_parallel_filtered_1.1.
tgz

• Duplicated sentence pairs are discarded.

2.2.2 Model-based Scoring
In the second stage of our filtering pipeline, we
utilize a variety of models to assign some scores to
each sentence pair of the remaining rule-based fil-
tered parallel corpus (RFPD). Afterward, we select
better sentences according to these scores.

• Translation model: We construct paral-
lel NMT systems based on the standard
Transformer-big model in both directions us-
ing RFPD to obtain the target synthetic trans-
lation as the reference. BEER (Stanojević and
Sima’an, 2014) is used as a sentence-level
metric of sentence similarity. We prune the
sentence pairs with the BEER score of lower
than 0.2.

• SBERT model: Recently, contextualized
word embeddings derived from large-scale
pre-trained language models (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019)
have achieved new state-of-the-arts in vari-
ous monolingual NLP tasks. The success
has also been extended to cross-lingual sce-
narios (Schwenk, 2018; Conneau and Lam-
ple, 2019; Mulcaire et al., 2019; Artetxe and
Schwenk, 2019). Recently, Reimers and
Gurevych (2019) proposed sentence BERT
(SBERT) to derive semantically meaningful
sentence embeddings. According to the train-
ing framework of SBERT, we use the multilin-
gual pre-train BERT model5 and finetune it on
RFPD to yield useful Chinese and Japanese
sentence embeddings in the same space. We
reject sentence pairs with a cosine-similarity
score below 0.2.

• Word alignment model: We perform a
word alignment model on RFPD using
fast align (Dyer et al., 2013) to check whether
the sentence pair has the same meaning. Sen-
tence pairs with the alignment probability of
being each other translation less than 0.1 are
discarded.

• N-gram LM: It is beneficial to use fluent sen-
tences for training NMT models. We train
a 5-gram LM that is estimated with modi-
fied Kneser-Ney smoothing (Kneser and Ney,

5https://storage.googleapis.com/bert_
models/2018_11_23/multi_cased_L-12_
H-768_A-12.zip
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1995) using KenLM (Heafield, 2011) on each
side of the parallel sentences to evaluate sen-
tences’ naturalness. We normalize the LM
perplexity (PPL) scores of all the sentences
to be between [0,1]. Sentences whose nor-
malized PPL scores fall below the threshold
(0.45 and 0.53 for Chinese and Japanese data,
respectively) are removed.

It is worth noting that all the above thresholds
are determined experimentally.

2.3 Post-processing
All the outputs are post-processed by merging sub-
words, removing the space between the non-ASCII
characters, and rule-based de-truecasing. All half-
width punctuation marks and digits are also con-
verted back to their original full-width form in a
specific language when translating to Chinese and
Japanese.

3 Overview of System Features

3.1 Translation Models
NMT has gained rapid progress in recent
years (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). In addition to the standard
Transformer-Big (Vaswani et al., 2017) model, we
also apply recent Transformer variants for creating
better model ensembles.

• Wider model: Dimension is an important
factor to enhance the Transformer model
capacity and performance. Based on the
standard Transformer-Big model, we train
a Transformer-Wide model with a inner di-
mension of position-wise feed-forward layers
8,192.

• Deeper model: Building deeper networks
via stacking more encoder and decoder lay-
ers has been a trend in NMT (Bapna et al.,
2018; Wu et al., 2019; Zhang et al., 2019).
We also exploit three deeper Transformer
models by simply increasing the layer size
of Transformer-Big, including Transformer-
Deep-12-12, Transformer-Deep-12-6, and
Transformer-Deep-6-12 in which the first
number represents the layer size of the en-
coder and the second number represents the
layer size of the decoder. In addition to the
standard Transformer in which the residual
connection is applied between two adjacent

layers, we also implement two DLCL (Wang
et al., 2019)-based Transformer models which
can memorize the outputs from all preced-
ing layers, including Transformer-DLCL-
Big based on the Transformer-Big model
and Transformer-DLCL-Deep based on the
Transformer-Deep-12-12 above.

• NAS-based model: Recently, NAS has be-
gun to outperform human-designed mod-
els (Elsken et al., 2018). We use the compu-
tationally efficient Transformer-Evolved (So
et al., 2019) model by NAS. The hyper-
parameters can be seen in Tensor2Tensor im-
plementation6.

3.2 Data Diversification
We employ an effective data augmentation strategy
to boost NMT accuracy by diversifying the training
data. We first use the following backward and for-
ward models to generate a diverse set of synthetic
training data from both lingual sides of the original
training data or external monolingual data. Then,
we concatenate all the synthetic data with the origi-
nal data to train the baseline models from scratch
in L2R, R2L, and T2S ways, respectively. Finally,
we conduct the aforementioned approach based on
ensemble models again to achieve better baseline
systems.

• T2S model: Back-translation has thus far
been the most effective technique effective
for NMT (Sennrich et al., 2016b). Instead of
using the synthetic training data produced by
translating monolingual data in the target lan-
guage into the source language conventionally,
we prepend a special tag to all the source sen-
tences from the synthetic data to distinguish
synthetic data from original data (Caswell
et al., 2019).

• R2L model: Generally, most NMT systems
produce translations in an L2R way, which suf-
fers from the issue of exposure bias and conse-
quent error propagation (Ranzato et al., 2016).
It has been observed that the accuracy of the
right part words in its translation results is
usually worse than the left part words (Zhang
et al., 2018; Zhou et al., 2019). We train all
the baseline systems separately using L2R

6https://github.com/tensorflow/
tensor2tensor/blob/master/tensor2tensor/
models/evolved_transformer.py
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and R2L decoding (Wang et al., 2017; Hassan
et al., 2018).

• L2R model: Knowledge distillation has been
widely applied to NMT (Kim and Rush,
2016; Freitag et al., 2017; Chen et al., 2017;
Gu et al., 2018; Tan et al., 2019). Recent
work (Furlanello et al., 2018) demonstrates
that the student model can surpass the accu-
racy of the teacher model, even if the student
model is identical to their teacher model. Fol-
lowing this work, the teacher and student mod-
els in our experiments keep the same architec-
ture.

3.3 Model Ensembling

Ensemble decoding is an effective approach to
boost the accuracy of NMT systems via averaging
the word distributions output from multiple single
models at each decoding step. We select the top 4
systems with the highest BLEU evaluated on the
development dataset from all the available baseline
systems of each direction for models ensembling.

3.4 Reranking

Reranking technique (Shen et al., 2004) has been
applied in the recent years’ WMT tasks (Sennrich
et al., 2016a; Wang et al., 2017; Ng et al., 2019) and
have provided significant improvements. We first
use the S2T-L2R and S2T-R2L ensemble systems
to generate more diverse translation hypotheses
for a source sentence (Liu et al., 2016). Then we
use ensemble models of S2T-L2R, S2T-R2L and
T2S-L2R to calculate 3 different likelihood scores
for each sentence pair. We obtain the perplexity
score for the translation candidates with a neural
LM based on the Transformer encoder. We also
employ SBERT to calculate the similarity score for
each sentence pair. Each model’s score is treated
as an individual feature. Considering the ranking
problem as a classification problem, we employ the
implementation of pairwise ranking in scikit-learn7

RankSVM (Joachims, 2006) to learn the weights of
all the features on the development data for rerank-
ing. We compute the relative distance between
these two samples in the sentence-level BLEU met-
ric by pairing up two translation candidates. In
the training phase of the reranking model, we are
only interested in whether the relative distance is

7https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

positive or negative. For test data, we rescore the
hypotheses in the list by the reranking model and
select the hypothesis with the highest likelihood
score as the final output.

4 Experiments and Results

In this section, we introduce the experimental and
data setup used in our experiments and then evalu-
ate each of the systems introduced in Section 3.

4.1 Experimental and Data Setup

Due to a large number of training parameters, our
deeper Transformer models require larger GPU
memory resources and more time to train. To
avoid the out-of-memory issue when training mod-
els with adequate batch size, all models are opti-
mized by the memory-efficient Adafactor (Shazeer
and Stern, 2018) which has three times smaller
models than Adam (Kingma and Ba, 2015). Fur-
thermore, we also apply the mixed-precision train-
ing (Narang et al., 2018) without losing model ac-
curacy to speed up the training significantly.

In the training stage, we batch sentence pairs
by approximate length and limit the number of
source and target tokens per batch to 2,048 for two
deeper models and 4,096 for others per GPU. All
models are trained on one machine with 8 NVIDIA
V100 GPUs each of which has 16GB memory for
a total of 200K steps. We optimize all models
against BLEU using the development set provided
by the organizer, stopping early if BLEU does not
improve for 16 checkpoints of 2,000 updates each.
We set dropout 0.1 for Chinese→Japanese and 0.2
is for Japanese→Chinese. We average the top 10
checkpoints evaluated against the development set
as the final model for decoding. During decoding,
the beam size is set to 4 for the single model and
10 for ensemble models. We report the 4-gram
character BLEU (Papineni et al., 2002) evaluated
by the provided automatic evaluation script8.

The approach of two-stage parallel data filtering
in Section 2.2 enables us to drastically reduce the
training data from 19M to 12M. In order to enlarge
the size of bilingual data, we also exploit to extract
more high-quality sentence pairs from the provided
pre-filtered parallel data9. We first pre-process the
data and use the rules in Section 2.2 to remove

8https://github.com/didi/iwslt2020_
open_domain_translation/blob/master/
scripts/multi-bleu-detok.perl

9https://iwslt.oss-cn-beijing.aliyuncs.
com/web_crawled_parallel_1.1.tgz
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Corpus #Sentences Zh→Ja Ja→Zh
Original 21M 32.24 26.03
Filtered 12M 36.94 31.27
+augment(D1) 16M 37.08 31.44

Table 1: Results for L2R Transformer-Big based
Chinese↔Japanese systems on the development
dataset with different training data.

illegal data. We then rank the remaining data ac-
cording to the sum of S2T and T2S BEER scores
of each sentence pair and select 4M sentence pairs
with the highest score into the filtered training data.
Finally, we obtain the augmented training data with
16M sentence pairs to train all models.

We learn BPE segmentation models (Sennrich
et al., 2016c) with 30K merge operations and fil-
ter out sentence pairs consisting of rare subword
units with a frequency threshold of less than 6 to
speed up the training, in which 38.5K and 40K sub-
word tokens are adopted as Chinese and Japanese
vocabularies separately for each experiment.

We submit two systems per direction in con-
strained and unconstrained training data settings.
In a constrained condition, we only use the train-
ing data provided by the organizer. And for
unconstrained submission, we choose the large-
scale amounts of Commoncrawl Chinese10 and
Japanese11 dataset as additional monolingual data
for training LMs and executing BT to enhance our
NMT systems. We process these monolingual data
as follows: (1)pre-process according to the pipeline
described in Section 2.1; (2)sentence segmentation;
(3) only keep sentences with token length between
5 and 100; (4) draw a random sample with 160M
sentences as the final clean monolingual data for
each language.

4.2 Results of Data Filtering and
Augmentation

We first evaluate the effect of data filtering on the
performance of the NMT system. We train the
Transformer-Big model on (i) the original train-
ing data only, (ii) filtered training data, (iii) con-
catenating selected 4M training data from the pro-
vided pre-filtered parallel data (+augment). Table 1

10http://web-language-models.
s3-website-us-east-1.amazonaws.com/
ngrams/zh/deduped/zh.deduped.xz

11http://web-language-models.
s3-website-us-east-1.amazonaws.com/
ngrams/ja/deduped/ja.deduped.xz

shows that data filtering gives a significant improve-
ment for NMT accuracy, up to 4.70 BLEU score
for Zh→Ja and 5.24 BLEU score for Ja→Zh, and
adding more high-quality data can further boost
the performance for Zh↔Ja. The results shed light
on the importance of effective data filtering for
training a strong NMT system, particularly for the
training data with much noise mined from the web.
Finally, D1 with 16M sentence pairs is chosen as
the starting training data for the task.

4.3 Results of Baseline Models

For each translation task, we compare the perfor-
mance of all the baseline systems trained on D1

from L2R and R2L decoding directions on the offi-
cial validation set.

For Zh→Ja task, Table 2a shows that the stan-
dard Transformer-Big model outperforms all the
Transformer models with deeper layers or wider
dimension by a small margin and achieves the best
BLEU score for L2R direction. For R2L direction,
however, the deeper Transformer model with 12
layers in both the encoder and the decoder pro-
vides a significant improvement as compared to the
Transformer-Big model and obtains the best BLEU
score.

For Ja→Zh task, Table 2b indicates that all deep
Transformer models are superior to the shallow
Transformer-Big model for both the L2R and R2L
directions. For L2R direction, the Transformer-
Deep-12-6 model obtains the best BLEU score.
For R2L direction, the Transformer-DLCL-Deep
outperforms other models, particularly up to 0.44
BLEU score as compared to the Transformer-Deep-
12-12. The result also demonstrates that DLCL is
useful for training deep models.

For both translation tasks, although with far
fewer parameters than the Transformer-Big model,
the Transformer-Evolved model still obtains a com-
petitive performance among all the baseline sys-
tems. Table 2b shows that the performance of
the R2L Transformer-Evolved model ranks second
among all the models for Ja→Zh. It is interesting
to note that L2R decoding behaves better than that
of R2L decoding, and Ja→Zh has an opposite phe-
nomenon. We suspect that the main reason is that
Chinese is a subject–verb–object (SVO) language,
while Japanese is a subject–object–verb (SOV) lan-
guage.
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System
Constrained Unconstrained

D1 D2 D3 D4

L2R R2L L2R R2L L2R R2L L2R R2L
Transformer-Big 37.08 36.28 37.98 37.59 37.88 37.88 39.08 39.35
Transformer-Wide 36.98 36.57 38.20 37.46 38.35 38.14 39.50 39.23
Transformer-Deep-6-12 36.84 36.71 37.73 37.60 37.77 38.04 38.98 39.28
Transformer-Deep-12-6 36.96 36.50 37.58 37.07 37.70 38.32 38.92 39.11
Transformer-Deep-12-12 37.00 36.97 38.06 37.74 38.39 38.17 39.42 39.27
Transformer-DLCL-Big 36.46 36.10 37.65 37.11 38.18 37.52 39.27 39.49
Transformer-DLCL-Deep 36.61 36.27 37.34 37.53 37.57 37.85 39.59 39.17
Transformer-Evolved 36.47 35.87 37.42 36.85 37.71 37.19 38.78 38.65
Ensemble 38.37 37.96 39.22 38.82 39.32 39.20 40.1 40.13
+Reranking - - 39.37# 41.54∗

(a) Chinese→Japanese

System
Constrained Unconstrained

D1 D2 D3 D4

L2R R2L L2R R2L L2R R2L L2R R2L
Transformer-Big 31.44 31.81 32.27 32.62 33.88 33.80 34.23 34.21
Transformer-Wide 31.25 31.98 32.11 32.84 33.58 34.07 34.02 34.25
Transformer-Deep-6-12 31.55 31.98 32.26 32.67 34.07 34.11 34.29 34.20
Transformer-Deep-12-6 31.96 32.22 32.15 32.94 33.59 34.07 33.98 34.35
Transformer-Deep-12-12 31.95 32.22 32.49 32.75 34.22 34.15 34.31 34.30
Transformer-DLCL-Big 31.82 32.07 32.31 32.64 34.09 34.03 34.29 34.18
Transformer-DLCL-Deep 31.64 32.66 32.46 33.18 34.11 34.12 34.17 34.21
Transformer-Evolved 31.44 32.46 31.99 33.45 32.95 33.91 33.97 33.99
Ensemble 32.57 33.17 33.30 33.79 34.73 34.52 34.82 34.85
+Reranking - - 34.78# 34.91∗

(b) Japanese→Chinese

Table 2: Results of various system trained on different training data evaluated on the Chinese↔Japanese validation
sets. D1 (16M sentence pairs) is the starting training data. D2 (32M sentence pairs) is D1 concatenated with
the pseudo-parallel data back-translated from the target side of D1 by the ensemble models based on the T2S
single models trained on D1. D3 (64M sentence pairs) is D2 concatenated with two KD synthetic data, including
translating the source side ofD1 by the ensemble models from the S2T-L2R single models and the ensemble models
from the S2T-R2L single models that are both trained onD2. Finally, for one S2T language pair, the external target
monolingual data is translated by the T2S-L2R Transformer-Big model trained on D3. The generated synthetic
corpus is splitted into eight parts equally. Each part (20M sentence pairs) is concatenated with D3 to generate
the training data D4 (84M sentence pairs) that is applied to train one of all the eight baseline systems. For the
given decoding direction and training data, result of the best single system is bold-faced. ∗ denotes the submitted
primary system in the unconstrained condition where only the provided training data is used. # denotes the
submitted contrastive system in the constrained condition where external public monolingual data is applied.
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4.4 Results of Systems Features

In constrained condition, Table 2 shows that BT
based on the target of bilingual data also brings
large improvement to all baseline systems for both
the Zh→Ja and Ja→Zh tasks. We observe a solid
improvement of an average BLEU score of 0.95
for Zh→Ja and an average BLEU score of 0.67 for
Ja→Zh. It is worth noting that the Transformer-
Evolved model achieves the best BLEU score
among all the R2L systems for Ja→Zh. The re-
sult suggests that the human-designed architectures
may not be optimal. Therefore, it seems promis-
ing to replace the manual process of architecture
design with NAS.

Table 2a shows that the improvement of KD is
relatively slight for Zh→Ja. However, the transla-
tion quality of Ja→Zh strong models after BT is
further largely improved using KD, up to an aver-
age BLEU score of 0.89. We attribute this finding
to the quality gap between the provided Chinese
and Japanese data.

Table 2a shows that adding large-scale synthetic
parallel data back-translated from external monolin-
gual data further boost the performance in different
degree. Both the best baseline systems obtain a
significant improvement by 1.32 1.32 BLEU score
for Zh→Ja. However, it is currently not clear to
us how to interpret on the marginal improvement
for Ja→Zh. There is a reason to conjecture that
we might be suffering from reference bias towards
translationese and non-native data (Toral et al.,
2018).

Unsurprisingly, utilizing diverse models with ho-
mogeneous architectures to the ensemble improves
translation quality across both the tasks in differ-
ent degrees. In constrained condition, the Zh→Ja
ensemble models gain a substantial improvement
compared to the baseline

From the Table 2a, our reranking model finally
achieves a significant improvement of about 1.4
BLEU score for Zh→Ja, even when applied on
top of an ensemble of very strong KD+BT mod-
els. However, the improvement of reranking is
relatively inconsiderable for Ja→Zh, and we also
attribute this to the issue of translationese reference
above.

5 Conclusions

We present the Xiaomi’s NMT systems for IWSLT
2020 Chinese↔Japanese open domain translation
tasks. For both translation tasks, our final systems

achieved substantial improvements up by about
9 BLEU score over baseline systems by integrat-
ing careful data filtering, data augmentation, and
other effective NMT techniques. As a result, our
submitted Chinese→Japanese system rank second
to the official evaluation set in terms of character-
level BLEU and Japanese→Chinese system also
achieves a competitive performance.
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Abstract 

This paper introduces technical details of 

machine translation system of Institute of 

Scientific and Technical Information of 

China (ISTIC) for the 17
th

 International 

Conference on Spoken Language 

Translation (IWSLT 2020). ISTIC 

participated in both translation tasks of the 

Open Domain Translation track: 

Japanese-to-Chinese MT task and 

Chinese-to-Japanese MT task. The paper 

mainly elaborates on the model framework, 

data preprocessing methods and decoding 

strategies adopted in our system. In addition, 

the system performance on the development 

set are given under different settings. 

1 Introduction 

This paper describes the neural machine 

translation (NMT) system of the Institute of 

Scientific and Technical Information of China 

(ISTIC) for the 17th International Conference 

on Spoken Language Translation (IWSLT 2020) 

(Ebrahim et al., 2020). ISTIC participated in the 

Japanese-to-Chinese and Chinese-to-Japanese 

MT tasks of the Open Domain Translation 

track. 

In this evaluation, we adopted the NMT 

Google Transformer (Vaswani et al., 2017) 

architecture as a part of our system. We use the 

data released by the organizer and adopted 

general and specific preprocessing methods to 

the training and development data. Several 

filtering methods of corpus are explored to 

improve the quality of the training data. A 

corpus filtering method based on Elasticsearch 

is used to select the development data similar to 

test data. We adopted a model averaging 

strategy in the decoding phase and different 

results are combined in post-processing stage to 

obtain the final translation. The performance of 

the system is compared under different settings 

in the two translation directions, and further 

analyzed. 

2 System Architecture 

Figure 1 shows the flow chart of ISTIC's 

NMT system in this evaluation. Our model 

architecture, data processing and decoding 

strategy are given below. 

 

 

Figure 1. Overall flow chart of evaluation 
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Our baseline system used in this evaluation is 

the Transformer (Vaswani et al., 2017) based on 

a full attention mechanism, which includes an 

encoder and a decoder, as shown in Figure 2. 

Transformer does not use a recurrent neural 

network (Cho et al., 2014) or a convolutional 

neural network (Gehring et al., 2017), but is 

completely based on attention mechanism. It 

can achieve algorithm parallelism, speed up 

model training, further alleviate long-distance 

dependence and improve translation quality. 

 

Figure 2. Transformer model (Vaswani et al., 2017) 

The encoder and decoder are formed by 

stacking N layer blocks. Each layer of encoder 

contains two sub-modules, namely a multi-head 

self-attention module and a feed-forward neural 

network module. The multi-head self-attention 

module divides the dimension of hidden state 

into multiple parts， and each part is separately 

calculated by using self-attention function, 

furthermore, these output vectors are 

concatenated together. Multi-head mechanism 

enables the model to pay more attention to the 

feature information of different positions and 

different sub-spaces. The multi-head attention 

method includes two steps: 1) dot product 

attention calculation; 2) multi-head attention 

calculation. The calculation method of dot 

product attention can be expressed as: 

 )V
d

QK
softmax( = V)K,Q,Attention(

k

T

 

where Q is the query vector, K is the key vector, 

V is the value vector, and dk is the dimension of 

the hidden layer state. On the basis of dot 

product attention, the calculation method of the 

multi-head attention mechanism can be 

expressed as: 

O
1 hMultiHead(Q,K,V)=Concat(head , ,head )W  

         is the matrix parameter. The 

attention value of each head is: 

)VW,KW,QWAttention(=head V

i

K

i

Q

i  
Each layer of the decoder is composed of 

three sub-modules. In addition to the two 

modules similar to the encoder, an 

decoder-encoder attention module is added 

between them and can focus attention on source 

language information in decoding process. In 

order to avoid the problem that too many layers 

cause the model to be difficult to converge, both 

the encoder and the decoder use residual 

connection and hierarchical regularization 

techniques. To make the model obtain the 

position information of the input sentence, 

additional position encoding vectors are added 

to the input layer of the encoder and decoder. 

After the encoder obtains a hidden state, 

Transformer model inputs the hidden state into 

the softmax layer and scores with candidate 

vocabulary to obtain the final translation result. 

3 Data processing 

3.1 Corpus preprocessing 

In this evaluation we use data of the open 

domain translation track released by the 

evaluation organizer of IWSLT 2020, as shown 

in Table 1. It contains existing 
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Japanese-Chinese parallel data (Data 2) and 

web crawl data (Data 1, Data 3, Data 4) 

The quality of Data 2 is much better than 

other web crawling data. Therefore, a two-stage 

preprocessing method is designed as a general 

preprocessing stage and a specific 

preprocessing stage. 

General preprocessing stage: Due to time 

limitation, we did not have a chance to use Data 

4, only the following preprocessing operations 

were performed on Data 1, Data 2 and Data 3: 

 Traditional Chinese to Simplified Chinese 

 Word segmentation 

 Filtering of adjacent similar sentences 

 Sentence length filtering, sentence length 

ratio filtering 

 Language token ratio filtering 

 Special character filtering 

Among them, the filtering of adjacent similar 

sentences calculates the Dice similarity (Dice, 

1945) of the current sentence with the previous 

sentence in the corpus of source language side 

or target language side, and remove the current 

sentence pair if the Dice similarity exceeds 0.9. 

Sentence length filtering removes sentence 

pairs which source sentence length or target 

sentence length is 0 or exceeds 50, and sentence 

length ratio filtering excludes the sentence pairs 

whose ratio of source sentence length and target 

sentence length exceeds the range of [0.2, 5]. 

Since a certain percentage of sentence pairs in 

the corpus use the same language as the source 

and target sentences. The language token ratio 

method (Lu et al., 2018) is used to eliminate 

sentence pairs where the proportion of Japanese 

or Chinese words is smaller than a certain 

threshold， here set to 0.1. Both Japanese and 

Chinese word segmentation are implemented 

using the lexical tool Urheen2. 

Specific preprocessing stage: The quality of 

training corpus has a great influence on the 

performance of machine translation model. The 

web crawling data is large in scale but has a 

great amount of noise, thus, the following 

specific preprocessing operations are 

performed on Data 1 and Data 3: 

GIZA++3 tool is used on Data 2 to obtain an 

alignment dictionary, and each word only 

retains the top ten translations in their 

probability ranking. According to the alignment 

dictionary, the alignment scores for each 

sentence pair in Data 1 and Data 3 are 

calculated and the threshold is set as 0.4 as the 

alignment ratio: 

( , )

( , ) ( , )

( ) ( )

x y y x

ratio X Y

p x y p y x
alignment

length X length Y
 
   

  

where X is  a source sentence, Y is  a target 

sentence; ( , )ratio X Yalignment  is the alignment ratio of 

sentence pair(X,Y); x is the word in sentence X, 

y is the word in sentence Y; p(x, y) is the 

probabilities that word x  translates into word y, 

p(y, x) is the probabilities that word y  translates 

into word x; and ( )length X is the length of 

sentence X; ( )length Y is the length of sentence Y. 

The filtering results after general 

preprocessing and specific preprocessing are 

shown in Table 2. 

Data Original sents 
number 

After    
filtering 

Data1 18966595 8531325 

Data2 1963238 1726668 

Data3 160M+ 44557281 

Table 2. Data filtering results 

3.2 Elasticsearch similar corpus filtering  

In order to further improve the consistency of 

the development set and test set， and further 

                                                      
2 https://www.nlpr.ia.ac.cn/cip/software.html 

3 https://github.com/moses-smt/giza-pp 

Data1 web_crawled_parallel_filtered.tar.gz 

Data2 existing_parallel.tar.gz 

Data3 web_crawled_parallel_unfiltered.tar.gz 

Data4 web_crawled_unaligned.tar.gz  

Table 1. Data provided by reviewer 
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optimize the machine translation performance, 

we choose similar sentence pairs from Data 1 

and Data 2 for each sentence in test set to build 

a new development set and a new test set. We 

define them as ES development set, ES test set. 

ES development set is used for early stopping 

and fit the model to the test set. ES test set is 

used to compare the performance of the original 

development set and ES development set.  

Specifically, for   ,1 875iq i  , in each test set 

sentence, we create an index base D of Data 1 

and Data 2  to retrieve similar sentences 

fromD  with the Elasticsearch
4
 retrieval tool 

(version number: v6.1.0). Elasticsearch 

returns a similarity score between iq  and each 

sentence  ,1jd j D   in D : 

     

        2

, ,

,
i

i j i j i

j j

t in q

score q d coord q d queryNorm q

tf t in d idf t boost t norm t d

 

   

where,  ,i jscore q d  is the similarity score of 

the test set sentence iq with the sentence
jd of 

Data 1 and Data 2;1 875i  , 1 j D  , 

D represents the total number of sentences of 

Data 1 and Data 2;  ,i jcoord q d  is the 

coordination factor between sentence iq  and 

sentence 
jd ;  iqueryNorm q is the 

normalization factor of query sentence 

iq ;  jtf t in d is the frequency of word t  in 

sentence 
jd ;  idf t is the inverse 

                                                      
4
https://www.elastic.co/guide/cn/elasticsearch/guide

/current/practical-scoring-function.html 

document-word frequency of word 

t ;  boost t is the weight used to query the 

word t ;  , jnorm t d is the length norm of the 

sentence 
jd  when querying word t . We select 

rank first and third sentence pairs in similarity 

in D to build a new development set -- ES 

development set, and rank second sentence 

pairs in similarity to a new test set -- ES test set. 

After filtering out duplicate sentence pairs and 

low-quality sentence pairs, the development 

sets and test sets for Zh-Ja and Ja-Zh eventually 

obtained as shown in Table 3. 

The Data Original 
ES 

Zh - Ja Ja - Zh 

Development set 5304 1609 1557 

Test set 875 904 869 
 

Table 3. selection of similar data 

4 Decoding strategy 

4.1 Model average 

In order to reduce model parameter 

instability and improve model robustness, the 

model averaging technique was applied on the 

parameters stored in the same model at different 

training moments. We average the parameters 

of the last N epochs when the model is 

converged. N is set to 5 for this evaluation. 

4.2 Candidate translations merge  

Data 1 and Data 2 are included in training set. 

However, Data 1 contains a great amount of 

noise and results in some untranslated sentences 

in the Zh-Ja translations task, some of which 

take the source sentences directly as the target 

translations. This rarely happens in the 

translation model which was trained only with 

Data 2. Therefore, the former system is taken as 

primary system and the latter as secondary 
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system. The final translations are obtained by 

combining two systems’ translations. For each 

source sentence in the test set of the Zh-Ja task, 

primary system translations and secondary 

system translations are checked by the 

following standards: 1) the primary system 

translation are exactly the same as the source 

sentence; 2) the primary system translation are 

judged as non-Japanese words by the language 

detection tool. If one of the two checks is 

satisfied and the secondary system translation is 

also judged to be Japanese, then the secondary 

system translation will replace the primary 

system translation as final translation. 

5 Experimental results 

5.1 Parameters setting 

The open source project tensor2tensor
5
 is 

chosen for this evaluation system. The main 

parameters are set as follows. Each model uses 

1-3 GPUs for training, and the batch size is 

2048. We use six self-attention layers for both 

encoder and decoder, and the multi-head 

self-attention mechanism has 16 heads. The 

embedding size and hidden size are set to 1024, 

the dimension of the feed-forward layer is 4096 

and ReLU (Krizhevsky et al., 2012) is used as 

the activation function. The dropout mechanism 

(Gal and Ghahramani, 2015) was adopted, and 

dropout probabilities are set to 0.1. BPE 

(Sennrich et al., 2015) is used in all experiments, 

where the merge operation is set to 30K. The 

initial learning rate is 0.2, and the warm-up 

steps are set to 8000.  

To choose the method of word segmentation, 

we use Data 2 as training data and score on the 

development set provided by evaluation 

organizer, as shown in Figures 3 and 4 where 

the horizontal axis is the different settings of 

model parameter alpha, and vertical axis as the 

                                                      
5 https://github.com/tensorflow/tensor2tensor 

character-based bleu4. Zh_ja_b and ja_zh_b 

means Jieba6 word segmentation in Chinese (Zh) 

and Mecab7 word segmentation in Japanese (Ja). 

Zh_ja_u and ja_zh_u use the lexical tool 

Urheen (Zh,Ja) in both the two language.  

 

Figure 3. Comparison of word segmentation in 

Chinese-to-Japanese task 

 

Figure 4. Comparison of word segmentation in 

Japanese-to-Chinese task 

5.2 Experimental results 

Training data comparison: In order to 

choose training data, we use baseline system 

and score on the original development set, 

shown in Tables 4-5. It can be seen that 

increasing the scale of training corpus helps to 

improve the translation ability. Although Bleu 

(token) score decreased after Data 1 was added 

to Chinese-to-Japanese task, we still decided to 

adopt Data1 + Data2 for training data on the 

both translation tasks. 

                                                      
6 https://github.com/fxsjy/jieba 
7 https://github.com/SamuraiT/mecab-python3 
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Data Bleu 
(token) 

Bleu 
(character) 

Data2 16.76 26.14 

Data1 + Data2 15.83 27.01 

Data1,2,3 17.64 28.9 

Table 4. Training data comparison in 

Chinese-to-Japanese task 

Data Bleu 
(token) 

Bleu 
(character) 

Data2 11.67 19.95 

Data1 + Data2 14.79 26 

Data1,2,3 13.97 24.75 

Table 5. Training data comparison in Japanese 

-to-Chinese task 

Development data Bleu 
(token) 

Bleu 
(character) 

Original 
development set 20.79 28.72 

Es development set 21.15 29.6 

Original development set 
+  Es development set 21.28 28.96 

Table 6. Development set comparison in   

Chinese-to-Japanese task 

Development data Bleu 
(token) 

Bleu 
(character) 

Original 
development set 13.91 25.79 

Es development set 14.34 25.86 

Original development set 
+  Es development set 13.94 25.97 

Table 7. Development set comparison in Japanese 

-to-Chinese task 

ES development set: In order to verify the 

effect of ES development set, we use Data2 as 

training data, and to train baseline system on 

different combinations of development sets, 

and score on ES test set, as shown in Tables 6-7. 

The experimental results show that ES 

development set alone or together with the 

original development set is better than the 

original development set alone to train machine 

translation system. 

The statistics of training data and 

development set that are used in this evaluation 

can be found in Table 8. 

System comparison: In order to choose 

machine translation system, we designed 

different combinations of training data, and 

further trying model average strategy on 

original development set + ES-development set, 

and score on them, as shown in Tables 9-10. It 

can be seen that the larger training set 

Data2+Data1 leads to the result improvement, 

but no further effect to the growth of training set. 

Since Data3 was captured from public network, 

its quality is still limited even though we have 

The direction  Data Number of sentences Number of words 

Zh-JA 
Training data 54M ZH-613M;  JA-753M 

Original + Es 
Development set 

6913 ZH-64K;  JA-79K 

JA-Zh 
Training data 54M Zh-613M;  Ja-753M 

Original + Es 
Development set 

6861 ZH-68K;  JA-84K 

Table 8. The statistics of data 

 

System 
Bleu 

(token) 
Bleu 

(character) 
Data2 18.86 28.82 

Data1 + Data2 23.82 35.95 
Data1+Data2+ Data3 22.87 35.14 

Data2 + avg 19.59 29.81 
Data1+Data2+avg 24.51 36.70 

Table 9. System comparison inChinese-to-Japan 

task 

System 
Bleu 

(token) 
Bleu 

(character) 
Data2 12.00 23.25 

Data1 + Data2 20.04 32.09 
Data1+Data2+ Data3 16.34 27.72 

Data1+Data2+avg 20.98 33.27 

Table 10. System comparison in 

Japanese-to-Chinese task 
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adopted a few strategies to filter it. Meanwhile, 

Data 3 has open domains yet we did not carry 

out consistency analysis on the data domain. In 

addition, the model average strategy also brings 

some improvement to the translation effect. 

Therefore, we adopted model average 

strategy and train on data1+data2 for the two 

translation tasks. Table 11 shows some 

translation results of Chinese-to-Japanese 

translation task. It can be seen that for <sent2>, 

the translation quality of Data2+Data1+avg 

model is better than that of Data2+avg model. 

But due to the noise in Data 1, some translations 

of the sentences are completely the same as 

source text. But the situation for Data2+avg 

model is rare, thus we take the post-processing 

strategy to merge them. Data1+Data2+avg 

model is looked as primary system, Data2+avg 

model as secondary system. Take <sent1> as an 

example, primary system translation is judged 

to be in Chinese and is just a copy of Chinese. The 

secondary translation was checked to be in 

Japanese, and successfully express the meaning 

of the source sentence. 

Our final system: 1) data filtering; 2) a 

transformer system trained with Data2+Data1; 

3) decoding: model average, candidate 

translations merge. 

6 Conclusions 

This paper introduces the main techniques 

and methods used by the Institute of Scientific 

and Technical Information of China on the task 

of two-directions translation of Japanese and 

Chinese in IWSLT 2020 Open Domain 

Translation track. We use the architecture of 

transformer model based on a full attention 

mechanism.  Several filtering methods were 

explored in data preprocessing, and the model 

average strategy is adopted in decoding. Similar 

development set is chosen based on ES and the 

results are merged by post-processing. 

Experimental results show that these methods 

can effectively improve the quality of 

translation. 

Due to limited time, many methods are not 

able to execute during this evaluation. Our 

adopted translation model still has a lot room to 

improve. We expect to learn more advanced 

Source-Zh Data2+avg Translation Data2+Data1+avg Translation 

<sent1> 2 月 13 日 ， 日本 东京 一 

改 前 几 日 的 寒凉 ， 迎来 一 个 

拨云  见  日  的  好  天气  。(On 

February 13, Tokyo, Japan ushered 

in a good weather to see the sun  as 

soon as it changed the cold of the 

previous days.) 

2 月 13 日 （ 2 月 13 日 ） 、 日

本 の 東京 で 少し 前 の 寒 さ に 

より 、 晴れ た 日 を 迎える 。
(February 13 (February 13) greets a 

sunny day with the recent cold in 

Tokyo in Japan.) 

2 月 13 日 ， 日本 东 京 一 改 前 

几 日 的 寒 凉 ， 迎 来 一 个 拨 云 

见 日 的 好 天 气 。(It's just a copy 

of Chinese.) 

<sent2> 阿部 知事 对 中国 疫

情 致以 慰问 ， 介绍 了 长野县 为 

中方 抗击 疫情 提供 支持 情况 ， 

表示 当前 日本 国内 正 全力 阻止 

疫情 扩散 ， 愿 同 中方 继续 加

强 配合 ， 早日 战胜 疫情 。(Abe 

extended condolences to China on 

the epidemic and introduced 

nagano prefecture's support for 

China's fight against the epidemic. 

Abe said that Japan is doing its best 

to prevent the spread of the 

epidemic and is ready to strengthen 

cooperation with China to 

overcome the epidemic at an early 

date.) 

阿部 知事 は 中国 の 疫病 に

対 す る  哀 悼  の  意  を  表

明 し 、 長野 県 を 中国 側 が 積

極  的  に  支持  し  て  いる  こ

と を 紹介 し 、 現在 の 日本 国

内 で は 流行 を 阻止 し つつ あ

る と 述べ た 。 (Governor Abe 

expressed his condolences to the 

plague of China and introduced the 

fact that the Chinese side actively 

supported Nagano Prefecture, and 

said it was blocking the epidemic in 

present Japan.) 

阿部  知事  は  中国  の  流

行  を  慰 問  し  、  長

野 県 の 中 で 流行 に 対抗 す

る ため の 支援 を 紹介 し 、 日

本 国内 で は 流行 の 拡散 を 全

面  的  に  阻止  し  て  いる  こ

と を 明らか に し た 。(Governor 

Abe extended condolences to the 

epidemic in China, introduced 

support for combating the epidemic 

in Nagano Prefecture, and made 

clear that it was completely 

stopping the spread of the epidemic 

in Japan.) 

Table 11. Translation results merge in Chinses-to-Japanese 
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techniques and construct a better machine 

translation system in a short future. 
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Abstract

This paper describes Octanove Labs’ submis-
sion to the IWSLT 2020 open domain transla-
tion challenge. In order to build a high-quality
Japanese-Chinese neural machine translation
(NMT) system, we use a combination of 1)
parallel corpus filtering and 2) back transla-
tion. We have shown that, by using heuristic
rules and learned classifiers, the size of the
parallel data can be reduced by 70% to 90%
without much impact on the final MT perfor-
mance. We have also shown that including
the artificially generated parallel data through
back-translation further boosts the metric by
17% to 27%, while self-training contributes lit-
tle. Aside from a small number of parallel sen-
tences annotated for filtering, no external re-
sources have been used to build our system.

1 Introduction

Building a robust, open domain machine transla-
tion (MT) system for non-English, Asian languages
remains a challenge since many MT research ef-
forts have focused mainly on European languages
(such as English and German) and/or on particular
domains (such as news). This is especially the case
when there is lack of high-quality, human-curated
parallel corpora and one needs to bootstrap an MT
system from noisy parallel data crawled from the
Web.

This is the exact setting of the IWSLT 2020 open
domain translation challenge (Ansari et al., 2020),
where the organizers provide large, noisy parallel
datasets crawled from the Web and the participants
build open-domain machine translation systems be-
tween Japanese (JA) and Chinese (ZH). The partic-
ipants are also encouraged to only use the provided
datasets to train their models. Therefore, the key
to building high-quality MT systems seems to be
in how to filter and make the most of the provided,
noisy datasets.
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Web crawled (WC)
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(b) Filter (b) Filter

Official
Baseline

BASELINE

FILTERED

(c) Existing parallel 
filtered (EPf)

(c) Web crawled 
filtered (WCf)

(e) Web crawled 
remainder (WCr)

(f)

(g) (g)

(f)

Official dev.
dataset (DEV)

(d) Our dev.
dataset (DEV+)

COMBINED
(ZH→JA)

COMBINED
(JA→ZH)

FINAL
(ZH→JA)

FINAL
(JA→ZH)

B
ac

k-
Tr

an
sl

at
io

n
P

ar
al

le
l C

o
rp

u
s 

F
ilt

e
ri

n
g

JA (MT) ZH (MT)ZH JA

Figure 1: Overview of the data/training pipeline

Based on these insights, we used a combina-
tion of 1) parallel corpus filtering (Koehn et al.,
2018, 2019) and 2) back-translation (Sennrich et al.,
2016; Edunov et al., 2018) techniques as our main
strategy. For 1), we showed that we can reduce
the size of the parallel corpora by 70% to even
90% without much impact on the final MT perfor-
mance. As demonstrated in (Chen et al., 2019),
we also verified that artificially generated parallel
data through back-translation can further help im-
prove the performance by 17% to 27% depending
on the direction. We used the vanilla Transformer
(Vaswani et al., 2017) as our NMT model.

In the following sections, we describe the data
and training pipeline for building our NMT sys-
tem. We start with the two datasets provided by the
shared task organizers—the existing parallel (EP)
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dataset that includes public, parallel sentences, as
well as the Web crawled (WC) dataset created by
crawling, aligning, and filtering JA-ZH parallel sen-
tences from the Web. Aside from a small number
of parallel sentences annotated for filtering, no ex-
ternal resources besides these two have been used
to build our NMT system. The entire data and
training pipeline is illustrated in Figure 1.

2 Parallel Corpus Filtering

Our data processing pipeline consists of two
main strategies–parallel corpus filtering and back-
translation, which are shown as two main blocks in
Figure 1. This section describes the first.

2.1 Sentence Pair Quality Analysis
The first observation we make is that many of the
sentence pairs, even from the existing parallel (EP)
dataset, are not high quality. In order to investi-
gate the quality of the datasets, we first extracted
roughly 1,000 sentence pairs from each dataset ((a)
in Figure 1) and had two fluent speakers of both
languages annotate each pair with a label indicat-
ing whether the pair is an accurate translation of
each other, and if not, the reason why. We used the
following tags to indicate the reasons:

• INVALID: text is garbled or contains few nat-
ural language words

• MT: text is suspected to be generated by MT.
We made sure at least one native speaker of
each language double checks this label.

• MISSING: information is missing from either
side

• MISALIGNED: information is missing from
both sides

• NOT TRANSLATED: both sides are identical
except minor variations (e.g., simplified vs
traditional Chinese)

• THIRD LANGUAGE: text is written in a lan-
guage that is neither Japanese nor Chinese

Table 1 shows the breakdown of the labels and
reasons annotated to sentence pairs, both for the
existing parallel (EP) and the Web crawled (WC)
datasets. Only 38% and 29% of the sentence
pairs were deemed suitable for EP and WC, re-
spectively. The most common error was MIS-
ALIGNED, meaning the sentences contain similar

Label Reason EP WC

NG

BOTH INVALID 0 2
BOTH MT 0 92
BOTH ZH 0 60
JA INVALID 1 1
JA MISSING 149 33
JA MT 3 49
ZH INVALID 8 0
ZH MISSING 80 21
ZH MT 9 24
MISALIGNED 366 371
NOT TRANSLATED 2 50
THIRD LANGUAGE 4 11

OK 380 287

Total 1002 1001

Table 1: Result of sentence pair quality analysis

information but have some degree of mismatch that
disqualifies the pair as a quality translation of each
other. This can happen when the both segments are
crawled from the same source (e.g., a webpage) but
mis-aligned due to the way the text is segmented.

2.2 Training Sentence Pair Classifiers

These results led us to decide to use heuristic rules
and build learned classifiers to filter out low quality
sentence pairs from both datasets, illustrated as
(b) in Figure 1. There is a large body of research
on parallel corpus filtering (Koehn et al., 2018,
2019). We used a combination of heuristics rules
as well as classifiers learned from the annotated
data mentioned above.

First, we filter out sentence pairs that violate any
one of the following criteria:

• both sides are 512 or fewer Unicode charac-
ters.

• LJA/LZH < 9 and LZH/LJA < 9 where
LJA and LZH are the lengths of the Japanese
and the Chinese side, respectively.

• the detected languages match the expected
ones (Japanese and Simplified Chinese). We
used a neural language detector NanigoNet1

to automatically detect the language of text.

1https://github.com/mhagiwara/
nanigonet
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EP WC

Before 1,963,238 18,966,595
After 627,811 1,973,068

Table 2: Size of the datasets before and after filtering

Second, we trained a binary logistic regression
classifier from the annotated sentence pairs men-
tioned above, and applied it to the rest of the dataset
to filter out low-quality sentence pair candidates.
The classifier uses only three features. We built one
classifier per each dataset (EP and WC) only using
the annotated portion of the dataset and applied to
the rest.

• log length of the Japanese text (in Unicode
characters)

• log length of the Chinese text (in Unicode
characters)

• cosine similarity between the sentence embed-
dings computed using the Universal Sentence
Encoder (USE) (Cer et al., 2018)

As a result, we were able to reduce datasets to
31.9% (EP) and 10.4% (WC) of their original size
(Table 2). We call the resulting filtered datasets the
existing parallel filtered (EPf) and the Web crawled
filtered (WCf), respectively, as shown as (c) in
Figure 1. We achieved this with little impact on the
translation quality. See the experiment section for
more details.

Finally, we note that the official development
dataset (DEV), which is created from the JEC Ba-
sic Sentence Data2, might not be the best choice
for evaluating an open domain machine translation
system. Due to the way the the dataset is created
(by first mining “typical” Japanese sentence struc-
tures from a large text corpus, then by translating
these sentences to Chinese), it may not be well
suited to evaluate ZH-to-JA MT systems. We aug-
mented this dataset by adding sentence pairs that
were tagged “OK” in the annotation process. This
increased the size of the development dataset from
5,304 to 5,970 pairs. All the subsequent experi-
ments were validated using this dataset, which we
call DEV+ hereafter ((d) in Figure 1).

2http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JEC%20Basic%20Sentence%20Data

3 Back-Translation

One of the effective techniques, especially for low-
resource settings, is the use of back-translation
(Sennrich et al., 2016; Edunov et al., 2018). The
idea is to first train a target-to-source MT system
to translate a large, monolingual dataset in the tar-
get language into the source language, and add the
resulting, artificial parallel dataset to existing ones
and retrain a source-to-target MT system.

We decided to reuse the “leftover” from the fil-
tering process, that is, the set of sentence pairs that
deemed low-quality in the parallel corpus filtering
phase described in the previous section. Specifi-
cally, after running sentence pairs through the set
of heuristic rules described above, we break them
into the source side (Japanese) and the target side
(Chinese) and treat each as an independent mono-
lingual corpus. We call this corpus the Web crawled
remainder (WCr) dataset ((e) in Figure 1).

We then trained ZH-to-JA and JA-to-ZH NMT
systems from a combination of EPf and WCf
datasets and used the systems to generate artifi-
cial source sides for both directions ((f) in Figure
1). When generating artificial source sides, we used
top-k sampling (versus beam search) based on the
findings of Edunov et al. (2018). The final models,
shown as (g) in Figure 1, were trained from the
combination of EPf, WCf, as well as WCr and its
machine translated version.

4 Experiments

4.1 Experimental Settings

We used the vanilla Transformer (Vaswani et al.,
2017) as our neural MT model. All the experiments
were conducted using the fairseq library (Ott et al.,
2019) with half precision floating point (fp16). The
training objective is the label smoothed cross en-
tropy, which was optimized by the Adam optimizer
(Kingma and Ba, 2014) with β1 = 0.9, β2 = 0.997,
and ε = 1.0× 10−9. We ran each experiment for
40 epochs and chose the best checkpoint based on
the development set loss. The beam width was 20.

We tokenized both Japanese and Chinese with
the SentencePiece library (Kudo and Richardson,
2018) with a shared vocabulary. The translation
quality was evaluated with the character 4-gram
BLEU (Papineni et al., 2002).

At the test time, we resolved unknown words
(which often arise when there are rare unknown
characters on the source side) using word alignment
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obtained by fast align (Dyer et al., 2013)3.

4.2 Hyperparameters

Before we experiment with parallel corpus filtering
and back-translation, we ran random parameter
search with the baseline dataset (EP) to find the
optimal set of hyperparameters. The type and the
range of hyperparameters we considered are as
follows:

• Size of SentencePiece vocabulary: 10k, 15k,
20k, 25k, 30k

• Frequency threshold for including tokens
(both sides): 3, 5, 10

• Number of encoder/decoder layers: 4, 5, 6

• Embedding dimension: 256, 512, 768, 1024

• Feedforward dimension: 256, 512, 1024,
2048, 4096, 8192

• Number of attention heads: 1, 2, 4, 8, 16

• Gradient clipping: 0.0, 10.0, 25.0, 50.0

• Learning rate: 1e-6, 2.5e-6, 5e-6, 1e-5, 2.5e-5,
5e-5, 1e-4, 2.5e-4, 5e-4

• Number of warmup steps: 2000, 4000, 8000,
16000, 32000

• Dropout: 0.1, 0.2, 0.3, 0.4, 0.5

• Weight decay: 0.0, 1.0e-4, 2.5e-4, 5.0e-4

• Label smoothing: 0.1, 0.2, 0.3

• Batch size in tokens: 2048, 4096, 6144

We ran about 20 rounds of random parameter
search and settled with the hyperparameter setting
shown by the bold face in the list above. The final
models were an ensemble of 6, 8, and 10-layer
Transformers with all other hyperparameters being
identical.

4.3 Results

Here is the list of all the models trained from dif-
ferent combinations of datasets:

3https://github.com/clab/fast_align

JA→ZH ZH→JA

Official baseline 20.03 27.03
BASELINE 24.02 27.68
FILTERED 23.15 27.11
COMBINED 26.19 29.68
BT w/ 500k pairs 28.39 30.68
BT w/ 1M pairs 28.47 31.29
BT w/ 2.6M pairs 29.24 32.66
BT w/ 13M pairs 30.67 33.46
FINAL 31.21 33.81

Table 3: BLEU scores for different models

• Official baseline: the baseline BLEU scores
provided by the organizer. Note that the these
scores are not comparable to other models
below since the development set is different.
We also note that the official baseline model
is very similar to our model in terms of the
neural architectures as well as the number of
parameters.

• BASELINE: baseline model trained with EP

• FILTERED: same as BASELINE but trained
with EPf

• COMBINED: model trained with EPf and
WCf

• BT: model trained with EPf, WCf, and back-
translated WCr with varying size

• FINAL: BT trained on the entire WCr with
ensemble

Table 3 shows the BLEU scores of these models
computed against the DEV+ dataset. By compar-
ing BASELINE and FILTERED, you see that fil-
tering had little impact on the final BLEU scores.
By comparing COMBINED and BT with different
sizes, you see that adding back-translation helped
the performance—the larger the amount of back-
translation, the larger the increase was. These re-
sults confirm that our strategy—parallel corpus fil-
tering and back-translation—was effective.

5 Discussion

5.1 Negative Results
Finally, here we include the list of things we tried
but didn’t contribute to the improvement of the MT
quality:
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• Filtering by provenance: upon cursory review,
we found that the quality of parallel sentences
varies a lot by their provenance. We included
the source of each pair as an extra set of in-
dicator features, although doing so ended up
removing too many pairs and hurt the final
performance.

• Self-training (Ueffing, 2006; Zhang and Zong,
2016; He et al., 2019): we also tried using
forward-direction MT models to generate the
target side from WCr. Including artificially
generated parallel data this way didn’t im-
prove the final BLEU score.

• Beam search: when generating back-
translation, using beam search instead of top-k
sampling didn’t improve the metrics as much.

• Normalizing to Simplified Chinese: we tried
normalizing the Chinese side to the simli-
fied script using the OpenCC toolkit4 to en-
sure the consistency. We observed that doing
so inadvertently normalized many traditional
characters that should be preserved between
Japanese and Chinese and didn’t improve the
final performance.

We note that increasing the size of the Trans-
former beyond 6 layers did not necessarily lead
to improved quality, while ensembling multiple
large models did. We also considered leveraging
the unaligned version of the Web crawled dataset
provided by the organizers, although the dataset
contains a large amount of low-quality text that
appears to be generated by templates (such as up-
dates on currency exchange rates) and we believe
it would add little value as an extra data source.

5.2 Use of External Data
Finally, we ran a follow-up experiment in order
to explore the extent to which our model can
be improved by adding external data. Specifi-
cally, we obtained parallel sentences from HiNa-
tive5, a community-driven language learning QA
service, by collecting Japanese-Chinese question-
answer pairs in the form of “How do you say X
in Japanese/Chinese?” Both the questions and the
answers are written by the user community and
the resulting dataset is fairly noisy. In addition to
the heuristic rules, we trained a logistic regression

4https://opencc.byvoid.com/
5https://hinative.com/

JA→ZH ZH→JA

BASELINE 24.02 27.68
BASELINE w/ HiNative data 25.32 29.20

Table 4: BLEU scores for models with external data

classifier in a similar way to the ones described in
Section 2, except that we trained only one classi-
fier using a combined held-out data from both EP
and WC. After filtering, the HiNative dataset has
been reduced to around 80k sentence pairs, which
we added to EP to explore its impact on the NMT
performance.

As Table 4 shows, even though the amount of
the added data is a fraction of the original size (80k
vs 1.9M), BLEU scores improved by more than
5%. This result suggests that our filtering method
is very effective in only retaining high-quality pairs
and the newly added data from HiNative provides
new perspectives and genres that were not covered
by the existing parallel dataset.

As future work, we wish to explore other ex-
ternal datasets for Japanese-Chinese translation,
namely, JParaCrawl (Morishita et al., 2019) and
WikiMatrix (Schwenk et al., 2019).

6 Conclusion

This paper describes Octanove Labs’ submission
to the IWSLT 2020 open domain translation chal-
lenge. We combined parallel corpus filtering and
back-translation to build a Japanese-Chinese open
domain NMT system. Through a series of experi-
ments, we verified that our filtering method is ef-
fective in preserving the translation accuracy while
greatly reducing the size of parallel data required
to train the NMT model. We also found that use of
artificially generated parallel data from the remain-
der of the filtered corpus through back-translation
improved the final performance of the system.
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Abstract
This paper describes NAIST’s NMT system
submitted to the IWSLT 2020 conversational
speech translation task. We focus on the
translation disfluent speech transcripts that in-
clude ASR errors and non-grammatical utter-
ances. We tried a domain adaptation method
by transferring the styles of out-of-domain
data (United Nations Parallel Corpus) to be
like in-domain data (Fisher transcripts). Our
system results showed that the NMT model
with domain adaptation outperformed a base-
line. In addition, slight improvement by the
style transfer was observed.

1 Introduction

Neural Machine Translation (NMT) has signifi-
cantly improved the quality of Machine Translation
(MT) (Bahdanau et al., 2014; Sutskever et al., 2014;
Luong et al., 2015). However, domain-specific
translation is still difficult in low-resource scenar-
ios, although high performance can be achieved
in resource-rich scenarios (Chu and Wang, 2018).
Another major problem is the difficulty in translat-
ing noisy input sentences including filler, hesita-
tion, etc. Belinkov and Bisk (2017) suggests the
difficulty in learning to translate noisy sentences
compared to clean ones. The translation of noisy
sentences is very important for spoken language
translation. In the IWSLT 2020 Conversational
Speech Translation Task, we are going to tackle
these two problems.

The task includes speech-to-text and text-
to-text translation from disfluent Spanish
speeches/transcripts to fluent English text. We
chose the text-to-text subtask for our challenge
task participation. The data for this task consists of
about 130K bilingual pairs, would not be enough
to learn a highly accurate NMT (Koehn and
Knowles, 2017). In such a low-resource scenario,
one promising way is domain adaptation using

out-of-domain parallel corpora and in-domain
monolingual corpora (Wang et al., 2016; Chu et al.,
2017).

In domain adaptation, the “similarity” between
in-domain and out-of-domain data affects the trans-
lation accuracy significantly (Koehn and Knowles,
2017). A domain can be defined by any property
of the training data such as topic and style. We
expect that the domain similarity comes from these
properties.

Let us return to the task description. In the task,
the inputs are conversational speech transcripts by
Automatic Speech Recognition (ASR). They can
include ASR errors as well as disfluent and non-
grammatical utterances in spontaneous speech. In
contrast, the outputs are fluent sequences. In other
words, the purpose of this task is to translate disflu-
ent transcripts into fluent sentences. As mentioned
before, domain adaptation is a common practice in
a low-resource scenario. However, it is difficult to
prepare external parallel data in a disfluent source
language and a fluent target language. Although
fluent written parallel data are widely available, the
effects of training with them are limited because
the style of the input sentences differs from the in-
domain data. We need a new strategy for training
that can effectively use out-of-domain data with
low similarity to in-domain data.

In this paper, we propose a novel domain adapta-
tion method through style transfer of out-of-domain
data using unsupervised machine translation. We
increase the similarity between out-of-domain and
in-domain data by transferring out-of-domain flu-
ent input sentences into disfluent styles. This en-
ables effective domain adaptive training and pro-
vides a robust NMT system for noisy input sen-
tences.
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Figure 1: Overview of the proposed method.

2 System Details

Our method consists of two components: (1) Style
Transfer model from fluent to disfluent Spanish. (2)
Translation model from disfluent Spanish to fluent
English, as illustrated in Figure 1. First, we trans-
ferred fluent Spanish in out-of-domain data into
disfluent Spanish (Section 2.1). Then we trained
the NMT model leveraging both out-of-domain par-
allel data as well as in-domain parallel data (Sec-
tion 2.2).

2.1 Unsupervised Style Transfer
We employed an unsupervised learning method for
the style transfer of Spanish of out-of-domain data.
This is because there is no parallel corpus of fluent
and disfluent Spanish and it is not possible to adapt
supervised learning methods. Artetxe et al. (2018);
Lample et al. (2018a,b) proposed Unsupervised
Neural Machine Translation (UNMT) that learns
the translation using monolingual corpora of two
languages. In this system, we built a fluent-to-
disfluent style transfer model based on UNMT with
out-of-domain fluent data and in-domain disfluent
data.

2.2 Domain Adaptation
For the challenge task, we apply fine-tuning, which
is one of the conventional domain adaptation meth-
ods of MT (Sennrich et al., 2016a). The fine-tuning
can result in significant improvements compared
to both only in-domain training or only out-of-
domain training (Dakwale and Monz, 2017). In
this method, an NMT is pre-trained on a resource
rich out-of-domain data until convergence, and then
its parameters are fine-tuned on a low-resource in-
domain data.

In this study, we pre-trained the NMT model on
the pseudo in-domain data generated in 2.1, and

Table 1: The number of sentence pairs of the data.

# sentences
Fisher/Train 138,720
Dev 3,977
Test 3,641
UNCorpus/Train 1,000,000
Dev 4,000
Test 4,000

then fine-tuned on true in-domain data.

3 Results

3.1 Datasets
We used the LDC Fisher Spanish speech (disfluent)
with new English translations (fluent) (Post et al.,
2013; Salesky et al., 2018) as parallel in-domain
data and the United Nations Parallel Corpus (UN-
Corpus) (Ziemski et al., 2016) as parallel out-of-
domain data.

Fisher has the following multi-way parallel data
distributed by the task organizer:

1. Spanish disfluent speech

2. Spanish disfluent transcripts (gold)

3. Spanish disfluent transcripts (ASR output)

4. English disfluent translations

5. English fluent translations

When training, we used (3) as input and (4) or (5) as
output. UNCorpus consists of manually translated
UN documents of the 25 years (1990 to 2014) for
the six official UN languages, Arabic, Chinese,
English, French, Russian, and Spanish. For our
submission, one million Spanish-English bilingual
sentence pairs were chosen randomly and used as
out-of-domain data. Data statistics are shown in
Table 1.

173



3.2 Spanish Style Transfer
3.2.1 Experimental Settings
Data We trained the style transfer from fluent to
disfluent sentences using both Fisher and UNCor-
pus Spanish data. We preprocessed the data with
Byte Pair Encoding (Sennrich et al., 2016b) to split
sentences into subwords. The vocabulary size was
set to 32,000 and sentences longer than 175 sub-
words were excluded from the training. We apply
lowercasing and punctuation removal to UNCorpus
same as Fisher corpus.

Model We used the implementation of UNMT1

by Lample et al. (2018b). UNMT model was based
on Transformer (Vaswani et al., 2017). Our models
follow the suggested parameters from implementa-
tion of UNMT. We used three-layer shared encoder
and shared decoder. We set the word embedding
dimensions, hidden state dimensions, feed-forward
dimensions to 512, 512, and 2048, respectively. We
employed eight attention heads for both the encoder
and the decoder. We chose Adam (Kingma and Ba,
2014) with a learning rate of 0.0001, β1 = 0.9,
β2 = 0.999 as the optimizer. Each mini-batch
contained 16 sentences.

In order to gain robustness to the content of
the sentence, we first pre-trained the model using
only UNCorpus/Train. During pre-training, early
stopping was applied on the BLEU score between
source sentences and back-translated sentences of
the UNCorpus/Dev with a patience of 10 iterations,
and the model with the highest score was stored.
After that, additional training of 1 iteration using
the Fisher/Train was performed.

Evaluation Axelrod et al. (2011) used a lan-
guage model of in-domain data for out-of-domain
data selection in domain adaptation. Following this
study, we estimated the similarity between domains
by measuring the perplexity (PPL) of the training
set W of the out-of-domain data using a 3-gram
language model M made from the in-domain data
(Equation 1).

PPL = 10H(W |M) (1)

H(W |M) is the entropy, defined as the average of
the negative log-likelihood per token, as shown in
the following equation:

H(W |M) =
1

|W |
∑

s∈W
− log10 P (s|M) (2)

1https://github.com/facebookresearch/UnsupervisedMT

Table 2: Perplexity and the number of unknown words
(# UNK) for Fisher/train in the 3-gram language model.

Training data perplexity # UNK
Fisher 72.46 0
UNCorpus 589.81 5,173,539
Fisher-like UNCorpus 474.47 4,217,819

P (s|M) is the probability of sentence s in the lan-
guage model M . We used the SRI Language Mod-
eling Toolkit to build the language model2.

3.2.2 Results

Table 2 shows the perplexity of the language model
for the Fisher/train. By transferring the fluent UN-
Corpus into the disfluent Fisher tone (Fisher-like
UNCorpus) reduced the perplexity and number of
unknown words.

3.3 NMT with Domain Adaptation

We trained the NMT models which translate from
disfluent Spanish to fluent English.

3.3.1 Experimental Settings

Data For training data, we used Fisher/train as
in-domain data and UNCorpus/Train and Fisher-
like UNCorpus/Train as out-domain data. Fisher-
like UNCorpus has the same number of sizes as
UNCorpus. During training, we used Fisher/Dev as
a validation set. Fisher/Test was used for evaluation.
We preprocessed the data in the same way as in the
previous experiment. However, for practical use,
lowercasing and punctuation removal were applied
only to the source language.

Model We used OpenNMT-py3. The NMT
model was based on Transformer. The hyper-
parameters of the model almost follow the trans-
former base settings (Vaswani et al., 2017). Note
that in the Fisher-only experiment without domain
adaptation, the batch size was halved to 2048 to-
kens. The model was trained for 20,000 iterations
using out-of-domain data, and then fine-tuned for
1,000 iterations using in-domain data. The model
parameters saved every 100 iterations.

Evaluation To evaluate the performance, we cal-
culated the BLEU scores (Papineni et al., 2002)
with sacreBLEU4.

2http://www.speech.sri.com/projects/srilm/
3https://github.com/OpenNMT/OpenNMT-py
4https://github.com/mjpost/sacreBLEU
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Table 3: BLEU scores of trained NMT models for Dis-
fluent Spanish to Fluent English.

System Fisher/Test
Fisher 14.8
UNCorpus 7.8
Fisher-like UNCorpus 6.7
UNCorpus + Fisher 18.3
Fisher-like UNCorpus + Fisher 18.5

Table 4: BLEU scores for Disfluent Spanish to Flu-
ent English. NMT models used Fisher’s disfluent ref-
erences for training.

System Fisher/Test
Fisher 11.6
UNCorpus + Fisher 15.2
Fisher-like UNCorpus + Fisher 15.6

3.3.2 Results
Tables 3 and 4 show the BLEU scores of the sys-
tems evaluated with single fluent references. In
Table 3, “Fisher”, “UNCorpus” and “Fisher-like
UNCorpus” are models trained on a single training
data. “UNCorpus + Fisher” and “Fisher-like UN-
Corpus + Fisher” are models that were pre-trained
on UNCorpus and Fisher-like UNCorpus and then
fine-tuned on Fisher/Train, respectively. The mod-
els in Table 4 did not use Fisher’s fluent references
when training but instead used disfluent references.

Both with and without Fisher’s fluent references,
domain adaptation training outperformed the base-
line. Furthermore, when the pseudo-disfluent Span-
ish generated by the style transfer was used for
training, the score was better than the use of the
original UNCorpus without the style transfer. We
submitted six systems in total: “Fisher”, “UNCor-
pus + Fisher” and “Fisher-like UNCorpus + Fisher”
in Table 3, and all of Table 4.

4 Discussion

Effect of Style Transfer In domain adaptation
training, the accuracy was slightly improved by
transferring the style of out-of-domain data to be
like in-domain data. This shows that there is some
significance in increasing the similarity between
domains through style transfer.

However, when we did not perform domain adap-
tation and only trained with out-of-domain data,
the accuracy for in-domain data was reduced by
style transfer. The following is an example of style
transferred sentence:

nueva york 1 a 12 de junio de 2015 (original)
nueva york oh a mi eh de de de de (generated)

As shown above, some generated sentences lost the
meaning of the sentence due to missing phrases. As
a result, the quality of the parallel data decreased
and the final translation performance was also de-
graded. One of the causes of this problem is style
transfer constraints are too strong. Thus, it may be
mitigated by a model that could control the trade-
off between style transfer and content preservation
(Niu et al., 2017; Agrawal and Carpuat, 2019; Lam-
ple et al., 2019).

Further improvement can be expected by pre-
venting changes in the meaning of sentences and
converting only the style.

Fluent vs Disfluent references The model
trained using Fisher’s original disfluent data had
a BLEU score of about three points lower than
the model trained using the fluent data. In other
words, in this task, we found that removing the dis-
fluency of reference sentences improves the BLEU
by about three points for all the learning strategies
we tried. In domain adaptation, we expected this
problem to be mitigated by training on large out-
of-domain data with fluent reference sentences, but
the desired results were not obtained.

5 Conclusion

In this paper, we presented NAIST’s submission
to the IWSLT2020 Conversational Speech Trans-
lation task. We experimentally show that domain
adaptation can improve the translation accuracy of
disfluent sentences. Moreover, the translation ac-
curacy was improved by increasing the similarity
between domains through style transfer, but the
effect was limited due to the parallel data quality
degradation.

Furthermore, The loss of accuracy caused by not
using clean reference sentences of in-domain data
could not be resolved by domain adaptation either.

In future work, we will pursue a style transfer
system that does not reduce the quality of the par-
allel data and use it to improve the translation accu-
racy of NMT. High-quality style transfer may allow
us to acquire robustness to the disfluency of input
sentences and to learn fluent outputs by removing
the disfluency of output sentences.
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Abstract

Machine translation systems perform reason-
ably well when the input is well-formed
speech or text. Conversational speech is spon-
taneous and inherently consists of many dis-
fluencies. Producing fluent translations of dis-
fluent source text would typically require par-
allel disfluent to fluent training data. How-
ever, fluent translations of spontaneous speech
are an additional resource that is tedious to
obtain. This work describes the submission
of IIT Bombay to the Conversational Speech
Translation challenge at IWSLT 2020. We
specifically tackle the problem of disfluency
removal in disfluent-to-fluent text-to-text trans-
lation assuming no access to fluent references
during training. Common patterns of disflu-
ency are extracted from disfluent references
and a noise induction model is used to sim-
ulate them starting from a clean monolingual
corpus. This synthetically constructed dataset
is then considered as a proxy for labeled data
during training. We also make use of addi-
tional fluent text in the target language to help
generate fluent translations. This work uses no
fluent references during training and beats a
baseline model by a margin of 4.21 and 3.11
BLEU points where the baseline uses disfluent
and fluent references, respectively.

Index Terms- disfluency removal, machine
translation, noise induction, leveraging mono-
lingual data, denoising for disfluency removal.

1 Introduction and Related Work

Spoken language translation often suffers due to the
presence of disfluencies. In conversational speech,
speakers often use disfluencies such as filler words,
repetitions of fillers, repetitions of fluent phrases,
false starts, and corrections which do not occur in
the text. Standard machine translation and spoken
translation systems perform competitively when
the input is well-formed text or rehearsed speech as

in TED talks or broadcast news (Cho et al., 2014;
Wang et al., 2010; Honal and Schultz, 2005; Za-
yats et al., 2016). With the increasing popularity
of end-to-end speech translation systems (Weiss
et al., 2017; Bansal et al., 2018), one may not want
disfluency removal to be treated as an intermediate
step between ASR and MT. It might be more desir-
able for disfluency removal to be handled within
the model itself, or as a separate post-processing
step.

To produce fluent translations from disfluent
text, one would typically require access to disfluent
speech (or text) and its corresponding fluent trans-
lations during training. While some corpora with
labeled disfluencies exist (Cho et al., 2014; Burger
et al., 2002), only subsets have been translated
and/or released. (Salesky et al., 2018) introduced
a set of fluent references for the Fisher Spanish-
English conversational speech corpus (David Graff
and Cieri.). This has enabled a new task of end-
to-end training and evaluation on fluent references.
(Salesky et al., 2019) reports results using a speech-
to-text model trained on this corpus using both
fluent and disfluent translations. However, fluent
translations of disfluent speech or text are a scarce
resource. It would be highly desirable to build a
system for disfluency removal that does not rely on
fluent references.

In this work, we propose a framework for disflu-
ency removal that utilizes a simple noise induction
technique for data augmentation using fluent mono-
lingual text in the target language. During denois-
ing, such disfluent text is trained jointly with par-
allel disfluent-to-disfluent textual translation data,
thus simultaneously optimizing the objectives of
disfluency removal and translation. This work de-
scribes the submission of IIT Bombay to the Con-
versational Speech Translation challenge at IWSLT
2020 (Ansari et al., 2020). We release code for our
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proposed approach at the following URL.1

Section 2 describes the details of the data used
and the proposed noise induction technique to lever-
age monolingual data. Section 3 describes our pro-
posed architecture. We then present experimental
details in Section 4, followed by our main results
in Section 4.2. Finally, we analyze our model out-
puts in Section 5 and present our conclusions in
Section 6.

2 Data

2.1 Fisher Corpus

For our experiments, we use the Fisher Spanish
dataset (David Graff and Cieri.), comprising tele-
phone conversations between mostly native Span-
ish speakers. The dataset contains speech utter-
ances (disfluent Spanish), their corresponding ASR
outputs (disfluent Spanish), and two sets of English
translations (both fluent and disfluent) (Salesky
et al., 2018; Post et al., 2013). The Fisher dataset
has disfluent Spanish ASR output (text) which we
use as input to our model. Additionally, two sets
of English translations (disfluent & fluent) are also
available in (text) form. For training, we only make
use of disfluent English sentences. i.e. we train a
text-to-text model. We explicitly note here that no
fluent English reference text was used during train-
ing. The corpus consists of 819 transcribed conver-
sations on predetermined topics between strangers,
yielding ≈ 160 hours of speech and 150k utter-
ances. We used one reference during training and
evaluation with the validation (dev) and test data
sets.2

2.1.1 Disfluencies
Disfluencies can be filler words and hesitations,
discourse markers (you know, well, umm), phrase
repetitions, filler word repetitions, corrections, and
false starts, among others. There can be differ-
ent and often overlapping disfluencies in a single
sentence. Fluent words like so, oh, yes, no, etc.
could either be categorized as fluent or disfluent
depending on the context in which they appear. We
selected the most commonly occurring filler words
in English, namely hmm, hm, em, eh, uh, um, umm,
ah, aha, mm, oh, wow, yes, ok from the Fisher En-
glish corpus. These filler words either occur alone
as a single unit or with self-repetitions up to a max-
imal length of 5 or 6. We extracted the frequencies

1https://github.com/niksarrow/cst
2We do not make use of dev2 during training.

of each one of them and their repetitions. Table 1
shows the counts for the aha token along with its
successive repetitions. We repeat this for all filler
words and store them in a comma-separated value
file.

Filler phrase Frequency
ah 9572
ah ah 233
ah ah ah 29
ah ah ah ah 5
ah ah ah ah ah 1
ah ah ah ah ah ah 0

Table 1: Filler phrase frequencies in the Fisher English
training corpus.

2.2 Parallel Corpus for Translation

We extract monolingual fluent textual data from
the news-commentary parallel corpus in Spanish-
English from the shared task on machine translation
in 2013.3 The corpus consists of 174,441 parallel
sentences. We divide the dataset into two halves.
We consider the first half of 87220 sentences to
be our fluent monolingual corpus. The other half
wasn’t used to account for resource constraints. Fu-
ture work can incorporate the whole corpus for
training. This corpus is modified and turned into a
parallel disfluent to fluent corpus in the same lan-
guage i.e. EN-disfluent to EN-fluent. This process
is described in more detail in the next section.

2.3 Data Augmentation via Noise Induction

Most disfluent sentences could be loosely thought
of as a composition of a fluent part and an additive
noise characterizing the underlying disfluency type.
We aimed to generate a parallel EN-disfluent to
EN-fluent dataset, starting with fluent English text
and adding disfluencies that we extract from real
disfluent text. We stress here that we do not make
use of any parallel disfluent-fluent text to extract
patterns of disfluencies; the latter was generated
by solely examining disfluent text. Three levels
of disfluency induction have been implemented
where disfluencies are incrementally added. We
have tested with 10%, 30%, 50% disfluency induc-
tion. Section 2.3.1, 2.3.2, 2.3.3, 2.3.4 will describe
the techniques used to introduce disfluencies within
a fluent corpus to create a parallel corpus.

3https://www.statmt.org/wmt13/translation-task.html
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2.3.1 Pronoun Phrase Repetition
The English language has seven pronouns, namely,

”i, we, you, he, she, it, they”. In the conversational
speech, many times an utterance that starts with a
pronoun repeats itself. Here is an example:

i am i am fond of paintings ...
it is cold it is cold and windy outside ...

Our algorithm iterates through all 87220
sentences in the English news-commentary corpus
and treats every sentence which starts with a
pronoun as a candidate. With hyperparameter
value α = 0.1, 0.3, 0.5, we either select or reject
the candidate for disfluency induction. Here, α
is the probability of selecting the candidate and
1 − α is the rejection probability. If a candidate
is selected, we select the length (l) of the phrase
starting from the first word (which is the pronoun
itself) which will be repeated. The length is
uniformly sampled from four length values i.e.
1, 2, 3, 4. The phrase up to length (l) is repeated
in the sentence just after it ends. The following
examples show how disfluencies are introduced for
two different values of l:

Original fluent sentence: i was saying that
we should go for a movie
Disfluent sentence (l = 1): i i was saying that we
should go for a movie
Disfluent sentence (l = 2): i was i was saying
that we should go for a movie

2.3.2 Fluent Phrase Repetition
Many disfluencies are just repetitions of mean-
ingful phrases where the speaker intentionally
or unintentionally repeats a phrase. We iterate
through all the sentences and every sentence
with length greater than 5 becomes a candidate
with hyperparameter α = 0.1, 0.3, 0.5 (as we did
with pronoun phrase repetition). We randomly
selected a length(l) in the range [1, 3] and carefully
selected an index i in the fluent sentence starting
from which a phrase of length l is repeated and a
disfluent sentence is formed. Here is an example:

Original fluent sentence: easier to trade
and speculate in gold
Disfluent sentence (l = 1, i = 5): easier to trade
and speculate in in gold
Disfluent sentence (l = 2, i = 3): easier to trade
and speculate and speculate in gold

2.3.3 Insertion of filler words/phrases
The filler word/phrase frequency count which is
described in Section 2.1.1 and table 1 is used as
a guide to introduce them within clean text. We
iterate through all sentences in the English corpus
and uniformly select a (phrase, frequency) pair
such that the frequency is greater than 0. If the
sentence becomes a candidate according to the
sampling probability α = 0.1, 0.3, 0.5 (as we did
with pronoun phrase repetition), an index i is
uniformly selected from the range [0, l], and the
phrase is inserted at index i along with a decrement
of one in the frequency of the phrase. As before, l
is the length of the candidate. Example:

Before: (filler, frequency) = (ah ah, 233)
Original sentence: the new year is looking grim
Disfluent sentence (i = 0): ah ah the new year is
looking grim
After: (filler, frequency) = (ah ah, 232)

2.3.4 False Start
In disfluent English, an utterance can start with
an affirmation (i.e. beginning with a yes or yeah)
and suddenly turn into negation or denial. For
example: yes, no we can’t increase the price. Here,
the speaker first uttered yes and then shifted to
negation with no. Similarly, a negative utterance
can suddenly shift to an affirmative one.

We iterate through all the sentences in the Fisher
English corpus which begins with an affirmation
yes, yeah or a negation no, nah and prepend yes or
no of length(l = 1or2) to make it a false starting
sentence (if the sentence is chosen with a sampling
probability of α = 0.1, 0.3, 0.5). An example:

Original sentence: yes the price will go
up
Disfluent sentence (l = 2): no no yes the price
will go up

2.3.5 Other Possible Noise Induction
Techniques

Synonym insertion can be done by examining the
synset of the language in question (say English),
picking a word from a candidate sentence, and at-
taching its synonym next to it. A denoising step is
expected to retain only one of the meanings which
is fluent as per the language model. We also in-
troduce singleton utterances which only contain a
single filler word and its corresponding fluent ver-
sion is labeled as None. We leave the exploration

180



of more techniques that are relevant to introducing
disfluencies within fluent text as future work.

2.4 Data Statistics
Table 2 shows utterance counts from the parallel
disfluent Spanish to disfluent English corpus. Apart
from this dataset, we also make use of three parallel
disfluent-to-fluent English texts which were syn-
thetically created using the techniques described in
Section 2.3, corresponding to α values of 0.1, 0.3
and 0.5, respectively. Each of these three parallel
datasets contains 87220 sentences each.

Fisher Data
Train 138720 (DFLT) 138720 (DFLT)
Validation 3977 (DFLT) 3977 (FLT)
Test 3641 (DFLT) 3641 (FLT)

Table 2: DFLT: Disfluent and FLT: Fluent. Disfluent
Spanish source and disfluent English target utterances
in training. For validation and test set evaluations, we
use fluent translations. Numbers indicate the count of
utterances in the train, validation and test sets, respec-
tively.

3 Model

This section describes the proposed architecture for
disfluency removal and translation. Since our ob-
jective is two-fold, which is disfluency removal and
translation, Section 3.2.1 first presents our denois-
ing module which is aimed at achieving the task
of disfluency removal and Section 3.2.2 describes
how translation is achieved by our model.

3.1 System Architecture
As shown in Figure 1, the proposed system fol-
lows a fairly standard encoder-decoder architec-
ture. More concretely, we use a four-layer trans-
former encoder and another four-layer transformer
decoder (Vaswani et al., 2017). There are 8 atten-
tion heads in both the encoder and decoder. We pre-
train joint token embeddings of 512 dimensionali-
ties on concatenated Fisher Spanish (disfluent) and
English (disfluent) and News-commentary English
data using fastext (Bojanowski et al., 2016). We use
byte-pair encoding (Sennrich et al., 2015) with 50K
BPE units to effectively handle out-of-vocabulary
words at test time. We share language embeddings
in the encoder. We set dropout (Gal and Ghahra-
mani, 2016) and label-smoothing (Szegedy et al.,
2016) to 0.3 and 0.1, respectively. In addition
to the disfluency induction, we use word-shuffle,

word-dropout, and word-blank with probabilities
3, 0.1, 0.2 (Lample et al., 2017) respectively when
training the denoising encoder.

3.1.1 Shared Encoder

Our system makes use of two encoders with three
out of four layers shared by the two input languages.
This is inspired from (Artetxe et al., 2017; Lample
et al., 2017). The first three layers are shared across
both tasks i.e. denoising from disfluent English to
fluent English and translating from Spanish to En-
glish. The fourth layer is language-dependent to
allow the encoder to learn language-specific infor-
mation. The shared layers of the encoder encourage
the output representations of Spanish and English
to use a common subspace shared across both lan-
guages, which is further transformed into fluent
English using a common decoder. In this man-
ner, our model jointly achieves disfluency removal
along with translation.

3.1.2 Fixed Language Embeddings in the
Encoder

While many machine translation systems randomly
initialize their embeddings and update them during
training, we use pretrained sub-word level embed-
dings and keep them fixed during training (Artetxe
et al., 2017). We share the vocabulary for Spanish
and English as their alphabet size is 27 and 26 re-
spectively. The additional letter in Spanish is a ñ to
indicate the palatal nasal; the remaining letters are
the same as in English.

3.2 Training

The encoder & decoder are trained using
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001 and a mini-batch size of 32. The training
alternates evenly between denoising and translation
procedures.

3.2.1 Denoising

C(x) is a randomly sampled noisy version of sen-
tence x similar to the noise model by (Lample et al.,
2017). The denoising done here is a mixture of
standard denoising as done in (Lample et al., 2017)
and a supervised training step using the parallel
disfluent-fluent English text that we created using
the techniques described in Section 2.3. The loss
for the latter training phase is the sum of cross-
entropy losses between predEN and its fluent coun-
terpart.
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Figure 1: Illustration of proposed architecture. EN: noise-augmented input in English language (text), ES: disfluent
Spanish input (text), ED: Denoising encoder for English language, DD: Denoising decoder for English language,
ET: Translation encoder whose input is Spanish, DT: Translation decoder whose output is English, predEN: fluent
output of denoising decoder, predEN: Translated output of translation decoder in English language. Cnoise is the
noise model used in (Lample et al., 2017) i.e. word-dropout, word-shuffle, S: Shared latent space, zEN and zES:
latent representation of top and bottom encoders, respectively.

3.2.2 Translation
The translation is done using the parallel Fisher
dataset, where disfluent Spanish is used as input
and disfluent English is generated as output. The
sum of token level cross-entropy is used as the loss
function between predEN (predicted English output)
and reference disfluent English.

4 Experiments

4.1 Experimental Setup

We have used lowercased, tokenized, normalized
data with all punctuations (except apostrophe)
removed. This is the same setting as used
by (Salesky et al., 2019) allowing for a comparison
with the baseline proposed. The system is
evaluated using BLEU4 and METEOR5 scoring
metrics. BLEU assesses how well predicted
translations match a set of reference translations
using modified n-gram precision, weighted by
a brevity penalty in place of recall to penalize
short hypothesis translations without full coverage.
In our task of disfluency removal, the generated
tokens should contain much of the same content
but with certain tokens removed, thereby creating
shorter hypotheses. When scoring fluent output
with disfluent references, the difference in BLEU
score will come from two sources: shorter n-gram
matches, and the brevity penalty. METEOR, on

4BLEU scores computed using multi-bleu.pl from the
Moses toolkit (Koehn et al., 2007).

5METEOR is computed using the script from
http://www.cs.cmu.edu/˜alavie/METEOR/ (Denkowski
and Lavie, 2014).

the other hand, is a semantic evaluation metric. It
uses the harmonic mean of precision and recall,
with more weight assigned to recall. It also takes
into account stem, synonym, paraphrase, and
exact matches. In our task, semantic meaning
should be retained while disfluencies are removed.
Similar METEOR scores are expected when scored
with fluent references and disfluent references.
METEOR will indicate that meaning is maintained,
but not assess disfluency removal, while BLEU
will indicate whether disfluencies have been
removed.

The parallel Fisher data remains constant in all
settings. We have tested with three increasing lev-
els of disfluency induction in the synthetic data.
This is denoted using three different values, 0.1,
0.3, and 0.5, for the hyperparameter α. We use a
batch size of 32 and epoch size 50000. All other hy-
perparameters are similar to (Lample et al., 2017)’s
implementation.

4.2 Results and Discussion
Table 3 compares the baseline BLEU scores
of (Salesky et al., 2019) with our implementation.
Our proposed model operates in a mismatched set-
ting i.e. training using disfluent-to-disfluent text
data, and evaluating on fluent references for the val-
idation and test sets. We show two baseline scores
in Table 3. “BaselineD” refers to the use of disflu-
ent reference text during training and “BaselineF”
refers to the use of fluent reference text during
training. It should be noted that the reported base-
line from (Salesky et al., 2019) is a speech-to-text
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Model α dev test
1Ref 2Ref 1Ref 2Ref

BaselineD - 13 16.2 13.5 17.0
BaselineF - 14.6 18.1 14.6 18.1
Our Impl.D 0.5 17.27 17.54 17.36 20.47
Our Impl.D 0.3 17.2 17.46 17.71 20.93
Our Impl.D 0.1 16.96 17.22 17.08 20.15

Table 3: BLEU on development and test set with single vs multiple references. End-to-end model performance
evaluated with new fluent references. D: Disfluent reference, F: Fluent reference as used in training. Our imple-
mentation is trained using disfluent references only.

Model α dev test
1Ref 2Ref 1Ref 2Ref

BaselineD - 22.2 23.9 23.1 24.8
BaselineF - 22.3 24.0 23.1 24.9
Our Impl.D 0.5 24.9 24.7 25.8 27.2
Our Impl.D 0.3 25.7 25.4 26.5 28.0
Our Impl.D 0.1 24.9 24.7 25.7 27.1

Table 4: METEOR on development and test set with single vs multiple references. End-to-end model perfor-
mance evaluated with new fluent references. D: Disfluent reference, F: Fluent reference as used in training. Our
implementation is trained using disfluent references only.

model, while our implementation is a text-to-text
model. Scores on the development set and test
set using both single and multiple references are
shown. We demonstrate that our implementation
with three levels of disfluency induction and trained
only on disfluent references outperforms the base-
line score by a margin of 4.21 BLEU when the
baseline uses disfluent references and by a margin
of 3.11 BLEU even when the baseline system uses
fluent references during training.

Table 4 shows the METEOR score evaluated on
all three disfluency induction levels, using both
single and multiple references. When comparing
METEOR on single and multiple references of the
same setting, the precision is the same up to two
decimal digits, while there is a slight drop of 0.01
in recall in 2Ref when compared to 1Ref. The com-
parable METEOR values indicate that semantic
meaning is retained in the output.

On comparing METEOR scores of our imple-
mentation with that of both baseline models, we
observe that our model retains more semantic mean-
ing than the baseline models. Using a single refer-
ence, we obtain an absolute difference of 3.4 and
3.6 METEOR scores on the dev and test sets re-
spectively, between the best baseline system and
our proposed model. This shows that while do-
ing disfluency removal, the output also manages to

successfully retain semantic meaning.

5 Analysis

In this section, we discuss different types of exam-
ples that were generated by our model and how they
differ from the disfluent reference and the fluent
reference. Output is the generated translation from
our implementation, disfluent Ref and Fluent Ref
are the disfluent and fluent references, respectively.
It should be noted that fluent references were not
used during training and are only being shown here
for the sake of comparison6. Segment Comparison:
Deletion, Insertion, Shift.

Figure 2 shows that the filler word oh has been
omitted in the generated output.

Figure 2: Removing filler words.

6The figures used for comparison are created with Char-
Cut (Lardilleux and Lepage, 2017)
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In Figure 3, we observe that the repetition of
the fluent phrase peruvian peruvian is handled cor-
rectly, but not the repetition of yes.

Figure 3: Repetitions (I)

In Figures 4, the output carefully rejects um,
along with legitimately paraphrasing the sentence
as a result of the language model that it has learned
from the corpus.

Figure 4: Removing filled pause + paraphrasing (II)

In Figures 5, the disfluency right yes yes has
been completely removed. Instead of choosing yes,
it replaced it with well sure, but the disfluency has
been removed.

Figure 5: Disfluency removal + paraphrasing (II)

6 Conclusion

In this work, we propose a model for generating
fluent translations from disfluent text without any
access to fluent references during training. We rely
on having access to monolingual fluent text in the
target language, which is largely available for most
languages. We extract disfluency patterns by ex-
amining the disfluent text and inject disfluencies
to create a parallel disfluent-to-fluent text corpus
in the target language. We compare our results at
different levels of disfluency induction and show
significant improvements over a competitive base-
line.

For future work, we aim at building more sophis-
ticated and rich disfluency induction models. In
this work, we focused on the text-to-text setting.
We will look at extending this approach to a speech-
to-text spoken translation task, with disfluency re-
moval being an auxiliary task and investigate how
to meaningfully tie parameters across an audio en-
coder and a text encoder. Furthermore, we only
report standard quantitative metrics like BLEU and
METEOR here. More detailed human evaluations
may better highlight the benefits and limitations of
our approach. We also believe that our proposed
approach can be easily applied to other language
pairs and hope to verify this as part of future work.
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2017. Unsupervised
machine translation using monolingual corpora
only. CoRR, abs/1711.00043.

Adrien Lardilleux and Yves Lepage. 2017. CHAR-
CUT: Human-Targeted Character-Based MT Eval-
uation with Loose Differences. In Proceedings of
IWSLT 2017, Tokyo, Japan.

Matt Post, Gaurav Kumar, Adam Lopez, Damianos
Karakos, Chris Callison-Burch, and Sanjeev Khu-
danpur. 2013. Improved speech-to-text translation
with the fisher and callhome spanish–english speech
translation corpus. In International Workshop on
Spoken Language Translation (IWSLT 2013).

Elizabeth Salesky, Susanne Burger, Jan Niehues, and
Alex Waibel. 2018. Towards fluent translations from
disfluent speech. CoRR, abs/1811.03189.

Elizabeth Salesky, Matthias Sperber, and Alex
Waibel. 2019. Fluent translations from disfluent
speech in end-to-end speech translation. CoRR,
abs/1906.00556.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and ZB Wojna. 2016. Rethinking the
inception architecture for computer vision.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

W. Wang, G. Tur, J. Zheng, and N. F. Ayan. 2010.
Automatic disfluency removal for improving spoken
language translation. In 2010 IEEE International
Conference on Acoustics, Speech and Signal Pro-
cessing, pages 5214–5217.

185



Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui
Wu, and Zhifeng Chen. 2017. Sequence-to-
sequence models can directly transcribe foreign
speech. CoRR, abs/1703.08581.

Vicky Zayats, Mari Ostendorf, and Hannaneh Ha-
jishirzi. 2016. Disfluency detection using a bidirec-
tional LSTM. CoRR, abs/1604.03209.

186



Proceedings of the 17th International Conference on Spoken Language Translation (IWSLT), pages 187–190
July 9-10, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

The HW-TSC Video Speech Translation system at IWSLT 2020

Minghan Wang, Hao Yang, Yao Deng, Ying Qin, Lizhi Lei,
Daimeng Wei, Hengchao Shang, Jiaxin Guo, Ning Xie, Xiaochun Li

Huawei Translation Service Center, Beijing, China
{wangminghan,yanghao30,dengyao3,qinying,leilizhi

weidaimeng,shanghengchao,guojiaxin1,
nicolas.xie,carol.lixiaochun}@huawei.com

Abstract

In this paper, we present details of our system
in the IWSLT Video Speech Translation eval-
uation. The system works in a cascade form,
which contains three modules: 1) A propri-
etary ASR system. 2) A disfluency correction
system aims to remove interregnums or other
disfluent expressions with a fine-tuned BERT
and a series of rule based algorithms. 3) An
NMT System based on the Transformer and
trained with massive publicly available corpus
is used for translation.

1 Introduction

There has been great advances in Neural Machine
Translations (NMT) in recent years which also
promotes Multimodal translation including image
(Specia et al., 2016), speech and video translation
(Wang et al., 2020; Imankulova et al., 2020; Wu
et al., 2019). For speech and video translation,
there are basically two types of systems (i.e. cas-
cade and end-to-end). Cascade systems are often
composed of several independent modules, where
each one can be trained with intermediate inputs
and labels. End-to-end systems can be fully dif-
ferentiable and trained with original multimodality
data.

In the IWSLT 2020 Video Speech Translation
task (Ansari et al., 2020), participants are required
to develop systems to translate speeches in the
video from source language into target language.
However, we consider that visual contexts are not
necessarily important for a translation task, there-
fore we only use audio as contexts, and treat it as
a offline speech translation task, in addition, our
system is built mainly for Chinese to English trans-
lation.

We choose to build our system in a cascade man-
ner because training an end-to-end system requires
massive aligned audio and text data, which is hard

to find. On the other hand, a cascade system al-
lows us to train each part separately, which is more
feasible.

Our system is composed with three modules.
1) A proprietary ASR system. 2) A disfluency
correction system (Wang et al., 2019). 3) An NMT
model based on the Transformer (Vaswani et al.,
2017).

2 System Architecture

2.1 ASR

For the task, we simply extract the sound tracks
from videos, then feed them to our proprietary ASR
system and proceed transcripts to downstream mod-
ules.

2.2 Disfluency Correction

A major flaw of the cascade system is the error
propagation from the ASR to the NMT system.
For example, interregnums like “uh”, “you know”
should not be translated, or repeated words like “I
wanna wanna ...” due to disfluency (Shriberg, 1994;
Wang et al., 2018). To deal with this problem,
we developed the disfluency correction system to
de-noise the ASR outputs so that the NMT model
could generate more fluent translations. The dis-
fluency correction system is based on fine-tuning
BERT for sequence tagging and incorrect N-gram
mining. BERT is fine-tuned to predict whether
a token generated by the ASR system should be
kept or deleted. The N-gram model is able to mine
high-frequency mistakes, e.g. “a i”(AI), “r and
d”(R&D).

2.2.1 Data
The dataset used to train the disfluency detection
model is collected from internal meeting record-
ings, which are transcribed by human. We create
the golden set based on these transcripts. It con-
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Strategy Train Dev Test
Baseline 35.2 36.3 33.1
+ Domain rule 31.8 (-3.4) 31.9 (-4.4) 30.1 (-3.0)
+ BERT model 28.3 (-3.5) 28.3 (-3.6) 26.7 (-3.4)
+ N-gram mining 26.4 (-1.9) 25.9 (-2.4) 24.9 (-1.8)

Table 1: The performance of each strategy evaluated on our own dataset

tains approximately 200,000 tokens and are split
into train/dev/test set with the proportion of 7:1:2.

We use sclite from SCTK to score the ASR out-
puts, the sclite is able to output four types of ac-
tions for tokens and gaps in the ASR outputs. Then,
those actions will be used to automatically label
the ASR outputs with following rules:

• Tokens are scored as C (correct) by the sclite
means that the ASR system outputs a cor-
rect token, compared to the ground truth se-
quence. These tokens will be labeled as OK
and should be preserved in post-processing.

• Tokens are scored as S (substitute) by the
sclite means the ASR system outputs an in-
correct (substituted) token at current position,
compared to the ground truth sequence. These
tokens are labeled as BAD and will be deleted.
Note that we don’t consider predicting the
correct token because of the complexity.

• Tokens are scored as I (insertion) means the
ASR system inserts an unnecessary token at
current position. These tokens will be labeled
as BAD and should be deleted.

• Gaps are scored as D (deletion) means the
ASR fails to output a necessary token at the
gap. This situation also involves predicting
the missing token therefore is not considered.

Based on these rules, the ASR outputs are labeled
with OK and BAD for each token, which will be
used to fine-tune the BERT model.

2.2.2 BERT based Disfluency Detection
BERT is widely used in many NLP tasks thanks
to its flexible architecture and pre-trained weights
contributed by the community. As described pre-
viously, we formulate the task as a sequential la-
belling problem so that the pre-trained BERT can
be fine-tuned easily. In the post-processing, we
simply remove tokens which are predicted as BAD.
The model used for fine-tuning is provided by trans-
formers’ (Wolf et al., 2019) BERT-base.

2.2.3 N-Gram Disfluency Mining
Except from training a detection model, we
also create a mistake table with n-grams (where
n=1,2,3,4), aiming to correct high-frequency mis-
takes. The table statistics the frequency of incorrect
transcripts, and top 10 mistakes are used as a rule
based mapping. We mainly use it to solve some
situations where the pronunciation and text are not
the same, this situation mainly appears in termi-
nologies.

2.2.4 Disfluency Correction Experiments
We preform several experiments on the created
dataset with the combination of methods mentioned
above to evaluate the effectiveness. We use WER
as the evaluation metric. Detailed results are pre-
sented in Table 1.

2.3 NMT
The NMT model is based on a Transformer
(Vaswani et al., 2017) model with some modifi-
cations that will be introduced later. The model is
trained with approximately 26M publicly available
parallel corpora.

2.3.1 Data
There is no officially published in-domain text data
to train and evaluate the model, therefore, we use
the WMT 2019 Chinese to English news translation
corpora which is composed with 6.5M CWMT and
20M UN sentence pairs. The test set of CCMT
2018 news translation is used as our test set for the
experiment.

First of all, we clean up the dataset as follows:

• Remove duplicated sentences.

• Sentences that are too short (e.g. less than two
tokens) are removed.

• Sentences that are too long (e.g. greater than
300 tokens) are removed.

• Parallel sentence pairs with abnormal length
ratio (e.g. greater than 3 times standard devia-
tion) are removed.
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Strategy BLEU
Transformer-big 36.27
+ Domain Classification 37.63
+ Ensemble 39.25

Table 2: The performance of the nmt model evaluated
on CCMT dataset.

• Sentences with abnormal characters are con-
sidered as HTML entities, e.g. &nbsp, are
removed.

Subword-nmt (Sennrich et al., 2016) is used to
tokenize English sentences, while character based
tokenization is used for Chinese sentences.

2.3.2 Model
Transformer Big (Vaswani et al., 2017) is used in
our NMT system, which has same number layers
compared to Transformer base but with wider em-
bedding and FFN layers, additional normalization
and dropout layers are also added.

As we mentioned in Section 2.3.1, we mix the
CWMT and UN corpus in which sentences may
draw from different distributions and thus may have
significant differences in the quality, domain as
well as the style. These differences may degrade
the performance of a NMT model. To deal with
such problem, inspired by (Britz et al., 2017), we
add a domain discrimination tag (token) at the start
of the sentence for target sentences, here, we use
[CWMT] and [UN] to represent two domains (data
sources). The initial tag will be used to calculate a
discrimination loss thus makes the model trained in
a multi-task setting. In the inference phase, the gen-
erated tag will be removed in the post-processing.

2.3.3 NMT experiments
We perform experiments with three strategies:
Transformer-big with and without domain classi-
fication as well as an ensemble model. We use
BLEU (Papineni et al., 2002) as the evaluation met-
ric. Details are shown in Table 2.

3 Conclusion

In this paper, we introduce our system for IWSLT
2020 Video Speech Translation evaluation. Our
cascade system is developed and evaluated sepa-
rately, we select the best strategy for each module
to integrate a pipeline system which finally makes
predictions for our submission.
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Abstract

In this paper, we present our submission to
the Non-Native Speech Translation Task for
IWSLT 2020. Our main contribution is a pro-
posed speech recognition pipeline that con-
sists of an acoustic model and a phoneme-to-
grapheme model. As an intermediate repre-
sentation, we utilize phonemes. We demon-
strate that the proposed pipeline surpasses
commercially used automatic speech recogni-
tion (ASR) and submit it into the ASR track.
We complement this ASR with off-the-shelf
MT systems to take part also in the speech
translation track.

1 Introduction

This paper describes our submission to Non-Native
Speech Translation Task in IWSLT 2020 (Ansari
et al., 2020). We participate in two sub-tracks:
offline speech recognition and offline speech trans-
lation from English into Czech and German.

We focus on the speech recognition, proposing
a robust pipeline consisting of two components —
an acoustic model recognizing phonemes, and a
phoneme-to-grapheme translation model, see Fig-
ure 1. We decided to use phonemes as the interme-
diate representation between the acoustic and the
translation model because we believe that conven-
tional grapheme representation is too constrained
with complicated rules of mapping speech to a tran-
script. This issue becomes immense when dealing
with dialects and non-native speakers.

Both models used in our pipeline are end-to-
end deep neural networks, Jasper (Li et al., 2019)
for the acoustic model and Transformer (Vaswani
et al., 2017) for the phoneme-to-grapheme transla-
tion model.

For punctuating, truecasing, segmenting and
translation into Czech and German, we use off-
the-shelf systems provided by ELITR project.

(optional)
Phoneme-LM
Rescoring
KenLM

Acoustic	Model
Jasper

Phoneme-to-Grapheme
Transformer

MFCCs

sound

phonemes

Transcript

Figure 1: The architecture of proposed model.

The paper is organized as follows: Section 2
reviews related work. In Sections 3 and 4 we de-
scribe models for our speech recognition pipeline
and their training. In Section 5, we describe the
punctuator, truecasor and segmenter, and machine
translation into Czech and German in Section 6.
We summarize our submissions in Section 7 and
conclude in Section 8.

2 Related Work

This section reviews the related work.

2.1 Phonemes and Acoustic Models

Phones and phonemes are well-established mod-
elling units in ASR. They have been used since
the beginning of the technology in 1950s (Juang
and Rabiner, 2005), for an empirical comparison of
different linguistic units for sound representation,
see Riley and Ljolje (1992).

An important work popularizing neural networks
in ASR to phonemes is Waibel et al. (1989). This
work proposes using a time-delayed neural network
(TDNN) to model acoustic-phonetic features and
the temporal relationship between them. The au-
thors demonstrate that the proposed TDNN can
learn shift-invariant internal abstraction of speech
and use it to make a robust final decision.
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Salesky et al. (2019) suggest using of phoneme-
based ASR in speech translation. Their end-to-end
speech translation pipeline first obtains phoneme
alignment using the deep neural network hidden
Markov models (DNN-HMM) system and then av-
erages feature vectors with the same phoneme for
consecutive frames. Phonemes outputted by DNN-
HMM then serve as input features for speech trans-
lation.

2.2 Phoneme-to-Grapheme Models
In most past studies that included a separate
phoneme-to-grapheme (P2G) translation compo-
nent into the ASR, the phoneme representation was
used only for out-of-vocabulary (OOV) words, see,
e.g. Decadt et al. (2001); Horndasch et al. (2006);
Basson and Davel (2013).

Decadt et al. (2001) apply phoneme-to-
grapheme to enhance the readability of OOV out-
put in Dutch speech recognition. In their setup,
the ASR outputs standard (orthographic) text for
known words. For OOVs, phonemes are out-
putted. Because the phonemes are unreadable for
most users, the authors translate phonemes using
memory-based learning. The word error rate of this
improved setup of Dutch ASR was actually higher
than the baseline, on the other hand, the output
was better readable for an untrained person. They
report that 41 % of words were transcribed with
at most one error, and 62 % have only two errors.
Furthermore, most of the incorrectly transcribed
words do not exist in Dutch.

Horndasch et al. (2006) introduce a data-driven
approach called MASSIVE. Their main objective
is to find appropriate orthographic representations
for dictated Internet search queries. Their sys-
tem iteratively refines sequences of symbol pairs
in different alphabets. In the first step, they find
the best phoneme-grapheme alignment using the
expectation-maximization algorithm. In the second
step, they cluster neighbouring symbols together
to account for insertions. Finally, n-gram proba-
bilities of symbol pairs are learned. During the
inference, the input string is split into individual
symbols. All possible symbol pairs are generated
for each symbol, and the best sequences are se-
lected in a beam search.

2.3 Error Correction in ASR
Hrinchuk et al. (2019) deal with the correction of
errors in ASR by introducing Transformer post-
processing. The authors first train an ensemble of

10 ASR models. Using these models, they collect
“ASR corrupted” data. Subsequently, they train a
Transformer on this data where the “ASR corrupted”
text serves as the source and the original true tran-
scripts as the target. In their best setup, they utilize
transfer learning. They use BERT (Devlin et al.,
2018), a masked language model consisting only
of Transformer encoder, and initialize both encoder
and decoder of their Transformer correction model
with BERT’s weights.

2.4 Online ASR Services

We compare our work with Google Cloud Speech-
to-Text API1 and Microsoft Azure Speech to Text.2

Both of these services provide publicly available
APIs for transcribing audio recordings.

3 Neural ASR with Phoneme-Level
Intermediate Step

Our main idea is to couple an end-to-end acous-
tic model with a specialized “translation” model,
which translates phonemes to graphemes and cor-
rects the ASR errors.

The motivation for the translation step is that the
translation model can exploit larger context than a
basic convolutional acoustic model. Furthermore,
we can utilize considerably larger non-speech cor-
pora to train this part of the pipeline.

3.1 Acoustic Model

For our acoustic model, we use the Jasper (Li et al.,
2019) convolutional neural architecture in the vari-
ant of Jasper DR 10x5 variant, as described in the
original paper. It is implemented within the NeMo
library (Kuchaiev et al., 2019).

For training, we use approximatelly 1 000 hours
of speech data from LibriSpeech (Panayotov et al.,
2015) and 1 000 hours of Common Voice3. Be-
cause we want the model to produce phonemes and
not graphemes, which are available in the train-
ing corpora, we converted the transcript to IPA
phonemes using the phonemizer4 tool.

To speed-up the training process, we initialize
our English sound-to-phoneme Jasper model with

1https://cloud.google.com/
speech-to-text

2https://azure.microsoft.com/
en-us/services/cognitive-services/
speech-to-text/

3https://voice.mozilla.org/en
4https://github.com/bootphon/

phonemizer
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Type Corpus Adapt. Full training

dev LS Clean 46.07 3.84
CV 54.69 11.86

test
LS Clean - 4.18 / 4.48† / 3.58‡
LS Other - 11.48 / 11.67† / 8.57‡

CV - 10.21 / 10.47† / 6.46‡

Table 1: Results in % of Phoneme Word Error Rate
(PWER) using greedy decoding (no mark), beam
search (†) and beam search with language model (‡).
The language model is trained on phonemized ASR
training data. Note, PWER is not directly comparable
to WER. “LS” LibriSpeech. “CV” Common Voice.

the available checkpoint of the standard sound-to-
grapheme model.5. This seed model was trained on
LibriSpeech, Mozilla Common Voice, WSJ, Fisher,
and Switchboard corpora, which is beyond the set
of corpora allowed for a constrained submission.
The model yields word error rate (WER) of 3.69
% on LibriSpeech test-clean, and 10.49 % on test-
other using greedy decoding.

For a smooth transition from the Latin alpha-
bet to IPA, we start our training with an adapta-
tion phase of 2,000 training steps. As the model’s
memory footprint is smaller during this phase, we
increase the batch size to 64 (global batch size is
640). One thousand steps are warm-up; the maxi-
mal learning rate is 0.004.

The full training takes ten epochs. The model
memory requirements increase, therefore we re-
duce the batch size to 16 (global batch size is 160).
We also reduce the learning rate to 0.001.

Optionally, we include a phoneme-level lan-
guage model, which re-scores the output of the
acoustic model before the phoneme-to-grapheme
translation, to achieve higher quality. Setups that
use this component are further in this paper marked
with “ lm”.

Results of training after the Adaptation phase
(the “Adaptation” column) and the Full training are
in Table 1. Note that these scores are calculated
on the reference transcript converted to phonemes
using phonemizer. Token ambiguities thus change,
and these scores are not comparable to standard
grapheme WER.

The training is executed on 10 NVIDIA GTX
1080 Ti GPUs with 11 GB VRAM.

5https://ngc.nvidia.com/catalog/
models/nvidia:multidataset_jasper10x5dr

4 Phoneme-to-Grapheme Model

We seek a model for translating transcripts written
in phonemes into graphemes in the same language.
Unlike the most studies reviewed in Section 2, we
propose to use Transformer (Vaswani et al., 2017)
architecture for phoneme-to-grapheme translation.
We believe that Transformer is the best option for
these tasks. Transformer has shown its potential in
many NLP tasks. Most importantly, we consider
its ability to learn the structure of a sentence, see
e.g. Pham et al. (2019).

4.1 Text Encoding Considerations
We use Byte Pair Encoding (BPE) (Sennrich et al.,
2016) for text encoding in our experiments. We
use the implementation in YouTokenToMe6 library.
It is fast and offers BPE-dropout (Provilkov et al.,
2019) regularization technique.

First, we decided to use separate vocabularies for
source and target sentences, because the source and
target representations, IPA phonemes and English
graphemes, have no substantial overlap.

There has been a quite intensive discussion
about vocabulary size in neural machine transla-
tion (NMT) (Denkowski and Neubig, 2017; Gupta
et al., 2019; Ding et al., 2019). All works agree that
for low-resource translation tasks, it is better to ap-
ply smaller vocabulary sizes. For a high-resource
task, it is convenient to use larger vocabulary. Our
task, translation of phonemes into graphemes in
the same language, differs from the previous works.
Hence, we decided to experiment with vocabulary
sizes. We also want to know whether we should
train the sub-word units for source on clean data
(phonemes without errors), or we should introduce
ASR-like errors to these data.

We design the experiment as follows: we test
character-level encoding and BPE vocabulary sizes
of 128, 512, 2 000, 8 000 and 32 000. Further, we
test a clean data configuration, “corrupted” data
(we collect transcripts from an ensemble of 10 ASR
systems) and a “mixed” data — combination of the
two previous.

Because of the data scarcity, we use Transformer
Base configuration. We alter maximum sequence
length to 1024 because for character-level, 128, and
512 BPE configurations, many sentences do not fit
into the model. We train all models for 70 000 steps
on one GPU using the same batch size for all con-
figurations: 12 000 tokens. We set the learning rate

6https://github.com/VKCOM/YouTokenToMe

193



to 0.04. As training data, we use “corrupted” ASR
transcripts paired with true transcripts. We col-
lect the data from an ensemble of 10 ASR models,
yielding approximately 7 million sentence pairs.
For the collection of ASR corrupted data, we used
LibriSpeech and Common Voice datasets.

character 128 512 2k 8k 32k
5
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Figure 2: Results in % of word error rate on the Com-
mon Voice test set.
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Figure 3: Results in % of word error rate on the Lib-
riSpeech test clean.
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Figure 4: Results in % of word error rate on the Lib-
riSpeech test other.

Graphical comparison is in Figures 2 to 4.

BPE size Character-level encoding seems to be
the worst or second-worst possible representation.
For the Common Voice test set, it scores almost one
percentage point of WER more compared to the
best result (5.53 vs 4.55). Also, all other encodings
performed almost half a percentage point better.

For both LibriSpeech test sets, it performed a bit
better than BPE 128.

Generally, the results suggest a the larger the
vocabulary, the lower WER. Among the different
BPE sizes, we can recognize the 32 000 vocabulary
size has the best results systematically on all test
sets.

Finally, we consider the following: a model can
better learn from larger vocabulary sizes. First, a
model does not have to learn low-level orthography
extensively. Rather than memorizing characters (or
other smaller units), it can focus on the whole sen-
tence and how individual words interact. Second, a
larger model can detect errors because of anomalies
in the input encoding. Larger vocabularies produce
a shorter representation. Corrupted word is more
likely to be broken down to smaller pieces. When
a model detects such a situation, it can, for exam-
ple, decide the right target word based on context,
rather than the suspicious word. Such anomaly will
most likely not occur in the text encoded with small
BPE.

Source of BPE training data For Common
Voice, we observe some variation in performance.
Best seems to be the “mixed” configuration. Some-
what worse is “corrupted” and the worst is “clean”
version. In this case, we think the “mixed” is best
as it has frequent enough “corrupted” words. This
enables a model to learn to translate these corrupted
words into the correct ones. Also, it knows enough
other words, so it can adequately work with correct
phonemes.

For other test sets, we observe almost no differ-
ences. Only “corrupted” configuration has slightly
worse performance.

We conclude that the source of training data for
BPE has almost no impact on the final result.

4.2 Baseline Phoneme-to-Grapheme Model
(“asr” Configuration)

We decided to use Transformer Big configuration
(as opposed to the initial experiment with BPE vo-
cabularies). As we concluded in the previous part,
we select BPE vocabulary size of 32 000, and the
BPE encoding is trained on “clean” phonemized
English part of Czeng 1.7 (Bojar et al., 2016) cor-
pus.

First, we train a randomly initialized Trans-
former model. The source of the “translation” is
the phonemized English Czeng and the target is the
original English.
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We use six 16 GB GPUs for the training. We
set the batch size to 6 000 tokens, learning rate to
0.02, warm-up steps to 16 000 and total steps to
600 000. We manually abort the training after the
convergence is reached (140 000 steps in our case).

4.3 Transfer from SLT (“asr slt”
Configuration)

In standard NMT, the source text usually does not
suffer from so many errors as in our setup. We
address this “correction” need by training on artifi-
cially corrupted source side.

We initialize the Transformer encoder from our
in-house speech translation model trained from En-
glish phonemes to Czech graphemes (described in
Polák (2020)) and the decoder from a model for
the opposite direction. Both of these initial models
were trained on CzEng, with one side converted to
phonemes using phonemizer.

These pre-trained parts of the model, the encoder
and decoder need joint training to learn to operate
with each other. We employ this training also to
inject the capacity of correcting ASR output.

Specifically, we apply the jack-knife scheme to
our ASR training data (LibriSpeech and Common
Voice), training ten different ASR models, always
leaving one-tenth of the training data aside. This
one-tenth is recognized with the model, leading
to the full speech corpus equipped not only with
golden transcripts but also with ASR outputs. We
call this an “ASR-corrupted” corpus.

Based on our experience from the experiment
with BPE vocabularies, where the model easily
over-fit to the sentences from ASR transcripts
from speech corpora, we mix the corrupted and
clean data with a 1:1 ratio. This is different from
Hrinchuk et al. (2019) who use only the ASR-
corrupted data to train. We then train the complete
Transformer model from English phonemes to En-
glish graphemes with the same hyper-parameters
as the baseline.

4.4 Transfer from BERT (“asr bert”
Configuration)

Finally, we use the pre-trained BERT (Devlin et al.,
2018). Unlike Hrinchuk et al. (2019), we do not ini-
tialize both the encoder and decoder with the BERT.
We initialize the encoder from the English-to-
Czech speech translation model (as in Section 4.3)
because we need the model to process phonemes,
not graphemes on the source side. The decoder

is initialized from the BERT “large” to match the
dimension of the Transformer encoder.

For this setup, we tried the same training pro-
cedure on half-noisy data as above. However, we
were unable to obtain any reasonable performance
(we got WER of 28 % on LibriSpeech dev-other).
We hypothesize this is due to the vast amount of
weights that must be randomly initialized in the
decoder: BERT is a Transformer encoder only.
Hence it does not have the Encoder-Decoder at-
tention layer which must be trained from scratch.
During the training of the whole model with many
randomly initialized weights, the initially trained
weights from the BERT might depart too far from
the optimum.

To overcome this issue, we use an analogous
adaptation trick as for the training of the acous-
tic model. We freeze all weights initialized from
seed models and train only the randomly initial-
ized weights until convergence (the criterion was
the loss on the validation dataset). This adaptation
takes 13 500 steps in our case. Subsequently, the
training continues as in the previous case with one
exception — we used only ASR corrupted data
from LibriSpeech.

4.5 ASR Results

CV LS clean LS other

asr (primary) 9.72 4.87 11.67
asr lm 7.00 4.63 10.25
asr slt 3.26 5.10 11.75
asr slt lm 3.97 5.00 10.63
bert 12.93 4.13 10.21
bert lm† 11.25 4.04 9.69

Table 2: Performance of the submitted models in terms
of % WER on the Common Voice test set (CV), and
LibriSpeech (LS) clean and other test set. † not submit-
ted due to time constraints. Best results in bold.

Table 2 reports the performance of our proposed
systems on Common Voice test set and LibriSpeech
test-clean and test-other.

The performance of “slt”-pretrained models is
very good on Common Voice (CV), reaching WER
of 3.26 %. However, we suspect that the model
overfitted to CV texts. The corpus contains many
speakers, but the set of underlying sentences is
very limited, and our models can memorize them.
The more realistic evaluation on the independent
LibriSpeech other indicates that “asr slt” is actually
rather poor.

For the general domain, assessed by LibriSpeech
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AMIa AMIb AMIc AMId Teddy Autocentrum Audit Weightened
AMI Rest Total

asr (primary) 35.89 32.76 35.60 39.90 57.43 11.62 9.83 35.05 19.67 33.99
asr lm† 37.58 33.66 35.32 40.60 56.65 14.01 11.00 35.70 20.54 34.65
asr slt 36.73 33.22 35.70 39.69 56.87 10.93 10.22 35.37 19.66 34.28
asr slt lm† 37.71 33.83 35.67 40.45 56.31 12.87 10.71 35.88 20.07 34.78
asr bert 36.69 33.82 36.50 39.63 56.76 12.87 9.60 35.85 19.64 34.72
asr lm‡ 35.95 32.94 35.57 40.43 56.20 13.10 10.67 35.20 20.22 34.17
asr slt lm‡ 37.72 33.86 35.59 40.59 56.42 13.10 10.71 35.88 20.29 34.80

Microsoft 53.72 52.62 56.67 58.58 87.82 39.64 24.22 54.80 39.75 53.76
Google 51.52 49.47 53.11 56.88 61.01 14.12 17.47 51.87 25.33 50.03

Table 3: Results in % WER on IWSLT ASR development set. † submitted without punctuation and segmentation.
‡ submitted with punctuation and segmentation after the deadline.

AMIa Teddy Autocentrum Audit

asr 4.79 1.41 21.66 5.59
asr lm† 2.80 1.57 12.53 1.84
asr lm†* 2.86 1.57 12.79 1.93
asr slt 4.52 1.48 22.02 5.56
asr slt lm† 3.19 1.55 8.85 1.81
asr slt lm†* 3.26 1.55 9.32 1.88
asr bert 6.08 1.41 19.01 5.79
asr lm‡ 3.92 5.65 21.65 5.24
asr slt lm‡ 4.01 6.08 21.50 5.02

Gold 21.09 54.77 42.52 9.03

Table 4: Czech BLEU scores on the IWSLT develop-
ment set. † submitted without punctuation and segmen-
tation. ‡ submitted with punctuation and segmentation
after the deadline. * lower case BLEU.

clean, we would choose the BERT-pretrained
model with phoneme LM rescoring. This model
was unfortunately trained too late, so we did not
include it in our submission.

The Non-Native Task setting is very specific,
and we carefully examine the performance on the
IWSLT development (Table 3). The performance
varies considerably, but the baseline setup (“asr”)
perform well on average, and it is also not much
worse than the best system on the particular files,
e.g. 9.83 on the Audit file compared to “asr bert”
which wins there with 9.60. Based on these results,
we selected “asr” as our primary submission for
speech recognition track.

It the particular domain of non-native speech
recognition, the usefulness of the phoneme lan-
guage model seems to be minor, unlike on the CV
and LS test sets in Table 2. However, this result
could be unreliable because the IWSLT develop-
ment set is very small.

We note that all proposed systems outperform
publicly available Google and Microsoft ASR on
all files in the development set, see the last two
rows of Table 3.

AMIa Teddy Autocentrum Audit

asr 8.87 5.20 15.94 22.40
asr lm† 3.45 2.02 4.16 6.15
asr lm†* 5.30 4.33 8.64 18.16
asr slt 9.77 4.35 16.40 22.91
asr slt lm† 3.45 2.21 4.00 6.54
asr slt lm†* 5.34 4.20 6.92 20.07
asr bert 10.22 3.99 13.38 24.76
asr lm‡ 10.79 4.36 17.24 25.09
asr slt lm‡ 10.88 3.60 17.34 26.64

Gold 34.95 45.57 36.56 38.97

Table 5: German BLEU scores on the IWSLT develop-
ment set. † submitted without punctuation and segmen-
tation. ‡ submitted with punctuation and segmentation
after the deadline. * lower case BLEU.

5 Punctuation, Truecasing and
Segmentation

Our ASR system produces lowercased, unpunc-
tuated text, but the machine translation works on
capitalized, punctuated text, segmented to individ-
ual sentences. We use the same biRNN punctuator,
truecaser and segmenter as Macháček et al. (2020).
The punctuator is a bidirectional recurrent neural
network by Tilk and Alumäe (2016) trained on the
English side of CzEng (Bojar et al., 2016). The
truecaser uses tri-grams (Lita et al., 2003). We use
a rule-based Moses Sentence Splitter (Koehn et al.,
2007). More details are in Macháček et al. (2020),
Section 4.2.

6 Machine Translation

Our submission to the SLT track relies on the MT
systems, which are used also by ELITR project
and are described in their submission to this task
(Macháček et al., 2020). We do not rely on their val-
idation for this task. As our primary MT systems,
we select “WMT18 T2T” for Czech and “de T2T”
for German, because they were easily accessible

196



Name Initialization LM rescoringEncoder Decoder

asr (primary) random random no
asr lm random random yes
asr slt EN CS CS EN no
asr slt lm EN CS CS EN yes
bert EN CS BERT no

Table 6: Submitted English ASR configurations. “EN
CS” means the Transformer encoder was initialized
with the encoder weights from a translation model
trained from English phonemes to Czech graphemes.
“CS EN” means the decoder was initialized from an
MT model translating Czech phonemes to English
graphemes.

through Lindat service7.
“WMT18 T2T” was originally trained for

English-Czech WMT18 news translation task
(Popel, 2018), and was also between the top sys-
tems in WMT19 (Popel et al., 2019). It is a single-
sentence Transformer Big model in Tensor2Tensor
framework (Vaswani et al., 2018). “de T2T” is a
similar system, but trained on the data for English-
German WMT news translation. Tables 4 and 5
present BLEU scores of our primary systems for
Czech and German, respectively. Note that the files
Teddy, Autocentrum and Audit are very short.

We submit also all other machine translation
systems for Czech and German by ELITR with
our “asr” source for contrastive evaluation. See
Macháček et al. (2020) for more details.

7 Submission Summary

We participate in two tracks of the non-native
speech translation task: speech recognition, and
speech translation into both Czech and German. In
both cases, our submissions are off-line.

The acoustic model was initialized from a check-
point trained on other data than allowed for the task.
Therefore, our systems are unconstrained.

For the speech recognition track, we utilize our
speech recognition pipeline in various configura-
tions. We first obtain the phoneme transcripts using
the acoustic model. For configurations marked with
“ lm”, we additionally use a phoneme language
model during the acoustic model inference. Subse-
quently, we feed these phonetic transcripts to the
phoneme-to-grapheme translation model. We have
three variants of this model: plain (“asr”), with
pre-trained weights from SLT (“slt”), and with pre-

7https://lindat.mff.cuni.cz/services/
translation/

trained weights from SLT for encoder and BERT
for decoder (“bert”). In this manner, we yield
five different configurations for submission (see
Table 6). The transcripts are then punctuated and
truecased. Based on the punctuation, we further
segment the transcripts. Our primary submission
for the ASR track is the “asr” system.

We do not have our own translation model. To
participate in the translation track, we utilize the
MT systems of the ELITR project, which are
mostly Transformer neural models. We select as
our primary submission the “asr” system.

8 Conclusion

We presented our submissions to the Non-Native
Speech Translation Task for IWSLT 2020.

For the non-native speech recognition, we pro-
posed a pipeline that consists of an acoustic model
and a phoneme-to-grapheme model. We demon-
strated that the proposed pipeline surpasses com-
mercially used ASR on the development set.

To participate in the non-native speech transla-
tion track, we use off-the-shelf translation model
on our ASR transcripts.
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Abstract
This paper is an ELITR system submission
for the non-native speech translation task at
IWSLT 2020. We describe systems for of-
fline ASR, real-time ASR, and our cascaded
approach to offline SLT and real-time SLT. We
select our primary candidates from a pool of
pre-existing systems, develop a new end-to-
end general ASR system, and a hybrid ASR
trained on non-native speech. The provided
small validation set prevents us from carrying
out a complex validation, but we submit all
the unselected candidates for contrastive eval-
uation on the test set.

1 Introduction

This paper describes the submission of the EU
project ELITR (European Live Translator)1 to the
non-native speech translation task at IWSLT 2020
(Ansari et al., 2020). It is a result of a collabora-
tion of project partners Charles University (CUNI),
Karlsruhe Institute of Technology (KIT), and Uni-
versity of Edinburgh (UEDIN), relying on the in-
frastructure provided to the project by PerVoice
company.

The non-native speech translation shared task
at IWSLT 2020 complements other IWSLT tasks
by new challenges. Source speech is non-native
English. It is spontaneous, sometimes disfluent,
and some of the recordings come from a particu-
larly noisy environment. The speakers often have
a significant non-native accent. In-domain train-
ing data are not available. They consist only of
native out-domain speech and non-spoken parallel
corpora. The validation data are limited to 6 man-
ually transcribed documents, from which only 4
have reference translations. The target languages
are Czech and German.

The task objectives are quality and simultaneity,
unlike the previous tasks, which focused only on

1http://elitr.eu

the quality. Despite the complexity, the resulting
systems can be potentially appreciated by many
users attending an event in a language they do not
speak or having difficulties understanding due to
unfamiliar non-native accents or unusual vocabu-
lary.

We build on our experience from the past IWSLT
and WMT tasks, see e.g. Pham et al. (2019);
Nguyen et al. (2017); Pham et al. (2017); Wetesko
et al. (2019); Bawden et al. (2019); Popel et al.
(2019). Each of the participating institutions has
offered independent ASR and MT systems trained
for various purposes and previous shared tasks. We
also create some new systems for this task and de-
ployment for the purposes of the ELITR project.
Our short-term motivation for this work is to con-
nect the existing systems into a working cascade
for SLT and evaluate it empirically, end-to-end. In
the long-term, we want to advance state of the art
in non-native speech translation.

2 Overview of Our Submissions

This paper is a joint report for two primary sub-
missions, for online and offline sub-track of the
non-native simultaneous speech translation task.

First, we collected all ASR systems that were
available for us (Section 3.1) and evaluated them
on the validation set (Section 3.2). We selected
the best candidate for offline ASR to serve as the
source for offline SLT. Then, from the ASR sys-
tems, which are usable in online mode, we selected
the best candidate for online ASR and as a source
for online SLT.

In the next step (Section 4), we punctuated and
truecased the online ASR outputs of the valida-
tion set, segmented them to individual sentences,
and translated them by all the MT systems we had
available (Section 5.1). We integrated the online
ASRs and MTs into our platform for online SLT
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(Sections 5.2 and 5.3). We compared them using
automatic MT quality measures and by simple hu-
man decision, to compensate for the very limited
and thus unreliable validation set (Section 5.4). We
selected the best candidate systems for each target
language, for Czech and German.

Both best candidate MT systems are very fast
(see Section 5.5). Therefore, we use them both for
the online SLT, where the low translation time is
critical, and for offline SLT.

In addition to the primary submissions, we in-
cluded all the other candidate systems and some
public services as contrastive submissions.

3 Automatic Speech Recognition

This section describes our automatic speech recog-
nition systems and their selection.

3.1 ASR Systems

We use three groups of ASR systems. They are
described in the following sections.

3.1.1 KIT ASR

KIT has provided three hybrid HMM/ANN ASR
systems and an end-to-end sequence-to-sequence
ASR system.

The hybrid systems, called KIT-h-large-lm1,
KIT-h-large-lm2 and KIT-hybrid, were developed
to run on the online low-latency condition, and
differ in the use of the language models.

The KIT-h-large-lm adopted a 4-gram language
model which was trained on a large text corpus
(Nguyen et al., 2017), while the KIT-hybrid em-
ployed only the manual transcripts of the speech
training data. We would refer the readers to the
system paper by Nguyen et al. (2017) for more
information on the training data and the studies
by Nguyen et al. (2020); Niehues et al. (2018) for
more information about the online setup.

The end-to-end ASR, so-called KIT-seq2seq, fol-
lowed the architecture and the optimizations de-
scribed by Nguyen et al. (2019). It was trained on
a large speech corpus, which is the combination
of Switchboard, Fisher, LibriSpeech, TED-LIUM,
and Mozilla Common Voice datasets. It was used
solely without an external language model.

All KIT ASR systems are unconstrained because
they use more training data than allowed for the
task.

3.1.2 Kaldi ASR Systems
We used three systems trained in the Kaldi ASR
toolkit (Povey et al., 2011). These systems were
trained on Mozilla Common Voice, TED-LIUM,
and AMI datasets together with additional textual
data for language modeling.

Kaldi-Mozilla For Kaldi-Mozilla, we used the
Mozilla Common Voice baseline Kaldi recipe.2

The training data consist of 260 hours of audio.
The number of unique words in the lexicon is 7996,
and the number of sentences used for the base-
line language model is 6994, i.e., the corpus is
very repetitive. We first train the GMM-HMM part
of the model, where the final number of hidden
states for the HMM is 2500, and the number of
GMM components is 15000. We then train the
chain model, which uses the Time delay neural net-
work (TDNN) architecture (Peddinti et al., 2015)
together with the Batch normalization regulariza-
tion and ReLU activation. We use MFCC features
to represent audio frames, and we concatenate them
with the 100-dimensional I-vector features for the
neural network training. We recompile the final
chain model with CMU lexicon to increase the
model capacity to 127384 words and 4-gram lan-
guage model trained with SRILM (Stolcke, 2002)
on 18M sentences taken from English news arti-
cles.

Kaldi-TedLium serves as another baseline,
trained on 130 hours of TED-LIUM data (Rousseau
et al., 2012) collected before the year 2012. The
Kaldi-TedLium model was developed by the Uni-
versity of Edinburgh and was fully described by
Klejch et al. (2019). This model was primarily de-
veloped for discriminative acoustic adaptation to
domains distinct from the original training domain.
It is achieved by reusing the decoded lattices from
the first decoding pass and by finetuning for TED-
LIUM development and test set. The setup follows
the Kaldi 1f TED-LIUM recipe. The architecture
is similar to Kaldi-Mozilla and uses a combina-
tion of TDNN layers with batch normalization and
ReLU activation. The input features are MFCC and
I-vectors.

Kaldi-AMI was trained on the 100 hours of
the AMI data, which comprise of staged meeting
recordings (Mccowan et al., 2005). These data

2https://github.com/kaldi-asr/kaldi/
tree/master/egs/commonvoice/s5
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domain AMI Antrecorp Auditing
document AMIa AMIb AMIc AMId Teddy Autocentrum Auditing

KIT-h-large-lm1 50.71 47.96 53.11 50.43 65.92 19.25 18.54
KIT-h-large-lm2 47.82 41.71 42.10 45.77 75.87 28.59 19.81
KIT-hybrid 40.72 38.45 41.09 43.28 58.99 21.04 21.44
KIT-seq2seq 33.73 28.54 34.45 42.24 42.57 9.91 10.45
Kaldi-TedLium 42.44 38.56 41.83 44.36 61.12 18.68 22.81
Kaldi-Mozilla 52.89 56.37 58.50 58.90 68.72 45.41 34.36
Kaldi-AMI 28.01 23.04 26.87 29.34 59.66 20.62 28.39
Microsoft 53.72 52.62 56.67 58.58 87.82 39.64 24.22
Google 51.52 49.47 53.11 56.88 61.01 14.12 17.47

Table 1: WER rates of individual documents in the development set. Kaldi-AMI scores on AMI domain are striked
through because they are unreliable due to an overlap with the training data.

domain document sents. tokens duration references

Antrecorp Teddy 11 171 1:15 2
Antrecorp Autocentrum 12 174 1:06 2
Auditing Auditing 25 528 5:38 1
AMI AMIa 220 1788 15:09 1
AMI AMIb 614 4868 35:17 0
AMI AMIc 401 3454 24:06 0
AMI AMId 281 1614 13:01 0

Table 2: The size of the development set
iwslt2020-nonnative-minidevset-v2.
The duration is in minutes and seconds. As “refer-
ences” we mean the number of independent referential
translations into Czech and German.

were recorded mostly by non-native English speak-
ers with a different microphone and acoustic envi-
ronment conditions. The model setup used follows
the Kaldi 1i ami recipe. Kaldi-AMI cannot be reli-
ably assessed on the AMI part of the development
due to the overlap of training and development data.
We have decided not to exclude this overlap so that
we do not limit the amount of available training
data for our model.

3.1.3 Public ASR Services
As part of our baseline models, we have used
Google Cloud Speech-to-Text API3 and Microsoft
Azure Speech to Text.4 Both of these services pro-
vide an API for transcription of audio files in WAV
format, and they use neural network acoustic mod-
els. We kept the default settings of these systems.

The Google Cloud system supports over 100
languages and several types of English dialects
(such as Canada, Ireland, Ghana, or the United
Kingdom). For decoding of the development and
test set, we have used the United Kingdom English

3https://cloud.google.com/
speech-to-text

4https://azure.microsoft.com/
en-us/services/cognitive-services/
speech-to-text/

WER weighted average avg
AMI Antrecorp Auditing domain

KIT-seq2seq1 32.96 26.10 10.45 23.17
Kaldi-TedLium 40.91 39.72 22.81 34.48
Kaldi-Mozilla 56.82 56.96 34.36 49.38
Kaldi-AMI 25.79 39.97 28.39 31.38
Microsoft 54.80 63.52 24.22 47.51
Google 51.88 37.36 17.47 35.57

KIT-h-large-lm1 50.24 42.38 18.542 37.05
KIT-h-large-lm2 43.32 52.02 19.81 38.38
KIT-hybrid 40.241 39.851 21.44 33.84

Table 3: Weighted average WER for the domains in val-
idation set, and their average. The top line-separated
group are offline ASR systems, the bottom are online.
Bold numbers are the lowest considerable WER in the
group. Kaldi-AMI score on AMI is not considered due
to overlap with training data. Bold names are the pri-
mary (marked with 1) and secondary (marked with 2)
candidates.

dialect option. The system can be run either in
real-time or offline mode. We have used the offline
option for this experiment.

The Microsoft Azure Bing Speech API supports
fewer languages than Google Cloud ASR but adds
more customization options of the final model. It
can be also run both in real-time or offline mode.
For the evaluation, we have used the offline mode
and the United Kingdom English (en-GB) dialect.

3.2 Selection of ASR Candidates

We processed the validation set with all the ASR
systems, evaluated WER, and summarized them in
Table 1. The validation set (Table 2) contains three
different domains with various document sizes, and
the distribution does not fully correspond to the test
set. The AMI domain is not present in the test set
at all, but it is a part of Kaldi-AMI training data.
Therefore, a simple selection by an average WER
on the whole validation set could favor the systems
which perform well on the AMI domain, but they
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could not be good candidates for the other domains.
In Table 3, we present the weighted average of

WER in the validation domains. We weight it by
the number of gold transcription words in each of
the documents. We observe that Kaldi-AMI has
a good performance on the AMI domain, but it is
worse on the others. We assume it is overfitted for
this domain, and therefore we do not use it as the
primary system.

For offline ASR, we use KIT-seq2seq as the pri-
mary system because it showed the lowest error
rate on the averaged domain.

The online ASR systems can exhibit somewhat
lower performance than offline systems. We select
KIT-h-large-lm1 as the primary online ASR candi-
date for Auditing, and KIT-hybrid as primary for
the other domains.

Our second primary offline ASR is Kaldi-AMI.

4 Punctuation and Segmentation

All our ASR systems output unpunctuated, often
all lowercased text. The MT systems are designed
mostly for individual sentences with proper casing
and punctuation. To overcome this, we first insert
punctuation and casing to the ASR output. Then,
we split it into individual sentences by the punctu-
ation marks by a rule-based language-dependent
Moses sentence splitter (Koehn et al., 2007).

Depending on the ASR system, we use one of
two possible punctuators. Both of them are usable
in online mode.

4.1 KIT Punctuator

The KIT ASR systems use an NMT-based model
to insert punctuation and capitalization in an oth-
erwise unsegmented lowercase input stream (Cho
et al., 2012, 2015). The system is a monolingual
translation system that translates from raw ASR
output to well-formed text by converting words to
upper case, inserting punctuation marks, and drop-
ping words that belong to disfluency phenomena.
It does not use the typical sequence-to-sequence
approach of machine translation. However, it con-
siders a sliding window of recent (uncased) words
and classifying each one according to the punctua-
tion that should be inserted and whether the word
should be dropped for being a part of disfluency.
This gives the system a constant input and output
size, removing the need for a sequence-to-sequence
model.

While inserting punctuation is strictly necessary

for MT to function at all, inserting capitalization
and removing disfluencies improves MT perfor-
mance by making the test case more similar to the
MT training conditions (Cho et al., 2017).

4.2 BiRNN Punctuator
For other systems, we use a bidirectional recurrent
neural network with an attention-based mechanism
by Tilk and Alumäe (2016) to restore punctuation
in the raw stream of ASR output. The model was
trained on 4M English sentences from CzEng 1.6
(Bojar et al., 2016) data and a vocabulary of 100K
most frequently occurring words. We use CzEng
because it is a mixture of domains, both originally
spoken, which is close to the target domain, and
written, which has richer vocabulary, and both orig-
inal English texts and translations, which we also
expect in the target domain. The punctuated tran-
script is then capitalized using an English tri-gram
truecaser by Lita et al. (2003). The truecaser was
trained on 2M English sentences from CzEng.

5 Machine Translation

This section describes the translation part of SLT.

5.1 MT Systems
See Table 4 for the summary of the MT systems.
All except de-LSTM are Transformer-based neu-
ral models using Marian (Junczys-Dowmunt et al.,
2018) or Tensor2Tensor (Vaswani et al., 2018)
back-end. All of them, except de-T2T, are uncon-
strained because they are trained not only on the
data sets allowed in the task description, but all the
used data are publicly available.

5.1.1 WMT Models
WMT19 Marian and WMT18 T2T models are Mar-
ian and T2T single-sentence models from Popel
et al. (2019) and Popel (2018). WMT18 T2T was
originally trained for the English-Czech WMT18
news translation task, and reused in WMT19.
WMT19 Marian is its reimplementation in Mar-
ian for WMT19. The T2T model has a slightly
higher quality on the news text domain than the
Marian model. The Marian model translates faster,
as we show in Section 5.5.

5.1.2 IWSLT19 Model
The IWSLT19 system is an ensemble of two
English-to-Czech Transformer Big models trained
using the Marian toolkit. The models were origi-
nally trained on WMT19 data and then finetuned
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system back-end source-target constrained reference

WMT19 Marian Marian en→cs no Popel et al. (2019), Section 5.1.1
WMT18 T2T T2T en→cs no Popel et al. (2019), Section 5.1.1
IWSLT19 Marian en→cs no Wetesko et al. (2019), Section 5.1.2
OPUS-A Marian en↔{cs,de+5 l.} no Section 5.1.3
OPUS-B Marian en↔{cs,de+39 l.} no Section 5.1.3
T2T-multi T2T en↔{cs,de,en+39 l.} no Section 5.1.4
T2T-multi-big T2T en↔{cs,de,en+39 l.} no Section 5.1.4
de-LSTM NMTGMinor en→de no Dessloch et al. (2018), Section 5.1.6
de-T2T T2T en→de yes Section 5.1.5

Table 4: The summary of our MT systems.

on MuST-C TED data. The ensemble was a com-
ponent of Edinburgh and Samsung’s submission to
the IWSLT19 Text Translation task. See Section 4
of Wetesko et al. (2019) for further details of the
system.

5.1.3 OPUS Multi-Lingual Models
The OPUS multilingual systems are one-to-many
systems developed within the ELITR project. Both
were trained on data randomly sampled from the
OPUS collection (Tiedemann, 2012), although they
use distinct datasets. OPUS-A is a Transformer
Base model trained on 1M sentence pairs each for 7
European target languages: Czech, Dutch, French,
German, Hungarian, Polish, and Romanian. OPUS-
B is a Transformer Big model trained on a total of
231M sentence pairs covering 41 target languages
that are of particular interest to the project5 After
initial training, OPUS-B was finetuned on an aug-
mented version of the dataset that includes partial
sentence pairs, artificially generated by truncating
the original sentence pairs (similar to Niehues et al.,
2018). We produce up to 10 truncated sentence
pairs for every one original pair.

5.1.4 T2T Multi-Lingual Models
T2T-multi and T2T-multi-big are respectively
Transformer and Transformer Big models trained
on a Cloud TPU based on the default T2T hyper-
parameters, with the addition of target language
tokens as in Johnson et al. (2017). The models
were trained with a shared vocabulary on a dataset
of English-to-many and many-to-English sentence
pairs from OPUS-B containing 42 languages in to-
tal, making them suitable for pivoting. The models

5The 41 target languages include all EU languages (other
than English) and 18 languages that are official languages of
EUROSAI member countries. Specifically, these are Alba-
nian, Arabic, Armenian, Azerbaijani, Belorussian, Bosnian,
Georgian, Hebrew, Icelandic, Kazakh, Luxembourgish, Mace-
donian, Montenegrin, Norwegian, Russian, Serbian, Turkish,
and Ukrainian.

do not use finetuning.

5.1.5 de-T2T
de-T2T translation model is based on a Ten-
sor2Tensor translation model model using train-
ing hyper-parameters similar to Popel and Bojar
(2018). The model is trained using all the parallel
corpora provided for the English-German WMT19
News Translation Task, without back-translation.
We use the last training checkpoint during model
inference. To reduce the decoding time, we apply
greedy decoding instead of a beam search.

5.1.6 KIT Model
KIT’s translation model is based on an LSTM
encoder-decoder framework with attention (Pham
et al., 2017). As it is developed for our lecture
translation framework (Müller et al., 2016), it is
finetuned for lecture content. In order to optimize
for a low-latency translation task, the model is also
trained on partial sentences in order to provide
more stable translations (Niehues et al., 2016).

5.2 ELITR SLT Platform

We use a server called Mediator for the integration
of independent ASR and MT systems into a cas-
cade for online SLT. It is a part of the ELITR plat-
form for simultaneous multilingual speech trans-
lation (Franceschini et al., 2020). The workers,
which can generally be any audio-to-text or text-
to-text processors, such as ASR and MT systems,
run inside of their specific software and hardware
environments located physically in their home labs
around Europe. They connect to Mediator and of-
fer a service. A client, often located in another lab,
requests Mediator for a cascade of services, and
Mediator connects them. This platform simplifies
the cross-institutional collaboration when one insti-
tution offers ASR, the other MT, and the third tests
them as a client. The platform enables using the
SLT pipeline easily in real-time.
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5.3 MT Wrapper

The simultaneous ASR incrementally produces the
recognition hypotheses and gradually improves
them. The machine translation system translates
one batch of segments from the ASR output at a
time. If the translation is not instant, then some
ASR hypotheses may be outdated during the trans-
lation and can be skipped. We use a program called
MT Wrapper for connecting the output of self-
updating ASR with non-instant NMT systems.

MT Wrapper has two threads. The receiving
thread segments the input for our MTs into indi-
vidual sentences, saves the input into a buffer, and
continuously updates it. The translating thread is a
loop that retrieves the new content from the buffer.
If a segment has been translated earlier in the cur-
rent process, it is outputted immediately. Other-
wise, the new segments are sent in one batch to the
NMT system, stored to a cache and outputted.

For reproducibility, the translation cache is
empty at the beginning of a process, but in the-
ory it could be populated by a translation memory.
The cache significantly reduces the latency because
the punctuator often oscillates between two vari-
ants of casing or punctuation marks within a short
time.

MT Wrapper has a parameter to control the sta-
bility and latency. It can mask the last k words of
incomplete sentences from the ASR output, as in
Ma et al. (2019) and Arivazhagan et al. (2019), con-
sidering only the currently completed sentences, or
only the “stable” sentences, which are beyond the
ASR and punctuator processing window and never
change. We do not tune these parameters in the
validation. We do not mask any words or segments
in our primary submission, but we submit multiple
non-primary systems differing in these parameters.

5.4 Quality Validation

For comparing the MT candidates for SLT, we pro-
cessed the validation set by three online ASR sys-
tems, translated them by the candidates, aligned
them with reference by mwerSegmenter (Matusov
et al., 2005) and evaluated the BLEU score (Post,
2018; Papineni et al., 2002) of the individual doc-
uments. However, we were aware that the size
of the validation set is extremely limited (see Ta-
ble 2) and that the automatic metrics as the BLEU
score estimate the human judgment of the MT qual-
ity reliably only if there is a sufficient number of
sentences or references. It is not the case of this

validation set.
Therefore, we examined them by a simple com-

parison with source and reference. We realized
that the high BLEU score in the Autocentrum docu-
ment is induced by the fact that one of the translated
sentences matches exactly matches a reference be-
cause it is a single word “thanks”. This sentence
increases the average score of the whole document,
although the rest is unusable due to mistranslated
words. The ASR quality of the two Antrecorp doc-
uments is very low, and the documents are short.
Therefore we decided to omit them in comparison
of the MT candidates.

We examined the differences between the can-
didate translations on the Auditing document, and
we have not seen significant differences, because
this document is very short. The AMIa document
is longer, but it contains long pauses and many iso-
lated single-word sentences, which are challenging
for ASR. The part with a coherent speech is very
short.

Finally, we selected the MT candidate, which
showed the highest average BLEU score on the
three KIT online ASR systems both on Auditing
and AMIa document because we believe that av-
eraging the three ASR sources shows robustness
against ASR imperfections. See Table 5 and Ta-
ble 6 for the BLEU scores on Czech and German.
The selected candidates are IWSLT19 for Czech
and OPUS-B for German. However, we also sub-
mit all other candidates as non-primary systems to
test them on a significantly larger test set. We use
these candidates both for online and offline SLT.

5.5 Translation Time

We measured the average time, in which the MT
systems process a batch of segments of the vali-
dation set (Table 7). If the ASR updates are dis-
tributed uniformly in time, than the average batch
translation time is also the expected delay of ma-
chine translation. The shortest delay is almost zero;
in cases when the translation is cached or for very
short segments. The longest delay happens when
an ASR update arrives while the machine is busy
with processing the previous batch. The delay is
time for translating two subsequent batches, wait-
ing and translating.

We suppose that the translation time of our pri-
mary candidates is sufficient for real-time transla-
tion, as we verified in on online SLT test sessions.

We observe differences between the MT systems.
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MT document gold KIT-hybrid KIT-h-large-lm1 KIT-h-large-lm2 avg KIT

OPUS-B Teddy 42.8463 2.418 2.697 1.360 2.158
IWSLT19 Teddy 51.397 1.379 2.451 1.679 1.836
WMT19 Marian Teddy 49.328 1.831 1.271 1.649 1.584
WMT18 T2T Teddy 54.778 1.881 1.197 1.051 1.376
OPUS-A Teddy 25.197 1.394 1.117 1.070 1.194
T2T-multi Teddy 36.759 1.775 0.876 0.561 1.071
WMT18 T2T Autocentrum 42.520 12.134 13.220 14.249 13.201
WMT19 Marian Autocentrum 39.885 10.899 10.695 12.475 11.356
OPUS-B Autocentrum 29.690 12.050 10.873 9.818 10.914
IWSLT19 Autocentrum 37.217 9.901 8.996 8.900 9.266
OPUS-A Autocentrum 30.552 9.201 9.277 8.483 8.987
T2T-multi Autocentrum 20.011 6.221 2.701 3.812 4.245

IWSLT19 AMIa 22.878 5.377 2.531 3.480 3.796
WMT18 T2T AMIa 21.091 5.487 2.286 3.411 3.728
WMT19 Marian AMIa 22.036 4.646 2.780 3.739 3.722
OPUS-B AMIa 19.224 4.382 3.424 2.672 3.493
OPUS-A AMIa 15.432 3.131 2.431 2.500 2.687
T2T-multi AMIa 13.340 2.546 2.061 1.847 2.151

IWSLT19 Auditing 9.231 1.096 3.861 2.656 2.538
OPUS-B Auditing 6.449 1.282 3.607 2.274 2.388
OPUS-A Auditing 8.032 1.930 4.079 0.900 2.303
WMT19 Marian Auditing 8.537 1.087 3.571 1.417 2.025
WMT18 T2T Auditing 9.033 1.201 2.935 1.576 1.904
T2T-multi Auditing 3.923 1.039 1.318 1.110 1.156

Table 5: Validation BLEU scores in percents (range 0-100) for SLT into Czech from ASR sources. The column
“gold” is translation from the gold transript. It shows the differences between MT systems, but was not used in
validation.

The size and the model type of WMT19 Marian
and WMT18 T2T are the same (see Popel et al.,
2019), but they differ in implementation.

WMT19 Marian is slightly faster than IWSLT19
model because the latter is an ensemble of two
models. OPUS-B is slower than OPUS-A because
the former is bigger. Both are slower than WMT19
Marian due to multi-targeting and different prepro-
cessing. WMT19 Marian uses embedded Senten-
cePiece (Kudo and Richardson, 2018), while the
multi-target models use an external Python process
for BPE (Sennrich et al., 2016). The timing may
be affected also by different hardware.

At the validation time, T2T-multi and T2T-multi-
big used suboptimal setup.

6 Conclusion

We presented ELITR submission for non-native
SLT at IWSLT 2020. We observe a significant qual-
itative difference between the end-to-end offline
ASR methods and hybrid online methods. The
component that constrains the offline SLT from
real-time processing is the ASR, not the MT.

We selected the best candidates from a pool of
pre-existing and newly developed components, and
submitted our primary submissions, although the
size of the development set limits us from a reli-

able validation. Therefore, we submitted all our
unselected candidates for contrastive evaluation on
the test set. For the results, we refer to Ansari et al.
(2020).
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Abstract

Subtitling is becoming increasingly important
for disseminating information, given the enor-
mous amounts of audiovisual content becom-
ing available daily. Although Neural Machine
Translation (NMT) can speed up the process
of translating audiovisual content, large man-
ual effort is still required for transcribing the
source language, and for spotting and seg-
menting the text into proper subtitles. Cre-
ating proper subtitles in terms of timing and
segmentation highly depends on information
present in the audio (utterance duration, natu-
ral pauses). In this work, we explore two meth-
ods for applying Speech Translation (ST) to
subtitling: a) a direct end-to-end and b) a clas-
sical cascade approach. We discuss the benefit
of having access to the source language speech
for improving the conformity of the generated
subtitles to the spatial and temporal subtitling
constraints and show that length1 is not the
answer to everything in the case of subtitling-
oriented ST.

1 Introduction

Vast amounts of audiovisual content are becom-
ing available every minute. From films and TV
series, informative and marketing video material,
to home-made videos, audiovisual content is reach-
ing viewers with various needs and expectations,
speaking different languages, all across the globe.
This unprecedented access to information through
audiovisual content is made possible mainly thanks
to subtitling. Subtitles, despite being the fastest and
most wide-spread way of translating audiovisual

1Speaking of subtitles and their optimum length of 42
characters per line, we could not help but alluding to the book
and series The Hitchhiker’s Guide to the Galaxy by Douglas
Adams, where the number 42 is the “Answer to the Ultimate
Question of Life, the Universe, and Everything”, calculated
by a massive supercomputer named Deep Thought for over
7.5 million years.

content, still rely heavily on human effort. In a typi-
cal multilingual subtitling workflow, a subtitler first
creates a subtitle template (Georgakopoulou, 2019)
by transcribing the source language audio, timing
and adapting the text to create proper subtitles in
the source language. These source language subti-
tles (also called captions) are already compressed
and segmented to respect the subtitling constraints
of length, reading speed and proper segmentation
(Cintas and Remael, 2007; Karakanta et al., 2019).
In this way, the work of an NMT system is already
simplified, since it only needs to translate match-
ing the length of the source text (Matusov et al.,
2019; Lakew et al., 2019). However, the essence
of a good subtitle goes beyond matching a prede-
termined length (as, for instance, 42 characters per
line in the case of TED talks). Apart from this spa-
tial dimension, subtitling relies heavily on the tem-
poral dimension, which is incorporated in the sub-
title templates in the form of timestamps. However,
templates are expensive and slow to create and as
so, not a viable solution for short turn-around times
and individual content creators. Therefore, skip-
ping the template creation process would greatly
extend the application of NMT in the subtitling
process, leading to massive reductions in costs and
time and making multilingual subtitling more ac-
cessible to all types of content creators.

In this work, we propose Speech Translation as
an alternative to the template creation process. We
experiment with cascade systems, i.e. pipelined
ASR+MT architectures, and direct, end-to-end ST
systems. While the MT system in the pipelined
approach receives a raw textual transcription as in-
put, the direct speech translation receives temporal
and prosodic information from the source language
input signal. Given that several decisions about the
form of subtitles depend on the audio (e.g. subtitle
segmentation at natural pauses, length based on ut-
terance duration), in this work we ask the question
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whether end-to-end ST systems can take advan-
tage of this information to better model the subti-
tling constraints and subtitle segmentation. In other
words, we investigate whether, in contrast to text
translation (where one mainly focuses on returning
subtitles of a maximum length of 42 characters), in
speech translation additional information can help
to develop a more advanced approach that goes
beyond merely matching the source text length.

Our contributions can be summarised as follows:

• We present the first end-to-end solution for
subtitling, completely eliminating the need of
a source language transcription and any extra
segmenting component;

• We conduct a thorough analysis of cascade vs.
end-to-end systems both in terms of transla-
tion quality and conformity to the subtitling
contraints, showing that end-to-end systems
have large potential for subtitling.

2 Background

2.1 Subtitling

Subtitling involves translating the audio (speech)
in a video into text in another language (in the case
of interlingual subtitling). Subtitling is therefore a
multi-modal phenomenon, incorporating visual im-
ages, gestures,2 sound and language (Taylor, 2016),
but also an intersemiotic process, in the sense that
it involves a change of channel, medium and code
from speech to writing, from spoken verbal lan-
guage to written verbal language (Assis, 2001).

The temporal dimension of subtitles and the re-
lation between audio and text has been stressed
also in professional subtitling guidelines. In their
subtitling guidelines, Carroll and Ivarsson (1998)
mention that: “The in and out times of subtitles
must follow the speech rhythm of the dialogue, tak-
ing cuts and sound bridges into consideration” and
that: “There must be a close correlation between
film dialogue and subtitle content; source language
and target language should be synchronized as far
as possible”. Therefore, a subtitler’s decisions are
guided not only by attempting to transfer the source
language content, but also by achieving a high cor-
relation between the source language speech and
target language text.

2While we recognise the importance of the visual dimen-
sion in the process of subtitling, incorporating visual cues in
the NMT system is beyond the scope of this work.

In addition, subtitles have specific properties in
the sense that they have to conform to spatial and
temporal constraints in order to ensure compre-
hension and a pleasant user experience. For ex-
ample, due to limited space on screen, a subtitle
cannot be longer than a fixed number of charac-
ters per line, ranging between 35-43 (Cintas and
Remael, 2007). When it comes to the temporal
constraints, a comfortable reading speed (about 21
chars/second) is key to a positive user experience.
It should be ensured that viewers have enough time
to read and assimilate the content, while at the same
time their attention is not monopolised by the sub-
titles. Lastly, the segmentation of subtitles should
be performed in a way that facilitates comprehen-
sion, by keeping linguistic units (e.g. phrases) in
the same line. For the reasons mentioned above,
subtitlers should ideally always have access to the
source video when translating. However, working
directly from the video can have several drawbacks.
The subtitler needs to make sense of what is said
on the screen, deal with regional accents, noise,
unintelligible speech etc.

One way to automatise this labour-intensive pro-
cess, especially in settings where several target lan-
guages are involved, is creating a subtitle template
of the source language (Georgakopoulou, 2019).
A subtitle template is an enriched transcript of the
source language speech where the text is already
compressed, timed and segmented into proper sub-
titles. This template can serve as a basis for trans-
lation into other languages, whether the translation
is performed by a human or an MT system.

In the case of templates, optimal duration, length
and proper segmentation are ensured, since the
change of code between oral and written in the
source language has already been curated by an
expert. Due to the high costs and time required,
creating a subtitle template is not a feasible solution
both for small content creators and in the case of
high volumes and fast turn-around times.

In the absence of a subtitle template, an auto-
matic transcription of the source language audio
could seem an efficient alternative. However, Au-
tomatic Speech Recognition (ASR) systems pro-
duce word-for-word transcriptions of the source
speech, not adapted to the subtitling constraints,
and where all information coming from the speech
is discarded. This purely textual transcription is
then translated by the MT system. Therefore, it is
highly probable that a higher post-editing effort is
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required not only in terms of translation errors, but
chiefly for repairing the form of the subtitles.

Direct, end-to-end speech translation receives
audio as input. Therefore, the model receives two
types of information from the spectrogram: 1) in-
formation about the temporal dimension of the
speech, e.g. duration, and 2) information related
to the frequency, such as pitch, power and other
prosodic elements. While intonation and stress
are mostly related to semantic properties, speech
tempo directly affects the compression rate of sub-
titles, and pauses often correspond to prosodic
chunks which can determine the subtitle segmen-
tation. Given that, it is worth asking the question
whether access to this information can lead to better
modelling of the subtitling constraints and subtitle
segmentation.

2.2 Speech translation

Traditionally, the task of Speech-to-Text Transla-
tion has been addressed with cascade systems con-
sisting of two components: an ASR system, which
transcribes the speech into text, and an MT system,
which translates the transcribed text into the target
language (Eck and Hori, 2005). This approach has
the benefit that it can take advantage of state-of-the-
art technology for both components and leverage
the large amount of data available for both tasks.
On the other hand, it suffers from error propagation
from the ASR to the MT, since transcription errors
are impossible to recover because the MT compo-
nent typically does not have access to the audio.
Several works have attempted to make MT robust
to ASR errors (Di Gangi et al., 2019b; Sperber
et al., 2017) by working on noisy transcripts.

One further drawback of the cascaded approach,
particularly relevant for the task of subtitling, is
that any transcript, no matter how accurate, is sub-
ject to information loss in the semiotic shift from
the richer audio representation to the poorer text
representation. This limitation has been addressed
in the past in speech-to-speech translation cascades
chiefly for improving the naturalness of the synthe-
sised speech and for resolving ambiguities. This
has been performed through acoustic feature vec-
tors related to different prosodic elements, such
as duration and power (Kano et al., 2013), empha-
sis (Do et al., 2015, 2016) and intonation (Aguero
et al., 2006; Anumanchipalli et al., 2012).

By avoiding intermediate textual representations,
end-to-end speech translation (Bérard et al., 2016)

can cope with the above limitations. However, its
performance and suitability for reliable applica-
tions has been impeded by the limited amount of
training data available. In spite of this data scarcity
problem, it has been recently shown that the gap be-
tween the two approaches is closing (Niehues et al.,
2018, 2019), especially with specially-tailored ar-
chitectures (Di Gangi et al., 2019c; Dong et al.,
2018) and via effective data augmentation strate-
gies (Jia et al., 2019). Despite an increasing amount
of works attempting to improve the performance of
ST for general translation, there has been almost
no work on comparing the two technologies on spe-
cific problems and applications, which is among
the focus points of this work.

2.3 Machine Translation for subtitling

Despite the relevance of developing automatic so-
lutions for subtitling both for the industry and
academia, there have been very limited attempts to
customise MT for subtitling. Previous works based
on Statistical MT (SMT) used mostly proprietary
data and led to completely opposite outcomes. Volk
et al. (2010) developed SMT systems for the Scan-
dinavian TV industry and reported very good re-
sults in this practical application. Aziz et al. (2012)
reported significant reductions in post-editing effort
compared to translating from scratch for DVD sub-
titles for English-Portuguese. On the other hand,
the SUMAT project (Bywood et al., 2013, 2017), in-
volving seven European language pairs, concluded
that subtitling poses particular challenges for MT
and therefore a lot of work is still required before
MT can lead to real improvements in audiovisual
translation workflows (Burchardt et al., 2016).

Recently, after the advent of the neural machine
translation paradigm, Matusov et al. (2019) pre-
sented an NMT system customised to subtitling.
The main contribution of the paper is a segmenter
module trained on human segmentation decisions,
which splits the resulting translation into subtitles.
The authors reported reductions in post-editing ef-
fort, especially regarding subtitle segmentation. On
a different strand of research, Lakew et al. (2019)
proposed two methods for controlling the output
length in NMT. The first one is based on adding
a token, as in Multilingual NMT (Johnson et al.,
2017; Ha et al., 2016), which in this setting rep-
resents the length ratio between source and target,
and the second inserts length information in the
positional encoding of the Transformer.
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The application of MT (either SMT or NMT)
in the works described above is possible only be-
cause of the presence of a “perfect” source lan-
guage transcript, either for the translation itself or
for computing the length ratio. To our knowledge
today, no work so far has experimented with direct
end-to-end ST in the domain of subtitling.

3 Experimental Setup

3.1 Data

For the experiments we use the MuST-Cinema cor-
pus (Karakanta et al., 2020),3 which contains (au-
dio, transcription, translation) triplets where the
breaks between subtitles have been annotated with
special symbols. The symbol <eol> corresponds
to a line break inside a subtitle block, while the
symbol <eob> to a subtitle block break (the next
subtitle comes on a different screen), as seen in the
following example from the MuST-Cinema test set:

This kind of harassment keeps women <eol>
from accessing the internet – <eob>
essentially, knowledge. <eob>

We experiment with 2 language pairs,
English→French and English→German, as
languages with different syntax and word order.
The training data consist of 229K and 275K
sentences (408 and 492 hours) for German and
French respectively, while the development sets
contain 1088/1079 sentences and the test sets
542/544 sentences.

3.2 MT and ST systems

The Cascade system consists of an ASR and an
MT component. The ASR component is based
on the KALDI toolkit (Povey et al., 2011), fea-
turing a time-delay neural network and lattice-
free maximum mutual information discriminative
sequence-training (Povey et al., 2016). The au-
dio data for acoustic modelling include the clean
portion of LibriSpeech (Panayotov et al., 2015)
(∼460h) and a variable subset of the MuST-Cinema
training set (∼450h), from which 40 MFCCs per
time frame were extracted. A MaxEnt language
model (Alumäe and Kurimo, 2010) is estimated
from the corresponding transcripts (∼7M words).
The MT component is based on the Transformer ar-
chitecture (big) (Vaswani et al., 2017) with similar
settings to the original paper. The system is first

3Must-Cinema has been derived from the MuST-C corpus
(Di Gangi et al., 2019a), which currently represents the largest
multilingual corpus for ST.

trained on the OPUS data, with 120M sentences
for EN→FR and 50M for EN→DE and then fine-
tuned on MuST-Cinema. Considering that the ASR
output is lower-cased and without punctuation, we
lowercase and remove the punctuation from the
source side of the parallel data used in pre-training
the MT system. To mitigate the error propagation
between the ASR and the MT, for fine-tuning, we
use a version of MuST-Cinema where the source
audio has been transcribed by the tuned ASR.

For the End-to-End system, we experiment with
two data conditions, one where we only use the
MuST-Cinema training data (E2E-small) and a sec-
ond one where we pre-train on a larger amount of
data and fine-tune on MuST-Cinema (E2E). This
will allow us to detect whether there is any trade-
off between translation quality and conformity to
constraints when increasing the amount of train-
ing data that are not representative of the target
application (subtitling). The architecture used is
S-Transformer, (Di Gangi et al., 2019c), an ST-
oriented adaptation of Transformer, which has been
shown to achieve high performance on different
speech translation benchmarks. We remove the
2D self-attention layers and increase the size of
the encoder to 11 layers, while for the decoder
we use 4 layers. This choice was motivated by
preliminary experiments, where we noted that re-
placing the 2D self-attention layers with normal
self-attention layers and adding more layers in the
encoder increased the final score, while removing
a few decoder layers did not negatively affect the
performance. As distance penalty, we choose the
logarithmic distance penalty. We use the encoder
of the ASR model to initialise the weights of the
ST encoder and achieve faster convergence (Bansal
et al., 2019).

Since the E2E-small system, trained only on
MuST-Cinema, is disadvantaged in terms of the
amount of training data compared to the cascade,
we utilise synthetic data to boost the performance
of the ST system (E2E). To this aim, we automat-
ically translate into German and into French the
English transcriptions of the data available for the
IWSLT2020 offline speech translation task4 (when-
ever the translation is not available in the respective
target language). To this aim, we use an MT Trans-
former model achieving 43.2 BLEU points on the
WMT’14 test set (Ott et al., 2018) for EN→FR.

4http://iwslt.org/doku.php?id=offline_
speech_translation
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Our EN→DE Transformer model using similar set-
tings achieves 25.3 BLEU points on the WMT’14
test set. The resulting training data (both real and
synthetic) amount to 1.5M sentences on the target
side. We use a different tag to separate the real
from the synthetic data. We further use SpecAug-
ment (Park et al., 2019), a technique for online data
augmentation, with augment rate of 0.5. Finally,
we fine-tune on MuST-Cinema.

For comparison, we also report MT results when
starting from a “subtitle template” (Template). In
this setting, we use the textual source side of MuST-
Cinema, which contains the human transcriptions
of the source language audio and its segmentation
into subtitles. In this way, the input to the MT
system is already split in subtitles using the spe-
cial symbols, respecting the subtitling constraints
and with proper segmentation. This will allow us
to have an upper-bound of the performance that
NMT can achieve when provided with input al-
ready in the form of subtitles. We pre-train large
models with the OPUS data used in the cascade
but without lowercasing or removing punctuation
and then fine-tune them on the full training set of
MuST-Cinema. It should be noted that only the
MuST-Cinema data contain break symbols. We
use the same Transformer architecture as in the
cascade system. For all the experiments we use
the fairseq toolkit (Gehring et al., 2017). Models
are trained until convergence. Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) is set to 8K operations
for the E2E-small and E2E systems while to 50K
joint operations for the Cascade and the Template
systems.

3.3 Evaluation

To evaluate translation quality we use BLEU (Pa-
pineni et al., 2002) against the MuST-Cinema test
set, both with the break symbols and after removing
them (BLEU-nob). For BLEU, an incorrect break
symbol would account for an extra n-gram error
in the score computation, while BLEU-nob allows
us to evaluate only the translation quality without
taking into account the subtitle segmentation.

For evaluating the conformity to the constraint
of length, we calculate the percentage of subtitles
with a maximum length of 42 characters per line
(CPL), while for reading speed the percentage of
sentences with maximum 21 characters per second
(CPS). Since the MuST-Cinema data come from
TED talks, these values were chosen according to

the TED subtitling guidelines5.
Finally, for judging the goodness of the segmen-

tation, i.e. the position of the breaks in the transla-
tion, we mask all words except for the break sym-
bols and compute Translation Edit Rate (Snover
et al., 2006) only for the breaks against the refer-
ence translation (TER-br). This will allow us to
determine the effort required by a human subtitler
to manually correct the segmentation.

4 Results

4.1 Translation quality

The results are shown Table 1. As far as trans-
lation quality is concerned, the best performance
is reached, as expected, in the Template setting,
where the MT system is provided with “perfect”
source language transcriptions. On the MuST-
Cinema test set, this leads to BLEU scores of 30.62
and 22.08 respectively for French and German. The
Cascade setting follows with a BLEU score reduc-
tion of 8 points for French and 4 points for German,
which can be attributed to error propagation from
the ASR component to the MT.

The E2E-small model (trained solely on MuST-
Cinema) achieves 18.76 and 11.92 BLEU points
for French and German respectively, which is a
relatively low performance compared to the rest
of the systems. This “low-resource” setting is a
didactic experiment aimed at exploring how far
the data-hungry neural approach can go with the
limited amount of data available in the domain of
ST for subtitling (280K and 234K sentences). It
should be also noted that MuST-Cinema is the only
Speech Translation corpus of the subtitle genre,
both respecting the subtitling constraints and con-
taining break symbols. Consequently, the inter-
ference of other data may hurt the conformity to
the subtitling constraints, despite improving the
translation performance. On the other hand, pre-
training has evolved in a standard procedure for
coping with the data-demanding nature of NMT.
Therefore, pre-training also in the case of end-to-
end speech translation offers a comparable setting
with the template and the cascade experiments.
Indeed, after fine-tuning the pre-trained model
on MuST-Cinema, E2E reaches 22.22 and 17.28
BLEU points for French and German. The differ-
ence in translation quality is not statistically signif-
icant between the Cascade and the E2E, with the

5https://translations.ted.com/TED_
Translator_Resources:_Main_guide
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BLEU↑ BLEU-nob↑ CPL↑ CPS↑ TER-br↓
FR Template 30.62 28.86 91% 68% 18

Cascade 22.41† 22.06 93% 72% 22
E2E-small 18.76 18.03 95% 70% 23
E2E 22.22† 21.9 95% 70% 20

DE Template 22.08 21.10 90% 56% 17
Cascade 17.81† 17.82 90% 56% 21
E2E-small 11.92 11.38 93% 55% 24
E2E 17.28† 16.90 92% 56% 20

Table 1: Results for translation quality (BLEU, BLEU-nob), for conformity to the subtitling constraints (CPL, CPS)
and for subtitle segmentation (TER-br) for the four systems. Results marked with † are not statistically significant.

Cascade scoring higher with 0.2/0.6 BLEU points
for French/German respectively. This shows that
when increasing the size of the training data for
the E2E the gap between the cascade and the end-
to-end approach is closed and that end-to-end ap-
proaches may have finally found a steady ground
for flourishing in different applications.

4.2 Conformity to the subtitling constraints
and subtitle segmentation

When it comes to the conformity to the subtitling
constraints, the results show a different picture (see
CPS and CPL of Table 1). E2E exceeds all models
at achieving proper length of subtitles, with 95%
and 93% of the subtitles having length of maxi-
mum 42 characters. E2E achieves higher confor-
mity with length even compared to the Template,
for which the segmentation is already provided to
the system in the form of break symbols, while the
cascade is behind by 2%. The same tendency is ob-
served in the TER-br results computed to measure
the proper placement of the break symbols. While
the Template benefits from the source language
segmentation and therefore requires less edits to
properly segment the subtitles, the Cascade is dis-
advantaged in guessing the correct position of the
break symbols, as shown by a 22 and 21 TER score.
For E2E-small TER-br is higher, possibly due to
the low translation quality. However, E2E outper-
forms the Cascade by 1 TER point in this respect,
showing that less effort would be required to seg-
ment the sentences into subtitles. This suggests that
the E2E system receives information compared to
the Cascade, which allows for better guessing the
positions of the break symbols in the translation.
This is another indication that subtitle segmentation
decisions are not solely determined by reaching a
maximum length of 42 characters, but a combina-
tion of multiple (possibly intersemiotic) factors can
offer a better answer to automatic subtitling.

5 Analysis

The higher scores for CPL and TER-br in Section 4
suggest that the E2E system is better at modelling
the subtitling constraints of length and proper seg-
mentation. In this section we shed more light into
this aspect by analysing factors which might be de-
termining the system’s behaviour in relation to the
insertion of the break symbols <eol> and <eob>.

One question quickly arising is how the system
can determine whether to insert a subtitle break
symbol <eob> (which means that the next subtitle
will follow on a new screen) or a line break symbol
<eol> (which means that the next line of the subti-
tle will appear on the same screen). Since the max-
imum number of lines allowed per subtitle block is
2, a simple answer would be to alternate between
<eob> and <eol> such that all subtitles would
consist of two lines (two-liners). However, anyone
having watched a film with subtitles is aware that
subtitles can be two-liners or one-liners. Coming
back to the example in Section 3.1, depending on
the choice of break symbols (except for the last
symbol which should always be an <eob>), there
are two possible renderings of the subtitle:

10
00:00:31,066 --> 00:00:34,390
This kind of harassment keeps women
from accessing the internet --
11
00:00:34,414 --> 00:00:36,191
essentially, knowledge.

and

10
00:00:31,066 --> 00:00:34,390
This kind of harassment keeps women
11
00:00:34,414 --> 00:00:36,191
from accessing the internet --
essentially, knowledge.

Only the first rendering is acceptable because
it satisfies the reading speed constraint but also
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corresponds to the speech rhythm, since the speaker
makes a pause after uttering the word “internet”. In
this case, how can the MT system determine which
type of break symbol to insert?

We have mentioned in Section 2.1 that the in and
out times of a subtitle should follow the rhythm
of speech. Therefore, we expect that the end of
a subtitle block, which in our setting is signalled
by the break symbol <eob>, should correspond
to the end of a speech act, a pause or a terminal
juncture. On the other hand, line breaks inside the
same subtitle block, which in our work correspond
to the break symbol <eol>, have a different role.
While line breaks can still overlap with pauses or
signal the change of speaker, their function is to
split a long subtitle into two smaller parts in order
to fit the screen. The decision of where to insert
a line break inside a subtitle block is determined
by two factors: achieving a more or less equal
length of the upper and the lower subtitle line and
inserting the break in a position such that syntactic
units are kept together. Consequently, the insertion
of <eol> is determined more by the length and
the syntactic properties of the subtitle and less by
the natural rhythm of the speech.

If the hypothesis above holds, the choice of
whether to insert an <eob> or an <eol> sym-
bol is defined by prosodic properties and not solely
by reaching the maximum length of 42 characters.
As a consequence, it is not a simple alternating
procedure.

To test this hypothesis, we compute the duration
of the pause coming after each word in the source
side of the MuST-Cinema test set. To achieve
this, we perform forced alignment of the transcript
against the audio and subtract the end time of each
word from the start time of the next word:

pausew1w2 = start timew2 − end timew1 (1)

Then we separate the pauses in 3 groups: i)
pauses corresponding to positions where <eob>
is present, ii) pauses corresponding to positions
where <eol> is present and iii) pauses after which
there is no break symbol (None). In Table 2 we
report average and standard deviation of the pause
duration for each category.

Pauses corresponding to the positions where
<eob> symbols are present are more than x10
longer than the pauses in positions without any
break symbols (None). Even if we take the most
extreme cases (based on standard deviation), any

Pause type Avg Stdev

None 0.039 0.022
<eob> 0.551 0.181
<eol> 0.074 0.027

Table 2: Average pause duration and standard deviation
(in seconds) for the category without breaks (None),
and for the categories with the two types of break sym-
bols <eob> and <eol>.

pause above 0,37 seconds requires the insertion of
<eob>. Pauses corresponding to <eol> symbols
are on average x2 longer, but there is an overlap
between the possible durations of the None and
the <eol> category. This confirms our hypoth-
esis about the different roles of the two subtitle
breaks. Therefore, prosodic information is an im-
portant factor which can help the ST system de-
termine the subtitling segmentation according to
the speech rhythm. This finding provides strong
evidence towards a clear limitation of the cascade
setting, where the raw textual transcription from the
ASR does not provide any prosodic information to
the MT system. The MT system in the cascade set-
ting is disadvantaged by the inability to: i) recover
from possible ASR errors, and ii) make decisions
determined by factors other than text.

With this knowledge, we analyse the breaks in
the results of the two systems. In order to con-
trol for differences in translation, we select all sen-
tences with at least 2 breaks and with the same
number of break symbols (regardless of whether
<eob> or <eol>) between the reference, the out-
put of the Cascade and of the E2E. The resulting
sentences are 137 for French and 158 for German.
We calculate the accuracy of the type of break sym-
bols for the two systems. For French the accuracy
is 89% for the Cascade and 93% for the E2E. For
German the accuracy is 85% for the Cascade and
88% for the E2E. This difference in accuracy sug-
gests that the E2E is aided by the acoustic infor-
mation and specifically by the pause duration in
determining the correct break symbol.

Table 3 presents some examples, evaluated also
against the video. In the first example, the decision
of which type of break to insert between the two
sentences can only be determined by the duration
of the pause that comes between them. Indeed, the
speaker in the video asks the question and then
leaves some time to the audience before giving the
answer. The pause between the two sentences is
about 2 seconds. In this case, the first sentence

215



EN “Who do you report to?” <eob> “It depends”.
CS Wen melden Sie an? <eol> Es hängt davon ab.
E2E Wen berichten Sie? <eob> Es kommt darauf an.
REF “An wen schickst du deine Berichte?” <eob> “Das kommt darauf an”.

One executive at another company <eob> likes to explain how he used to be <eol> a master of milestone-tracking.
Un cadre d’une autre entreprise aime expliquer <eob> comment il était jadis un maı̂tre <eol> du trek capital.

Un dirigeant d’une autre entreprise <eob> aime expliquer comment il était <eol> un maı̂tre de traçage en pierre.
Un cadre d’une autre entreprise <eob> aime raconter comme il était passé maı̂tre <eol> dans la surveillance des étapes.

But you know how they say <eol> that information is a source of power?
Vous savez comment dire que l’information <eol> est une source de pouvoir.

Saviez-vous comment dire <eol> que l’information est une source de pouvoir ?
Mais vous savez qu’on dit que <eol> l’information est source de pouvoir ?

Table 3: Examples of translations by the cascade (CS) and the end-to-end model (E2E) compared to the source
sentence (EN) and the reference (REF). The sentence-final <eob> has been removed.

should be in one subtitle block, then disappear, and
the second sentence should come in the next sub-
title block in order not to reveal the answer before
it was spoken by the speaker. This information is
only available to the E2E system.

In the second example, although both systems
have chosen the right type of break, there are differ-
ences in the actual positions of the breaks. The E2E
inserts the first break symbol in the same position
as in the source and reference (entreprise), while
the Cascade inserts it at a later position (expliquer),
resulting in a subtitle of 46 characters, which is
above the 42-character length limit. The Cascade
correctly inserts the second break (maı̂tre), as in the
reference. Here, the E2E copies the break position
from the source sentence, which is in a different po-
sition compared to the reference (after the word be
instead of the word master as in the reference). The
E2E is faithful to the segmentation of the source
language when it corresponds to the pauses of the
speaker. The positions chosen by the Cascade to
insert the break symbols are before a conjunction
(comment) and a preposition (du). Contrary to the
E2E, the Cascade’s decisions are based more on
syntactic patterns, learned from the existing human
segmentation decisions in the training data.

The third example shows that prosody is impor-
tant also for other factors related to the translation.
The Cascade, not receiving any punctuation, was
not able to reproduce the question in the translation,
while the intonation might have helped the E2E to
render the sentence as a question despite using the
wrong tense (saviez instead of savez).

All in all, these examples confirm our analysis
and once again indicate the importance of consid-
ering the intersemiotic nature of subtitling when
developing MT systems for this task.

6 Conclusion

We have presented the first Speech Translation sys-
tems specifically tailored for subtitling. The first
system is an ASR-MT cascade, while the second
a direct, end-to-end ST system. These systems
allow, for the first time, to create satisfactory sub-
titles both in terms of translation quality and con-
formity to the subtitling constraints in the absence
of a human transcription of the source language
speech (template). We have shown that while the
two systems have similar translation quality perfor-
mance, the E2E seems to be modelling the subtitle
constraints better. We show that this could be at-
tributed to acoustic features, such as natural pauses,
becoming available to the E2E system through the
audio input. This leads to a segmentation closer
to the speech rhythm, which is key to a pleasant
user experience. Our work takes into account the
intersemiotic nature of subtitling by avoiding con-
ditioning the translation on the textual source lan-
guage length, as in previous approaches to NMT
for subtitling, arriving to the conclusion that 42 is
not the answer to everything in the case of NMT for
subtitling. Rather, key elements for good automatic
subtitling are prosodic elements such as intonation,
speech tempo and natural pauses. We hope that
this work will pave the way for developing more
comprehensive approaches to NMT for subtitling.
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Abstract

There has been great progress in improving
streaming machine translation, a simultane-
ous paradigm where the system appends to
a growing hypothesis as more source con-
tent becomes available. We study a related
problem in which revisions to the hypothe-
sis beyond strictly appending words are per-
mitted. This is suitable for applications such
as live captioning an audio feed. In this
setting, we compare custom streaming ap-
proaches to re-translation, a straightforward
strategy where each new source token triggers
a distinct translation from scratch. We find re-
translation to be as good or better than state-
of-the-art streaming systems, even when op-
erating under constraints that allow very few
revisions. We attribute much of this success
to a previously proposed data-augmentation
technique that adds prefix-pairs to the training
data, which alongside wait-k inference forms a
strong baseline for streaming translation. We
also highlight re-translation’s ability to wrap
arbitrarily powerful MT systems with an ex-
periment showing large improvements from an
upgrade to its base model.

1 Introduction

In simultaneous machine translation, the goal is to
translate an incoming stream of source words with
as low latency as possible. A typical application
is speech translation, where we often assume the
eventual output modality to also be speech. In a
speech-to-speech scenario, target words must be
appended to existing output with no possibility for
revision. The corresponding translation task, which
we refer to as streaming translation, has received
considerable recent attention, generating custom
approaches designed to maximize quality and min-
imize latency (Cho and Esipova, 2016; Gu et al.,

∗Equal contributions

2017; Dalvi et al., 2018; Ma et al., 2019a). How-
ever, for applications where the output modality is
text, such as live captioning, the prohibition against
revising output is overly stringent.

The ability to revise previous partial translations
makes simply re-translating each successive source
prefix a viable strategy. Compared to streaming
models, re-translation has the advantage of low la-
tency, since it always attempts a translation of the
complete source prefix, and high final-translation
quality, since it is not restricted to preserving pre-
vious output. It has the disadvantages of higher
computational cost, and a high revision rate, vis-
ible as textual instability in an online translation
display. When revisions are an option, it is unclear
whether one should prefer a specialized streaming
model or a re-translation strategy.

In light of this, we make the following con-
tributions: (1) We evaluate a combination of re-
translation techniques that have not previously been
studied together. (2) We provide the first empirical
comparison of re-translation and streaming mod-
els, demonstrating that re-translation operating in
a very low-revision regime can match or beat the
quality-latency trade-offs of streaming models. (3)
We test a 0-revision configuration of re-translation,
and show that it is surprisingly competitive, due to
the effectiveness of data augmentation with prefix
pairs.

2 Related Work

Cho and Esipova (2016) propose the first streaming
techniques for NMT, using heuristic agents based
on model scores, while Gu et al. (2017) extend their
work with agents learned using reinforcement learn-
ing. Ma et al. (2019a) recently broke new ground
by integrating their read-write agent directly into
NMT training. Similar to Dalvi et al. (2018), they
employ a simple agent that first reads k source to-
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kens, and then proceeds to alternate between writes
and reads until the source sentence has finished.
This agent is easily integrated into NMT training,
which allows the NMT engine to learn to anticipate
occasionally-missing source context. We employ
their wait-k training as a baseline, and use their
wait-k inference to improve re-translation. Our sec-
ond and strongest streaming baseline is the MILk
approach of Arivazhagan et al. (2019b), who im-
prove upon wait-k training with an attention that
can adapt how it will wait based on the current
context. Both wait-k training and MILk attention
provide hyper-parameters to control their quality-
latency trade-offs: k for wait-k, and latency weight
for MILk.

Re-translation was originally investigated by
Niehues et al. (2016, 2018), and more recently ex-
tended by Arivazhagan et al. (2019a), who propose
a suitable evaluation framework, and use it to assess
inference-time re-translation strategies for speech
translation. We adopt their inference-time heuris-
tics to stabilize re-translation, and extend them with
prefix training from Niehues et al. (2018). Where
they experiment on TED talks, compare only to
vanilla re-translation and use proprietary NMT, we
follow recent work on streaming by using WMT
training and test data, and provide a novel compari-
son to streaming approaches.

3 Metrics

We adapt the evaluation framework from Arivazha-
gan et al. (2019a), which includes metrics for la-
tency, stability, and quality. Where they measure la-
tency with a temporal lag, we adopt an established
token lag that does not rely on machine speed.

Our evaluation is built around a prefix transla-
tion list (PTL), which can be generated for any
streaming or re-translation system. For each token
in the source sentence (after merging subwords),
this list stores the tokenized system output. Table 1
shows an example. We use I for the final number
of source tokens, and J for the final number of
target tokens.

3.1 Quality

Translation quality is measured by calculating
BLEU (Papineni et al., 2002) on the final output of
each PTL; that is, standard corpus-level BLEU on
complete translations. Specifically, we report tok-
enized, cased BLEU calculated by an internal tool.
We make no attempt to directly measure the quality

of intermediate outputs; instead, their quality is
captured indirectly through final output quality and
stability.

3.2 Latency
Latency is the amount of time the target listener
spends waiting for their translation. Most latency
metrics are based on a delay vector g, where gj
reports how many source tokens were read be-
fore writing the jth target token (Cho and Esipova,
2016). This delay is trivial to determine for stream-
ing systems, but to address the scenario where tar-
get content can change, we introduce the notion of
content delay, which is closely related to the final-
ization event index used to calculate time delay in
Arivazhagan et al. (2019a).

We take the pessimistic view that content in flux
is useless; for example, in Table 1, the 4th target
token first appears in step 4, but only becomes
useful in step 7, when it shifts from be to slow.
Therefore, we calculate delay with respect to when
a token finalizes. Let oi,j be the jth token of the ith

output in a PTL; 1 ≤ i ≤ I and 1 ≤ j ≤ J . For
each position j in the final output, we define gj as:

gj = min
i

s.t. oi′,j′ = oI,j′ ∀i′ ≥ i and ∀j′ ≤ j

that is, the number of source tokens read before
the prefix ending in j took on its final value. The
Content Delay row in Table 1 shows delays for
our running example. Note that content delay is
identical to standard delay for streaming systems,
which always have stable prefixes.

With this refined g, we can make several latency
metrics content-aware, including average propor-
tion (Cho and Esipova, 2016), consecutive wait (Gu
et al., 2017), average lagging (Ma et al., 2019a),
and differentiable average lagging (Arivazhagan
et al., 2019b). We opt for differentiable average lag-
ging (DAL) because of its interpretability and be-
cause it sidesteps some problems with average lag-
ging (Cherry and Foster, 2019). It can be thought
of as the average number of source tokens a system
lags behind a perfectly simultaneous translator:

DAL =
1

J

J∑

j=1

[
g′j −

j − 1

γ

]

where γ = J/I accounts for the source and target
having different lengths, and g′ adjusts g to incor-
porate a minimal time cost of 1

γ for each token:

g′j =
{
gj j = 1
max

[
gj , g

′
j−1 +

1
γ

]
j > 1
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Source Output Erasure
1: Neue New -
2: Arzneimittel New Medicines 0
3: könnten New Medicines 0
4: Lungen- New drugs may be lung 1
5: und New drugs could be lung and 3
6: Eierstockkrebs New drugs may be lung and ovarian cancer 4
7: verlangsamen New drugs may slow lung and ovarian cancer 5
Content Delay 1 4 6 7 7 7 7 7

Table 1: An example prefix translation list for the tokenized German sentence, “Neue Arzneimittel könnten Lungen-
und Eierstockkrebs verlangsamen”, with reference, “New drugs may slow lung , ovarian cancer”.

Note that DAL sums over the final number of tar-
get tokens (J), but it is possible for intermediate
hypotheses to have more than J tokens. Any such
tokens are ignored by DAL.

3.3 Stability
Following Niehues et al. (2016, 2018) and Ari-
vazhagan et al. (2019a), we measure stability with
erasure, which measures the length of the suffix
that is deleted to produce the next revision. Let oi
be the ith output of a PTL. The normalized erasure
(NE) for PTL is defined as:

NE =
1

J

I∑

i=2

[
|oi−1| − |LCP(oi, oi−1)|

]

where the | · | operator returns the length of a token
sequence, and LCP calculates the longest common
prefix of two sequences. Table 1 shows pointwise
erasures for each output; its NE would be 13/8 =
1.625, interpretable as the number of intermediate
tokens deleted for each final token.

4 Re-translation Methods

To evaluate re-translation, we build up the source
sentence one token at a time, translating each re-
sulting source prefix from scratch to construct the
PTL for evaluation.

4.1 Prefix Training
Standard models trained on full sentences are un-
likely to perform well when applied to prefixes. We
alleviate this problem by generating prefix pairs
from our parallel training corpus, and subsequently
training on a 1:1 mix of full-sentence and prefix
pairs (Niehues et al., 2018; Dalvi et al., 2018). Fol-
lowing Niehues et al. (2018), we augment our train-
ing data with prefix pairs created by selecting a

source prefix length uniformly at random, then se-
lecting a target length either proportionally accord-
ing to sentence length, or based on self-contained
word alignments. For the latter, for each source
prefix, we attempt to find a target prefix such that
all tokens in the source prefix align only to words
in the target prefix and vice versa. In preliminary
experiments, we confirmed a finding by Niehues
et al. (2018) that word-alignment-based prefix se-
lection is no better than proportional selection, so
we report results only for the proportional method.1

An example of proportional prefix training is given
in Table 2. With prefix training, we expect interme-
diate translations of source prefixes to be shorter,
and to look more like partial target prefixes than
complete target sentences (Niehues et al., 2018).

4.2 Inference-time Heuristics

To improve stability, Arivazhagan et al. (2019a)
propose a combination of biased search and de-
layed predictions. Biased search encourages the
system to respect its previous predictions by modi-
fying search to interpolate between the distribution
from the NMT model (with weight 1− β) and the
one-hot distribution formed by the system’s trans-
lation of the previous prefix (with weight β). We
only bias a hypothesis for as long as it strictly fol-
lows the previous translation. No bias is applied
after the first point of divergence.

To delay predictions until more source context
is available, we adopt Ma et al. (2019a)’s wait-k
approach at inference time. We implement this
by truncating the target to max(i − k, 0) tokens,
where i is the current source prefix length and k
is a constant inference-time hyper-parameter. To

1Word-alignment-based prefix selection may become more
important when working on more distant language pairs such
as English-Japanese.
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Full
Source Die Führungskräfte der Republikaner rechtfertigen ihre Politik mit der

Notwendigkeit , den Wahlbetrug zu bekämpfen [15 tokens]
Target Republican leaders justified their policy by the need to combat electoral

fraud [12 tokens]

Prefix
Source Die Führungskräfte der Republikaner rechtfertigen [5 tokens]
Target Republican leaders justified their [4 tokens]

Table 2: An example of proportional prefix training. Each example in the minibatch has a 50% chance to be
truncated, in which case, we truncate its source and target to a randomly-selected fraction of their original lengths,
1/3 in this example. No effort is made to ensure that the two halves of the prefix pair are semantically equivalent.

avoid confusion with Ma et al. (2019a)’s wait-k
training, we refer to wait-k used for re-translation
as wait-k inference.2

5 Experiments

We use standard WMT14 English-to-French (EnFr;
36.3M sentences) and WMT15 German-to-English
(DeEn; 4.5M sentences) data. For EnFr, we use
newstest 2012+2013 for development, and newstest
2014 for test. For DeEn, we validate on newstest
2013 and report results on newstest 2015. We use
BPE (Sennrich et al., 2016) on the training data
to construct a 32K-type vocabulary that is shared
between the source and target languages.

5.1 Models

Our streaming and re-translation models are im-
plemented in Lingvo (Shen et al., 2019), sharing
architecture and hyper-parameters wherever possi-
ble. Our RNMT+ architecture (Chen et al., 2018)
consists of a 6 layer LSTM encoder and an 8 layer
LSTM decoder with additive attention (Bahdanau
et al., 2014). Both encoder and decoder LSTMs
have 512 hidden units, apply per-gate layer nor-
malization (Ba et al., 2016), and use residual skip
connections after the second layer.

The models are regularized using a dropout of
0.2 and label smoothing of 0.1 (Szegedy et al.,
2016). Models are optimized using 32-way data
parallelism with Google Cloud’s TPUv3, using
Adam (Kingma and Ba, 2015) with the learning
rate schedule described in Chen et al. (2018) and a
batch size of 4,096 sentence-pairs. Checkpoints for
the base models are selected based on development
perplexity.

2When wait-k truncation is combined with beam search, its
behavior is similar to that of Zheng et al. (2019b): sequences
are scored accounting for “future” tokens that will not be
shown to the user.

Streaming We train several wait-k training and
MILk models to obtain a range of quality-latency
trade-offs. Five wait-k training models are trained
with sub-word level waits of 2, 4, 6, 8, and 10. Five
MILk models are trained with latency weights of
0.1, 0.2, 0.3, 0.4, 0.5 and 0.75; weights lower than
0.1 tend to increase lag without improving BLEU.
All streaming models use unidirectional encoders
and greedy search.

Re-translation We test two NMT architectures
with re-translation: a Base system with unidirec-
tional encoding and greedy search, designed for
fair comparisons to our streaming baselines above;
and a more powerful Bidi+Beam system using bidi-
rectional encoding and beam search of size 20,
designed to test the impact of an improved base
model. Training data is augmented through the
proportional prefix training method unless stated
otherwise (§ 4.1). Beam-search bias β is varied in
the range 0.0 to 1.0 in increments of 0.2. When
wait-k inference is enabled, k is varied in 1, 2, 4,
6, 8, 10, 15, 20, 30. Note that we do not need to
re-train to test different values of β or k.

5.2 Translation with few revisions

Biased search and wait-k inference used together
can reduce re-translation’s revisions, as measured
by normalized erasure (NE in § 3.3), to negligible
levels (Arivazhagan et al., 2019a). But how does re-
translation compare to competing approaches? To
answer this, we compare the quality-latency trade-
offs achieved by re-translation in a low-revision
regime to those of our streaming baselines.

First, we need a clear definition of low-revision
re-translation. By manual inspection on the DeEn
development set, we observe that systems with an
NE of 0.2 or lower display many different latency-
quality trade-offs. But is NE stable across evalu-
ation sets? When we compare development and
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Figure 1: BLEU vs lag (DAL) curves for translation with low erasure for DeEn (left) and EnFr (right) test sets.

Figure 2: BLEU vs lag (DAL) curves for translation with no erasure for DeEn (left) and EnFr (right) test sets.

test NE for all 50 non-zero-erasure combinations
of β and k, the average absolute difference is 0.005
for DeEn, and 0.004 for EnFr, indicating that de-
velopment NE is very predictive of test NE. This
gives us an operational definition of low-revision
re-translation as any configuration with a dev NE
< 0.2, allowing on average less than 1 token to be
revised for every 5 tokens in the system output.

Since we need to vary both β and k for our re-
translation systems, we plot BLEU versus DAL
curves by finding the Pareto frontier on the dev set,
and then projecting to the test set. To ensure a fair
comparison to our baselines, we test only the Base
system here. As an ablation, we include a variant
that does not use proportional prefixes, and instead
trains only on full sentences.

Figure 1 shows our results. Re-translation is
nicely separated from wait-k, and intertwined with
the adaptive MILk. In fact, it is noticeably better
than MILk at several latency levels for EnFr. Since
re-translation is not adaptive, this indicates that

being able to make a small number of revisions is
quite advantageous for finding good quality-latency
trade-offs. On the other hand, the ablation curve,
“Re-trans NE < 0.2 No Prefix” is much worse, in-
dicating that proportional prefix training is very
valuable in this setting. We probe its value further
in the next experiment.

5.3 Translation with no revisions

Motivated by the strong performance of re-
translation with few revisions, we now evaluate
it with no revisions, by setting β to 1, which guar-
antees NE = 0. Since β is locked at 1, we can build
a curve by varying k from 2 to 10 in increments
of 2. In this setting, re-translation becomes equiv-
alent to wait-k inference without wait-k training,
which is studied as an ablation to wait-k training
by Ma et al. (2019a).3 However, where they tested

3Re-translation with beam search and with β = 1 is similar
to wait-k inference with speculative beam search (Zheng et al.,
2019b), due to effective look-ahead from implementing wait-k
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Figure 3: BLEU vs lag (DAL) curves for re-translation with improved models for DeEn (left) and EnFr (right) test
sets.

wait-k inference on a system with full-sentence
training, we do so for a system with proportional
prefix training (§ 4.1). As before, we compare to
our streaming baselines, test only our Base system,
and include a no-prefix ablation corresponding to
full-sentence training.

Results are shown in Figure 2. First, re-
translation outperforms wait-k training at almost
all latency levels. This is startling, because each
wait-k training point is trained specifically for its
k, while the re-translation points reflect a single
training run, reconfigured for different latencies by
adjusting k at test time. We suspect that this im-
provement stems from prefix-training introducing
stochasticity to the amount of source context used
to predict target words, making the model more ro-
bust. Second, without prefix training, re-translation
is consistently below wait-k training, confirming
earlier experiments by Ma et al. (2019a) on the
ineffectiveness of wait-k inference without special-
ized training, and confirming our earlier observa-
tions on the surprising effectiveness of prefix train-
ing. Finally, we see that even without revisions,
re-translation is very close to MILk, suggesting
that this combination of prefix training and wait-k
inference is an extremely strong baseline, even for
a 0-revision regime.

5.4 Extendability of re-translation

Re-translation’s primary strengths lie in its ability
to revise and its ability to apply to any MT sys-
tem. With some effort, streaming systems can be
fitted with enhancements such as bidirectional en-

with truncation. However, we only evaluate greedy search in
this comparison, where their equivalence is exact.

coding (Ma et al., 2019a),4 beam search (Zheng
et al., 2019b) and multihead attention (Ma et al.,
2019b). Conversely, re-translation can wrap any
auto-regressive NMT system and immediately ben-
efit from its improvements. Furthermore, re-
translation’s latency-quality trade-off can be ma-
nipulated without retraining the base system. It is
not the only solution to have these properties; most
policies that are not trained jointly with NMT can
make the same claims (Cho and Esipova, 2016; Gu
et al., 2017; Zheng et al., 2019a). We conduct an
experiment to demonstrate the value of this flexibil-
ity, by comparing our Base system to the upgraded
Bidi+Beam.5 We carry out this test with few revi-
sions (NE < 0.2) and without revisions (NE = 0),
projecting Pareto curves from dev to test where
necessary. The results are shown in Figure 3.

Comparing the few-revision (NE < 0.2) curves,
we see large improvements, some more than 2
BLEU points, from using better models. Look-
ing at the no-revision (NE = 0) curves, we see that
this configuration also benefits from modeling im-
provements, but for DeEn, the deltas are noticeably
smaller than those of the few-revision curves.

5.5 On computational complexity

Re-translation is conceptually simple and easy to
implement, but also incurs an increase in asymp-
totic time complexity. If the base model can trans-
late a sentence in time O(x), then re-translation

4Any streaming model with a bidirectional encoder re-
quires re-encoding for each source prefix, resulting in higher
compute and memory costs.

5We could just as easily upgrade to a different base archi-
tecture, such as the Transformer (Vaswani et al., 2017), which
could potentially to lead to further improvements.

225



takes O(nx) where n is the number of times we
request re-translation for that sentence. n is capped
at the length of the sentence, as we never revise
translations of earlier sentences in the transcript.6

For many settings, this increase in complexity
can be easily ignored. We are not concerned with
the total time to translate a sentence, but instead
with the latency between a new source word be-
ing uttered and its translation’s appearance on the
screen. Modern accelerators can translate a com-
plete sentence in the range of 100 milliseconds,7

meaning that the time required to update the screen
by translating an updated source prefix is small
enough to be imperceptible. As in all simultaneous
systems, the largest source of latency is waiting for
new source content to arrive.8

6 Conclusion

We have presented the first comparison of re-
translation and streaming strategies for simultane-
ous translation. We have shown re-translation with
low levels of erasure (NE < 0.2) to be as good or
better than the state of the art in streaming transla-
tion. Also, re-translation easily embraces arbitrary
improvements to NMT, which we have highlighted
with large gains from an upgraded base model.

In our setting, re-translation with no erasure re-
duces to wait-k inference, which we have shown to
be much more effective than previously reported,
so long as the underlying NMT system’s training
data has been augmented with prefix pairs. Due to
its simplicity and its effectiveness, we suggest re-
translation as a strong baseline for future research
on simultaneous translation.
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Abstract

Simultaneous machine translation systems
rely on a policy to schedule read and write op-
erations in order to begin translating a source
sentence before it is complete. In this paper,
we demonstrate the use of Adaptive Compu-
tation Time (ACT) as an adaptive, learned pol-
icy for simultaneous machine translation using
the transformer model and as a more numer-
ically stable alternative to Monotonic Infinite
Lookback Attention (MILk). We achieve state-
of-the-art results in terms of latency-quality
tradeoffs. We also propose a method to use
our model on unsegmented input, i. e. without
sentence boundaries, simulating the condition
of translating output from automatic speech
recognition. We present first benchmark re-
sults on this task.

1 Introduction

Simultaneous machine translation (MT) must ac-
complish two tasks: First, it must deliver correct
translations on incomplete input as early as possi-
ble, i. e. before the source sentence is completely
spoken. Second, in a realistic usage scenario, it
must deal with unsegmented input, either speech
directly or automatic transcriptions without punc-
tuation or sentence boundaries. Until now, staged
models (Niehues et al., 2016), which have a sep-
arate component to insert punctuation (Cho et al.,
2012) achieved the best results in this task. In this
paper, we will present the first step towards an end-
to-end approach.

In recent years, a number of approaches for neu-
ral simultaneous machine translation have been
proposed. They generally build on the com-
mon encoder-decoder framework (Sutskever et al.,
2014), with the decoder deciding at each step
whether to output a target language token based
on the currently available information (WRITE) or

to wait for one more encoder step in order to have
more information available (READ).

In order to do this, the decoder relies on a wait
policy. The published policies can be broadly di-
vided into two categories:

• Fixed policies, which rely on pre-programmed
rules to schedule the read and write operations,
such as wait-k (Ma et al., 2019a) and wait-if
(Cho and Esipova, 2016).

• Learned policies, which are trained either
jointly with the translation model or sepa-
rately. Examples include MILk (Arivazha-
gan et al., 2019) and the models of Satija and
Pineau (2016) and Alinejad et al. (2018)

However, all of the above approaches train and
evaluate their models on individual sentences. We
want to work towards a translation system that can
work on a continuous stream of input, such as text
without punctuation and sentence segmentation. In
a realistic usage scenario, segmentation informa-
tion is not available and an end-to-end solution
without a separate segmentation component is de-
sirable. We therefore propose the use of Adaptive
Computation Time (Graves, 2016) for simultane-
ous machine translation. This method achieves
a better latency-quality trade-off than the previ-
ous best model, MILk, on segmented WMT 2014
German-to-English data. By extending this model
with Transformer-XL-style memory (Dai et al.,
2019), we are able to apply it directly to unseg-
mented text.

2 Background

As Arivazhagan et al. (2019) point out, most pre-
vious work in simultaneous machine translation
focuses on segmenting continuous input into parts
that can be translated, whether it is utterances
speech or sentences for text (Cho et al., 2012, 2017;
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Fügen et al., 2007; Oda et al., 2014; Yarmoham-
madi et al., 2013). For statistical machine trans-
lations, some approaches for stream translation
without segmentation were known (Kolss et al.,
2008). The more recent neural simultaneous MT
approaches simply take this segmentation as given
and focus on translating simultaneously within a
sentence.

Several approaches (Grissom II et al., 2014;
Niehues et al., 2018; Alinejad et al., 2018) try to
predict the whole target sentence in advance, be-
fore the input is complete. It may be possible to
extend such approaches to work on an input stream,
but they have the undesirable property of overrid-
ing their old output, which can make reading the
translation difficult to follow for a human.

Satija and Pineau (2016) train the wait policy as
an agent with reinforcement learning, considering
the pre-trained and fixed MT system as part of the
environment. Such an agent could learn to also
predict the end of sentences and thus extend to
stream translation, but it would be effectively the
same as an explicit segmentation.

Cho and Esipova (2016) and Ma et al. (2019a)
each define their own fixed policy for simultaneous
MT. Wait-k in particular is attractive because of
its simplicity and ease of training. However, we
believe that for very long input streams, an adaptive
policy is necessary to make sure that the decoder
never “falls behind” the input stream.

Most recently, the best results are produced by
monotonic attention approaches (Raffel et al., 2017;
Chiu and Raffel, 2017), in particular Arivazhagan
et al. (2019). Their approach uses RNNs, whereas
we would like to use the state-of-the-art Trans-
former architecture (Vaswani et al., 2017). Unfor-
tunately, we were unable to transfer their results to
the Transformer, largely due to numerical instabil-
ity problems. Ma et al. (2019b) claim to have done
this, but we were unable to reproduce their results
either. We therefore propose our own, more stable,
architecture based on Adaptive Computation Time
(ACT, Graves (2016))

3 Model

A machine translation model transforms a source
sequence x = {x1, x2, . . . x|x|} into a target se-
quence y = {y1, y2, . . . y|y|}, where, generally,
|x| 6= |y|. Our model is based on the Transformer
model (Vaswani et al., 2017), consisting of an en-
coder and a decoder. The encoder produces a vector

representation for each input token, the decoder au-
toregressively produces the target sequence. The
decoder makes use of the source information via
an attention mechanism (Bahdanau et al., 2015),
which calculates a context vector from the encoder
hidden states.

h1...|x| = ENCODER(x1...|x|) (1)

ci = ATTENTION(yi−1, h1...|x|) (2)

yi = DECODER(yi−1, ci) (3)

In the offline case, the encoder has access to all
inputs at once and the attention has access to all
encoder hidden states. The standard soft attention
calculates the context vector as a linear combina-
tion of all hidden states:

eni = ENERGY(yi−1, hn) (4)

wn
i =

exp(eni )∑|x|
k=1 exp(e

k
i )

(5)

ci =

|x|∑

n=1

wk
i hn (6)

Here, Energy could be a multi-layer perceptron
or, in the case of Transformer, a projection followed
by a dot product.

In the simultaneous case, there are additional
constraints: Each encoder state must only depend
on the representations before it and the inputs up
to the current one as input becomes available in-
crementally. In addition, we require a wait policy
which decides in each step whether to READ an-
other encoder state or to WRITE a decoder output.
Each READ incurs a delay, but gives the decoder
more information to work with. We denote the en-
coder step at which the policy decides to WRITE
in decoder step i as N(i).

hj = ENCODER(hj−1, xj) (7)

ani = POLICY(yi−1, hn) (8)

N(i) = min {n : ani = WRITE } (9)

ci = ATTENTION(yi−1, h1...N(i)) (10)

yi = DECODER(yi−1, ci) (11)

Note that this kind of discrete decision-making
process is not differentiable. Some approaches
using reinforcement learning have been proposed
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(Grissom II et al., 2014; Satija and Pineau, 2016),
but we will focus on the monotonic attention ap-
proaches.

3.1 Monotonic Attention

In monotonic attention (Raffel et al., 2017), the
context is exactly the encoder state at N(i). Addi-
tionally, N(i) increases monotonically. For each
encoder and decoder step, the policy predicts pni ,
the probability that we will WRITE at encoder step
n. During inference, we simply follow this (non-
differentiable) stochastic process1. During training,
we instead train with the expected value of ci. To
that end, we calculate αn

i , the probability that de-
coder step i will attend to encoder step n.

pni = σ(ENERGY(si−1, hn)) (12)

ani ∼ Bernoulli(pni ) Inference only (13)

αn
i = pni

(
(1− pn−1i )

αn−1
i

pn−1i

+ αn
i−1

)
(14)

ci =

|x|∑

n=1

αn
i hn (15)

This model needs no additional loss function
besides the translation loss. It is not incentivised
to READ any further than it has to because the
model can only attend to one token at a time. At
the same time, this is a weakness of the model, as
it has access to only a very narrow portion of the
input at a time.

To address this, two extensions to monotonic
attention have been proposed: Monotonic Chunk-
wise Attention (MoChA, Chiu and Raffel (2017))
and Monotonic Infinite Lookback Attention (MILk,
Arivazhagan et al. (2019)), which we will look at
in more detail here.

3.2 Monotonic Infinite Lookback Attention

Monotonic Infinite Lookback Attention (MILk)
combines soft and monotonic attention. The at-
tention can look at all hidden states from the start
of the input up to N(i), which is determined by a
monotonic attention module. The model is once
again trained in expectation, with pni and αn

i calcu-
lated as in eqs. (12) and (14). The attention energies
eni are calculated as in equation (4).

1Although we encourage the model to make clear decisions
by adding noise in the policy, see the original paper for more
details.

βni =

|x|∑

k=n

(
αk
i exp(e

n
i )∑k

l=1 exp(e
l
i)

)
(16)

ci =

|x|∑

n=1

βni hn (17)

This method does however introduce the need
for a second loss function, as the monotonic atten-
tion head can simply always decide to advance to
the end of the input where the soft attention can at-
tend to the whole sequence. Therefore, in addition
to the typical log-likelihood loss, the authors intro-
duce a loss derived from n = {N(1), . . . N(|y|)},
weighted by a hyperparameter λ:

L(θ) = −
∑

(x,y)

log p(y|x; θ) + λC(n) (18)

Unfortunately, despite following all advice from
Raffel et al. (2017), applying gradient clipping and
different energy functions from Arivazhagan et al.
(2019), we were not able to adapt MILk for use
with the transformer model, largely due to the nu-
merical instability of calculating αn

i (see Raffel
et al. (2017) for more details on this problem). We
therefore turn to a different method which has so
far not been applied to simultaneous machine trans-
lation, namely Adaptive Computation Time (ACT,
(Graves, 2016)).

3.3 Adaptive Computation Time

Originally formulated for RNNs without the
encoder-decoder framework, Adaptive Computa-
tion Time is a method that allows the RNN to “pon-
der” the same input for several timesteps, effec-
tively creating sub-timesteps. We will first go over
the original use-case, although we intentionally
match the notation above. At each timestep i, we
determineN(i), the number of timesteps spent pon-
dering the current input. We do so by predicting a
probability at each sub-timestep sni . We stop once
the sum of these probabilities exceeds a threshold.
We also calculate a remainder R(i). Eqns. (19)
through (22) are adapted from Graves (2016) and
apply to RNNs:
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pni = σ(ENERGY(sni )) (19)

N(i) = min{n′ :
n′∑

n=1

pni ≥ 1− ε} (20)

R(i) = 1−
N(i)−1∑

n=1

pni (21)

αn
i =

{
R(i) if n = N(i)
pni otherwise

(22)

It follows directly from the definition that αi is a
valid probability distribution. Compared to mono-
tonic attention, ACT directly predicts the expected
value for the amount of steps that the model takes,
rather than calculating it from stopping probabilites.
As-is, the model has no incentive to keep the pon-
der times short, so we introduce an additional loss:

C =
|x|∑

i=1

N(i) +R(i) (23)

Note that the computation for N(i) is not differ-
entiable so it is treated as a constant and the loss is
equivalent to just summing the remainders.

We now go on to transfer ACT to the encoder-
decoder domain. Now, instead of pondering the
input to an RNN, like in original ACT, the decoder
ponders over zero or more encoder steps. The en-
coder still works as in eq. (7) and does not use ACT.
Instead, we apply the ACT ponder mechanism to
the monotonic encoder-decoder attention. Let N(i)
denote the last encoder step to which we can attend.
We make sure that N(i) advances monotonically:

pni = σ(ENERGY(yi−1, hn)) (24)

N(i) = min{n′ :
n′∑

n=N(i−1)
pni ≥ 1− ε} (25)

αn
i =





R(i) if n = N(i)
pni if N(i− 1) ≤ n < N(i)
0 otherwise

(26)

Then we proceed as in equations (16) and (17).
Note that in this formulation, it is possible that
N(i) = N(i − 1) (i. e. the model pondering for
zero steps), indicating consecutive WRITEs. In
original ACT, it is not possible to ponder the input
for zero steps. Also, similar to MILk, we consider
p
|x|
i to be 1 always. See figure 2 for a visualisation

of αn
i on a concrete example.

3.4 Transformer XL
Finally, we introduce two aspects of the Trans-
former XL language model (Dai et al., 2019) into
our model: Relative attention and memory.

We replace the Transformer self-attention in both
encoder and decoder with relative attention. In
relative self-attention, we calculate ENERGY as
follows:

ENERGY(xi, xj) = x>i W
>
q WE xj

+ x>i W
>
q WRRi−j

+ u>WE xj

+ v>WRRi−j

(27)

Where Wq,We,WR, u, v are learnable parame-
ters and R are relative position encodings. After-
wards, we proceed as in equation (16) and (17) for
simultaneous models or eqautions (5) and (6) for
offline models.

For our streaming model, we also use Trans-
former XL-style memory during training. This
means that we keep the hidden states of both en-
coder and decoder from the previous training step
during training. Both self-attention and encoder-
decoder attention are able to attend to these states
as well as the current input sentence. However,
no gradients can flow through the old states to the
model parameters.

3.5 Stream Translation
Our stream translation model should not rely on
any segmentation information of the input and must
be able to translate a test set as a single, continuous
sequence. To achieve this, we extend the standard
transformer model in the following ways:

• We use ACT monotonic attention to constrain
the encoder-decoder attention. The position of
the monotonic attention head also gives us a
pointer to the model’s current read position in
the input stream that advances token by token,
and not sentence by sentence and therefore
requires no sentence segmentation.

• We change all self-attentions to relative atten-
tion, as well as removing absolute position
encodings. We could encode positions as ab-
solute since the beginning of the stream. How-
ever, Neishi and Yoshinaga (2019) showed
that Transformer with absolute position encod-
ings generalizes poorly to unseen sequence

231



lengths. In a continuous stream, relative en-
codings are the more logical choice.

• We add Transformer XL-style history to the
model so that even the first positions of a
sample have a history buffer for self-attention.
This simulates the evaluation condition where
we don’t restart the model each sentence.

• During inference, we cannot cut off the his-
tory at sentence boundaries (such as keeping
exactly the last sentence) because this infor-
mation is not available. Instead, we adopt a
rolling history buffer approach, keeping nh
previous positions for the self-attention. To
simulate this condition in training, we apply a
mask to the self-attention, masking out posi-
tions more than nh positions in the past.

• During training, we concatenate multiple sam-
ples to a length of at least nh tokens. This
is to allow the model to READ past the end
of an input sentence into the next one. Nor-
mally, this is prevented by setting p|x|i = 1.
However during inference, |x| is not available
and therefore the model should learn to stop
READing at appropriate times even across
sentence boundaries.

• We use the ponder loss of equation (23) in
addition to the cross-entropy translation loss
with a weighting parameter λ as in equation
(18).

4 Experiments

4.1 Segmented Translation

In our first set of experiments, we demonstrate the
ability of ACT to produce state-of-the art results in
sentence-based simultaneous machine translation.
For comparison to Arivazhagan et al. (2019), we
choose the same dataset: WMT2014 German-to-
English (4.5M sentences). As they report their
delay metrics on tokenized data, we also use the
same tokenization and vocabulary.

All models follow the Transformer “base” con-
figuration (Vaswani et al., 2017) and are imple-
mented in fairseq (Ott et al., 2019). In addition
to the simultaneous models, we train a baseline
Transformer model. All models except the base-
line use relative self-attention. We pre-train an
offline model with future-masking in the encoder
as a common basis for all simultaneous models.

Figure 1: Quality-Latency comparison for German-to-
English newstest2015 in tokenized DAL (top), AL
(bottom left) and AP (bottom right)

For the simultaneous models, we vary the value
of λ and initialize the parameters from the pre-
trained model. We found that training from the
start with the latency loss can cause extreme la-
tency behaviour, where the model either reads no
input from the source at all or always waits until
the end. We theorize that the best strategy would
be to introduce the latency loss gradually during
training, but leave that experiment for future work.

All models are trained using the Adam Optimizer
(Kingma and Ba, 2015). For the pre-training model,
we vary the learning rate using a cosine schedule
from 2.5 · 10−4 to 0 over 200k steps. For the ACT
model, we start the learning rate at 4 ·10−5 and use
inverse square root decay (Vaswani et al., 2017) for
1000 steps.

We measure translation quality in detokenized,
cased BLEU using sacrebleu2 (Post, 2018). We
measure latency in Average Lagging (Ma et al.,
2019a), Differentiable Average Lagging (Arivazha-
gan et al., 2019) and Average Proportion (Cho and
Esipova, 2016). For direct comparison, we report
the tokenized latency metrics, but we provide the
detokenized metrics in the appendix.

Figure 1 shows our results for this task. We
generally achieve a better quality-latency tradeoff

2BLEU+case.mixed+lang.de-en+numrefs.1
+smooth.exp+test.wmt15+tok.13a
+version.1.4.3
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as measured by DAL, and a comparable one as
measured by AP and AL. We note also that the
ceiling for quality of ACT is higher than that of
MILk. Whereas MILk loses two BLEU points to
their baseline model even when given full attention
(λ = 0.0), our model would seem to get closer to
the performance of the baseline with decreasing λ.

4.2 Stream Translation
In this set of experiments, we demonstrate our
model’s ability to translate continuous streams of
input with no sentence segmentation. For train-
ing, we use the IWSLT 2020 simultaneous transla-
tion data (which includes all WMT2019 data) with
37.6M sentences total. We choose this dataset be-
cause of a larger amount of document-level data
(3.8M sentences). Because we will use Trans-
former XL-style memory, we depend on as much
contextual data as possible. We evaluate on the
IWSLT tst2010 test set in German to English. On
the source side, we convert to lower case and re-
move all punctuation.

In addition to the baseline normal Transformer
model, we train our model in three steps: First an
offline, sentence-based relative self-attention Trans-
former, then the Transformer XL and finally the
ACT+XL model, each one initializing its parame-
ters on the last one. Both the relative model and the
Transformer XL use the cosine schedule starting
at 2.5 · 10−4 and training for 200k and 40k steps,
respectively. The ACT+XL model uses inverse
square root decay, starting at 4 · 10−5 as above and
trains for 1000 steps. We also experiment with
training ACT+XL directly from the relative model.

We evaluate as before3, treating the test set as a
single sequence. BLEU scores are calculated by
re-segmenting the output according to the original
reference based on Word Error Rate (Matusov et al.,
2005). All reported metrics are detokenized. The
baseline and relative models use beam search, the
others use greedy decoding.

Unfortunately, the range of the λ parameter that
produces sensible results is much more restricted
than for the sentence-based model (see “Analysis”,
below). We report results with λ = 0.25 and 0.3.

Table 1 shows our results. There is a drop of 4
BLEU points when moving to simultaneous trans-
lation, which is similar to our experiments on seg-
mented text. While there is room for improvement,

3BLEU+case.mixed+lang.de-en+numrefs.1
+smooth.exp+iwslt17/tst2010+tok.13a
+version.1.4.3

Model AP AL DAL BLEU
Baseline — — — 32.0
Relative — — — 33.1
XL — — — 34.4
ACT+XL
λ = 0.25 0.5 206 329 30.2
λ = 0.3 0.5 107 180 30.3
ACT+XL directly from relative
λ = 0.25 0.5 222 394 26.4

Table 1: Results for the stream translation experiment

these are promising results, and, to the best of our
knowledge, the first demonstration of unsegmented
end-to-end stream translation.

4.3 Analysis

For the segmented translation, we compare two
different latency schedules in figure 2. Both sched-
ules advance relatively homogenously. This may
indicate that the ACT attention layer needs to be
expanded to extract more grammatical informa-
tion and make more informed decisions on waiting.
Nevertheless, the model produces good results and
we even observe implicit verb prediction as in Ma
et al. (2019a). We also note that the high latency
models’ latency graph tends to describe a curve,
whereas the low latency models tend to uniformly
advance by one token per output token.

This behaviour can be explained by the proper-
ties of Differentiable Average Lagging. The ponder
loss objective that ACT is trained on may seem very
different, but actually produces somewhat similar
gradients to DAL 4, so the model incidentally also
learns a behaviour that optimizes DAL.

DAL is monotonically increasing, i. e. the model
can never “catch up” any delay by WRITing multi-
ple tokens without READing (assuming |y| = |x|).
It achieves the same DAL but with better translation
by always READing one token when it WRITEs.
Therefore, to achieve DAL = k for a given k, the
ideal waiting strategy is wait-k.

In the case of stream translation, we make two
important observations: First, that systems with
λ < 0.25 do not produce acceptable results (BLEU
scores < 10). This is because they fall behind
the input by waiting too much and have to skip
sentences to catch back up. Once an input word
is more than nh tokens behind, it is removed from

4 ∂DAL
∂αn

i
= i−N(i)− 1, ∂ACT

∂αn
i

= −1 for N(i− 1) ≤ i ≤
N(i), else 0
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Figure 2: The same sentence from newstest2015 translated by an ACT system with λ = 0.1 (left) and λ = 0.4
(right). The shading indicates the αn

i as predicted by the ACT attention module (darker = higher probability), the
black line indicates the hard attention cutoff. The low-latency model approaches the behaviour of a wait-4 model.
Note the (incorrect) attempt of the left model to predict the verb “einbestellt” = “summons”, whereas the right
model takes the first half of the sentence as complete, leaving out the verb.

the memory and if it is not translated by then, it
may be forgotten. Therefore, we found it essential
to train more aggressive latency regimes. On the
other hand, systems with λ > 0.3 sometimes read
too little source information or stop reading new
source words altogether.

Second, that the established latency metrics
do not perform well on the very long sequence
(with our tokenization, the source is 29 317 tokens
long). While on single sentences, an AL score of
4 might indicate quite consistently a lag of around
4 tokens, a manual analysis of the output of our
λ = 0.3 system shows a delay of between 40 and
60 words, quite far away from the automatic met-
rics of AL=107 and DAL=180. Average proportion
in particular breaks down under these conditions
and always reports 0.5.5

5 Conclusion and Future work

We have presented Adaptive Compuation Time
(ACT) for simultaneous machine translation and
demonstrated its ability to translate continuous, un-
segmented streams of input text. To the best of
our knowledge, this is the first end-to-end NMT
model to do so. While stream translation model
still loses a lot of performance compared to the
sentence-based models, we see this as an impor-
tant step towards end-to-end simultaneous stream

5The full output of the λ = 0.3 model can be found here:
https://gist.github.com/felix-schneider/
1462d855808e582aa19307f6b0d576e1

translation.
We see several possibilites for future work on

this model: Training the whole model in one train-
ing rather than the multiple rounds of pre-training
may be possible by gradually introducing the la-
tency loss during training. Perhaps the latency de-
cisions can be improved by adding extra layers to
the ACT attention module.

But most importantly, we believe the model must
be adapted to the speech domain. Recently (see e. g.
Di Gangi et al. (2019)), the Transformer has shown
promising results for speech translation. For a re-
alistic application we believe that a simultaneous
translation model must work with speech input.
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A Segmented Translation Results

λ
Tokenized

AP AL DAL
Baseline 1.0 27.9 27.9
0.0 0.91 15.4 17.3
0.01 0.82 10.4 12.1
0.05 0.79 9.0 10.4
0.1 0.73 6.8 7.9
0.15 0.68 5.1 5.9
0.2 0.66 4.4 5.2
0.25 0.64 3.8 4.7
0.3 0.63 3.5 4.4
0.4 0.62 3.0 4.0
0.5 0.61 2.8 3.8

Table 2: Tokenized metrics for newstest2015 back-
ing figure 1

λ
Detokenized

AP AL DAL BLEU
Baseline 1.0 18.6 18.6 31.6
0.0 0.93 10.4 11.7 30.1
0.01 0.84 7.2 8.5 29.6
0.05 0.81 6.3 7.5 29.3
0.1 0.76 4.9 6.0 28.6
0.15 0.71 3.8 4.8 27.7
0.2 0.69 3.4 4.4 27.0
0.25 0.68 3.0 4.1 26.6
0.3 0.67 2.9 3.9 26.1
0.4 0.66 2.6 3.7 25.6
0.5 0.65 2.4 3.6 25.0

Table 3: Detokenized metrics for newstest2015
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Abstract

In simultaneous machine translation, the objec-
tive is to determine when to produce a partial
translation given a continuous stream of source
words, with a trade-off between latency and
quality. We propose a neural machine trans-
lation (NMT) model that makes dynamic deci-
sions when to continue feeding on input or gen-
erate output words. The model is composed
of two main components: one to dynamically
decide on ending a source chunk, and another
that translates the consumed chunk. We train
the components jointly and in a manner consis-
tent with the inference conditions. To generate
chunked training data, we propose a method
that utilizes word alignment while also pre-
serving enough context. We compare models
with bidirectional and unidirectional encoders
of different depths, both on real speech and
text input. Our results on the IWSLT1 2020
English-to-German task outperform a wait-k
baseline by 2.6 to 3.7% BLEU absolute.

1 Introduction

Simultaneous machine translation is the task of
generating partial translations before observing the
entire source sentence. The task fits scenarios such
as live captioning and speech-to-speech transla-
tion, where the user expects a translation before
the speaker finishes the sentence. Simultaneous
MT has to balance between latency and translation
quality. If more input is consumed before transla-
tion, quality is likely to improve due to increased
context, but latency also increases. On the other
hand, consuming limited input decreases latency,
but degrades quality.

There have been several approaches to solve si-
multaneous machine translation. In (Dalvi et al.,
2018; Ma et al., 2019), a fixed policy is introduced

1The International Conference on Spoken Language Trans-
lation, http://iwslt.org.

to delay translation by a fixed number of words.
Alternatively, Satija and Pineau (2016); Gu et al.
(2017); Alinejad et al. (2018) use reinforcement
learning to learn a dynamic policy to determine
whether to read or output words. Cho and Esipova
(2016) adapt the decoding algorithm without re-
lying on additional components. However, these
methods do not modify the training of the under-
lying NMT model. Instead, it is trained on full
sentences. Arivazhagan et al. (2019) introduce a
holistic framework that relaxes the hard notion of
read/write decisions at training time, allowing it to
be trained jointly with the rest of the NMT model.

In this paper, we integrate a source chunk bound-
ary detection component into a bidirectional recur-
rent NMT model. This component corresponds to
segmentation or read/write decisions in the litera-
ture. It is however trained jointly with the rest of the
NMT model. We propose an algorithm to chunk
the training data based on automatically learned
word alignment. The chunk boundaries are used
as a training signal along with the parallel corpus.
The main contributions of this work are as follows:

• We introduce a source chunk boundary detec-
tion component and train it jointly with the
NMT model. Unlike in (Arivazhagan et al.,
2019), our component is trained using hard
decisions, which is consistent with inference.

• We propose a method based on word align-
ment to generate the source and target chunk
boundaries, which are needed for training.

• We study the use of bidirectional vs uni-
directional encoder layers for simultaneous
machine translation. Previous work focuses
mostly on the use of unidirectional encoders.

• We provide results using text and speech input.
This is in contrast to previous work that only
simulates simultaneous NMT on text input.
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2 Related Work

Oda et al. (2014) formulate segmentation as an op-
timization problem solved using dynamic program-
ming to optimize translation quality. The approach
is applied to phrase-based machine translation. Our
chunking approach is conceptually simpler, and
we explore its use with neural machine translation.
Cho and Esipova (2016) devise a greedy decoding
algorithm for simultaneous neural machine trans-
lation. They use a model that is trained on full
sentences. In contrast, we train our models on
chunked sentences to be consistent with the decod-
ing condition. Satija and Pineau (2016), Alinejad
et al. (2018), and Gu et al. (2017) follow a rein-
forcement learning approach to make decisions as
to when to read source words or to write target
words. Zheng et al. (2019) propose the simpler
approach to use the position of the reference tar-
get word in the beam of an existing MT system
to generate training examples of read/write deci-
sions. We extract such decisions from statistical
word alignment instead.

In Ma et al. (2019); Dalvi et al. (2018), a wait-k
policy is proposed to delay the first target word
until k source words are read. The model alternates
between generating s target words and reading s
source words, until the source words are exhausted.
Afterwards, the rest of the target words are gener-
ated. In addition, Dalvi et al. (2018) convert the
training data into chunks of predetermined fixed
size. In contrast, we train models that learn to pro-
duce dynamic context-dependent chunk lengths.

The idea of exploiting word alignments to de-
cide for necessary translation context can be found
in several recent papers. Arthur et al. (2020) train
an agent to imitate read/write decisions derived
from word alignments. In our architecture such a
separate agent model is replaced by a simple addi-
tional output of the encoder. Xiong et al. (2019) use
word alignments to tune a pretrained language rep-
resentation model to perform word sequence chunk-
ing. In contrast, our approach integrates alignment-
based chunking into the translation model itself,
avoiding the overhead of having a separate compo-
nent and the need for a pretrained model. More-
over, in this work we improve on pure alignment-
based chunks using language models (Section 6.3)
to avoid leaving relevant future source words out of
the chunk. Press and Smith (2018) insert ε-tokens
into the target using word alignments to develop
an NMT model without an attention mechanism.

Those tokens fulfill a similar purpose to wait deci-
sions in simultaneous MT policies.

Arivazhagan et al. (2019) propose an attention-
based model that integrates an additional mono-
tonic attention component. While the motivation
is to use hard attention to select the encoder state
at the end of the source chunk, they avoid using
discrete attention to keep the model differentiable,
and use soft probabilities instead. The hard mode
is only used during decoding. We do not have to
work around discrete decisions in this work, since
the chunk boundaries are computed offline before
training, resulting in a simpler model architecture.

3 Simultaneous Machine Translation

The problem of offline machine translation is fo-
cused on finding the target sequence eI1 = e1...eI
of length I given the source sequence fJ1 of length
J . In contrast, simultaneous MT does not nec-
essarily require the full source input to generate
the target output. In this work, we formulate the
problem by assuming latent monotonic chunking
underlying the source and target sequences.

Formally, let sK1 = s1...sk...sK denote the
chunking sequence of K chunks, such that sk =
(ik, jk), where ik denotes the target position of last
target word in the k-th chunk, and jk denotes the
source position of the last source word in the chunk.
Since the source and target chunks are monotonic,
the beginnings of the source and target chunks do
not have to be defined explicitly. The chunk posi-
tions are subject to the following constraints:

i0 = j0 = 0, iK = I, jK = J,

ik−1 < ik, jk−1 < jk. (1)

We use ẽk = eik−1+1...eik to denote the k-th
target chunk, and f̃k = fjk−1+1...fjk to denote its
corresponding source chunk. The target sequence
eI1 can be rewritten as ẽK1 , similarly, the source
sequence can be rewritten as fJ1 = f̃K1 .

We introduce the chunk sequence sK1 as a latent
variable as follows:

p(eI1|fJ1 ) =
∑

K,sK1

p(eI1, s
K
1 |fJ1 ) (2)

=
∑

K,sK1

p(ẽK1 , s
K
1 |f̃K1 ) (3)

=
∑

K,sK1

K∏

k=1

p(ẽk, sk|ẽk−1
1 , sk−1

1 , f̃K1 ) (4)
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=
∑

K,sK1

K∏

k=1

p(ik|ẽk1, sk−1
1 , jk, f̃

K
1 )

· p(ẽk|ẽk−1
1 , sk−1

1 , jk, f̃
K
1 )

· p(jk|ẽk−1
1 , sk−1

1 , f̃K1 ), (5)

where Equation 2 introduces the latent sequence
sK1 with a marginalization sum over all possi-
ble chunk sequences and all possible number
of chunks K. In Equation 3 we rewrite the
source and target sequences using the chunk no-
tation, and we apply the chain rule of probabil-
ity in Equation 4. We use the chain rule again
in Equation 5 to decompose the probability fur-
ther into a target chunk boundary probability
p(ik|ẽk1, sk−1

1 , jk, f̃
K
1 ), a target chunk translation

probability p(ẽk|ẽk−1
1 , sk−1

1 , jk, f̃
K
1 ), and a source

chunk boundary probability p(jk|ẽk−1
1 , sk−1

1 , f̃K1 ).
This creates a generative story, where the source
chunk boundary is determined first, followed by the
translation of the chunk, and finally by the target
chunk boundary. The translation probability can be
further decomposed to reach the word level:

p(ẽk, |ẽk−1
1 , sk−1

1 , jk, f̃
K
1 )

=

ik∏

i=ik−1+1

p(ei| ei−1
ik−1+1, ẽ

k−1
1︸ ︷︷ ︸

=ei−1
1

, sk−1
1 , jk, f̃

K
1 )

≈
ik∏

i=ik−1+1

p(ei|ei−1
1 , f jk1 , k). (6)

In this work, we drop the marginalization sum
over chunk sequences and use fixed chunks during
training. The chunk sequences are generated as
described in Section 6.

4 Model

4.1 Source Chunk Boundary Detection
We simplify the chunk boundary probability, drop-
ping the dependence on the target sequence and
previous target boundary decisions

p(jk|ẽk−1
1 , sk−1

1 , f̃K1 ) ≈ p(jk|f jk1 , jk−1
1 ), (7)

where the distribution is conditioned on the source
sequence up to the last word of the k-th chunk. It is
also conditioned on the previous source boundary
decisions j1...jk−1. Instead of computing a distri-
bution over the source positions, we introduce a
binary random variable bj such that for each source

position we estimate the probability of a chunk
boundary:

bj,k =

{
1 if j ∈ {j1, j2...jk}
0 otherwise.

(8)

For this, we use a forward stacked RNN encoder.
The l-th forward encoder layer is given by

−→
h

(l)
j,k =




LSTM

(
[f̂j ; b̂j−1,k],

−→
h

(l)
j−1,k

)
l = 1

LSTM
(−→
h

(l−1)
j,k ,

−→
h

(l)
j−1,k

)
1 < l < Lenc,

(9)
where f̂j is the word embedding of the word

fj , which is concatenated to the embedding of the
boundary decision at the previous source position
b̂j−1,k. Lenc is the number of encoder layers. On
top of the last layer a softmax estimates p(bj,k):

p(bj,k) = softmax
(
g([
−→
h

(Lenc)
j,k ; f̂j ; b̂j−1,k])

)
, (10)

where g(·) denotes a non-linear function.

4.2 Translation Model
We use an RNN attention model based on (Bah-
danau et al., 2015) for p(ei|ei−1

1 , f jk1 ). The model
shares the forward encoder with the chunk bound-
ary detection model. In addition, we extend the
encoder with a stacked backward RNN encoder.
The l-th backward layer is given by

←−
h

(l)
j,k =





0 j > jk,∀l
LSTM

(
[f̂j ; bj,k],

←−
h

(l)
j+1,k

)
l = 1

LSTM
(←−
h

(l−1)
j,k ,

←−
h

(l)
j+1,k

)
1 < l < Lenc,

(11)
where the backward layer is computed within a
chunk starting at the last position of the chunk
j = jk. 0 indicates a vector of zeros for posi-
tions beyond the current chunk. The source repre-
sentation is given by the concatenation of the last
forward and backward layer

hj,k = [
−→
h

(Lenc)
j,k ;

←−
h

(Lenc)
j,k ]. (12)

We also stack Ldec LSTM layers in the decoder

u
(l)
i,k =




LSTM

(
u
(l−1)
i,k , u

(l)

i−1,k̂

)
1 < l < Ldec

LSTM
(
[êi; di,k], u

(l)

i−1,k̂

)
l = 1,

(13)
where êi is the target word embedding of the word
ei, k̂ = k unless the previous decoder state belongs
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to the previous chunk, then k̂ = k − 1. The vector
di,k is the context vector computed over source
positions up to the last source position jk in the
k-th chunk

di,k =

jk∑

j=1

αi,j,khj,k (14)

αi,j,k =softmax(ri,1,k...ri,jk,k)|j (15)

ri,j,k =f(hj,k, u
(Ldec)

i−1,k̂
), (16)

where αi,j,k is the attention weight normalized over
the source positions 1 ≤ j ≤ jk, and ri,j,k is the
energy computed via the function f which uses
tanh of the previous top-most decoder layer and
the source representation at position j. Note the
difference to the attention component used in of-
fline MT, where the attention weights are computed
considering the complete source sentence fJ1 . The
output distribution is computed using a softmax
function of energies from the top-most decoder
layer u(Ldec)

i−1,k , the target embedding of the previous
word êi−1, and the context vector di−1,k

p(ei|ei−1
1 , f jk1 , k) =

softmax
(
g([u

(Ldec)
i−1,k ; êi−1; di−1,k])

)
. (17)

4.3 Target Chunk Boundary Factor

Traditionally, the translation model is trained to pro-
duce a sentence end token to know when to stop the
decoding process. In our approach, this decision
has to be made for each chunk (see next section).
Hence, we have to train the model to predict the
end positions of the chunks on the target side. For
this, we use a target factor (Garcı́a-Martı́nez et al.,
2016; Wilken and Matusov, 2019), i.e. a second
output of the decoder in each step:

p(bi|ei1, f jk1 , k) =
softmax(g(u(Ldec)

i−1,k , êi, êi−1, di−1,k)) (18)

where bi is a binary random variable representing
target chunk boundaries analogous to bj on the
source side. This probability corresponds to the
first term in Equation 5, making the same model
assumptions as for the translation probability. Note
however, that we make the boundary decision de-
pendent on the embedding êi of the target word
produced in the current decoding step.

5 Search

Decoding in simultaneous MT can be seen as an
asynchronous process that takes a stream of source
words as input and produces a stream of target
words as output. In our approach, we segment the
incoming source stream into chunks and output a
translation for each chunk individually, however
always keeping the full source and target context.

Algorithm 1: Simultaneous Decoding
lists in bold, [] is the empty list, += appends to a list

input : source word stream fJ1
output : target word stream eI1

f̂k = [],
−→
h = [],

←−
h = []

for fj in fJ1 do
f̂j = Embedding(fj)−→
h j , p(bj) = runForwardEncoder(f̂j)
f̂k += f̂j−→
h +=

−→
h j

if p(bi) > tb or j = J then←−
h k = runBackwardEncoder(f̂k)
←−
h +=

←−
h k

ẽk = runDecoder(
−→
h ,
←−
h )

eI1 += ẽk

f̂k = []

Algorithm 1 explains the simultaneous decoding
process. One source word fj (i.e. its embedding
f̂j) is read at a time. We calculate the next step of
the shared forward encoder (Equation 9), includ-
ing source boundary detection (Equation 10). If
the boundary probability p(bj) is below a certain
threshold tb, we continue reading the next source
word fj+1. If, however, a chunk boundary is de-
tected, we first feed all word embeddings f̂k of the
current chunk into the backward encoder (Equation
11), resulting in representations

←−
h k for each of the

words in the current chunk. After that, the decoder
is run according to Equations 12–18. Note, that it
attends to representations

−→
h and

←−
h of all source

words read so far, not only the current chunk. Here,
we perform beam search such that in each decoding
step those combinations of target words and target
chunk boundary decisions are kept that have the
highest joint probability. A hypothesis is consid-
ered final as soon as it reaches a position i where
a chunk boundary bi = 1 is predicted. Note that
the length of a chunk translation is not restricted
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and hypotheses of different lengths compete. When
all hypotheses in the beam are final, the first-best
hypothesis is declared as the translation ẽk of the
current chunk and all its words are flushed into the
output stream at once.

During search, the internal states of the forward
encoder and the decoder are saved between consec-
utive different calls while the backward decoder is
initialized with a zero state for each chunk.

6 Alignment-Based Chunking

6.1 Baseline Approach

We aimed at a meaningful segmentation of sentence
pairs into bilingual chunks which could then be
translated in monotonic sequence and each chunk
is – in terms of aligned words – translatable without
consuming source words from succeeding chunks.
We extract such a segmentation from unsupervised
word alignments in source-to-target and target-to-
source directions that we trained using the Eflo-
mal toolkit (Östling and Tiedemann, 2016) and
combined using the grow-diag-final-and heuris-
tic (Koehn et al., 2003). Then, for each training
sentence pair, we extract a sequence of “minimal-
length” monotonic phrase pairs, i.e. a sequence of
the smallest possible bilingual chunks which do not
violate the alignment constraints2 and at the same
time are conform with the segmentation constraints
in Equation 1. By this we allow word reordering
between the two languages to happen only within
the chunk boundaries. The method roughly fol-
lows the approach of (Mariño et al., 2005), who
extracted similar chunks as units for n-gram based
statistical MT.

For fully monotonic word alignments, only
chunks of length 1 either on the source or the target
side are extracted (corresponding to 1-to-1, 1-to-
M, M-to-1 alignments). For non-monotonic align-
ments larger chunks are obtained, in the extreme
case the whole sentence pair is one chunk. Any
unaligned source or target words are attached to
the chunk directly preceding them, also any non-
aligned words that may start the source/target sen-
tence are attached to the first chunk. We perform
the word alignment and chunk boundary extrac-
tion on the word level, and then convert words to
subword units for the subsequent use in NMT.

2This means that all source words within a bilingual chunk
are aligned only to the target words within this chunk and vice
versa.

6.2 Delayed Source Chunk Boundaries

We observed that the accuracy of source bound-
ary detection can be improved significantly by
including the words immediately following the
source chunk boundary into the context. Take
e. g. the source word sequence I have seen
it. It can be translated into German as soon as the
word it was read: Ich habe es gesehen.
Therefore the model is likely to predict a chunk
boundary after it. However, if the next read
source word is coming, it becomes clear that
we should have waited because the correct Ger-
man translation is now Ich habe es kommen
gesehen. There is a reordering which invalidates
the previous partial translation.

To be able to resolve such cases, we shift
the source chunks by a constant delay D such
that j1, ..., jk, ..., jK becomes j1 + D, ..., jk +
D, ..., jK + D.3 Note that the target chunks re-
main unchanged, thus the extra source words also
provide an expanded context for translation. In pre-
liminary experiments we saw large improvements
in translation quality when using a delay of 2 or
more words, therefore we use it in all further exper-
iments.

6.3 Improved Chunks for More Context

The baseline chunking method (Section 6.1) con-
siders word reordering to determine necessary con-
text for translation. However, future context is of-
ten necessary for correct translation. Consider the
translation The beautiful woman → Die
schöne Frau. Here, despite of the monotonic
alignment, we need the context of the third English
word woman to translate the first two words as we
have to decide on the gender and number of the
German article Die and adjective schöne.

In part, this problem is already addressed by
adding future source words into the context as
described in Section 6.2. However, this method
causes a general increase in latency by D source
positions and yet covers only short-range depen-
dencies. A better approach is to remove any chunk
boundary for which the words following it are
important for a correct translation of the words
preceding it. To this end, we introduce a heuris-
tic that uses two bigram target language models
(LMs). The first language model yields the proba-
bility p(eik |eik−1) for the last word eik of chunk sk,

3If jK + D > J , we shift the boundary to J , allowing
empty source chunks at sentence end.
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EN: And | along came | a | brilliant | inventor, | a | scientist, |
who | came up with a partial cure for that disease

DE: Dann | kam | ein | brillanter | Erfinder des Wegs, | ein | Wissenschaftler, |
der | eine teilweise Heilung für diese Krankheit fand

EN: And | along came | a brilliant inventor, | a scientist, |
who | came up with a partial cure for that disease

DE: Dann | kam | ein brillanter Erfinder des Wegs, | ein Wissenschaftler, |
der | eine teilweise Heilung für diese Krankheit fand

Figure 1: Examples of the baseline and the improved approach of extracting chunk boundaries. Note how in
the improved approach noun phrases were merged into single bigger chunks. Also note the long last chunk that
corresponds to the non-monotonic alignment of the English and German subordinate clause.

whereas the second one computes the probability
p(eik |eik+1) for the last word in the chunk given
the first word eik+1 of the next chunk sk+1 that
follows the word eik . The chunk boundary after eik
is removed if the probability of the latter reverse bi-
gram LM is higher than the probability of the first
one by a factor l =

√
ik − ik−1, i.e. dependent

on the length of the current chunk. The motiva-
tion for this factor is that shorter chunks should
be merged with the context to the right more often
than chunks which are already long, provided that
the right context word has been frequently observed
in training to follow the last word of such a chunk
candidate. The two bigram LMs are estimated on
the target side of the bilingual data, with the second
one trained on sentences printed in reverse order.

Examples of the chunks extracted with the base-
line and the improved approach for a given training
sentence pair are shown in Figure 1.

7 Streaming Speech Recognition

To translate directly from speech signal, we use
a cascaded approach. The proposed simultaneous
NMT system consumes words from a streaming
automatic speech recognition (ASR) system. This
system is based on a hybrid LSTM/HMM acoustic
model (Bourlard and Wellekens, 1989; Hochreiter
and Schmidhuber, 1997), trained on a total of ap-
prox. 2300 hours of transcribed English speech
from the corpora allowed by IWSLT 2020 evalu-
ation, including MUST-C, TED-LIUM, and Lib-
riSpeech. The acoustic model takes 80-dim. MFCC
features as input and estimates state posterior prob-
abilities for 5000 tied triphone states. It consists
of 4 bidirectional layers with 512 LSTM units for
each direction. Frame-level alignment and state
tying were bootstrapped with a Gaussian mixtures
acoustic model. The LM of the streaming recog-
nizer is a 4-gram count model trained with Kneser-

Ney smoothing on English text data (approx. 2.8B
running words) allowed by the IWSLT 2020 evalu-
ation. The vocabulary consists of 152K words and
the out-of-vocabulary rate is below 1%. Acoustic
training and the HMM decoding were performed
with the RWTH ASR toolkit (Wiesler et al., 2014).

The streaming recognizer implements a version
of chunked processing (Chen and Huo, 2016; Zeyer
et al., 2016) which allows for the same BLSTM-
based acoustic model to be used in both offline
and online applications. By default, the recognizer
updates the current first-best hypothesis by Viterbi
decoding starting from the most recent frame and
returns the resulting word sequence to the client.
This makes the first-best hypothesis “unstable”,
i.e. past words can change depending on the newly
received evidence due to the global optimization
of the Viterbi decoding. To make the output more
stable, we made the decoder delay the recogni-
tion results until all active word sequences share a
common prefix. This prefix is then guaranteed to
remain unchanged independent of the rest of the
utterance and thus can be sent out to the MT model.

8 Experiments

We conduct experiments on the IWSLT simultane-
ous translation task for speech translation of TED
talks from English to German.

8.1 Setup
For training the baseline NMT system, we utilize
the parallel data allowed for the IWSLT 2020 eval-
uation. We divide it into 3 parts: in-domain, clean,
and out-of-domain. We consider data from the
TED and MUST-C corpora (Di Gangi et al., 2019)
as in-domain and use it for subsequent fine-tuning
experiments, as well as the “ground truth” for fil-
tering the out-of-domain data based on sentence
embedding similarity with the in-domain data; de-
tails are given in (Bahar et al., 2020). As “clean”
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we consider the News-Commentary, Europarl, and
WikiTitles corpora and use their full versions in
training. As out-of-domain data, we consider Open-
Subtitles, ParaCrawl, CommonCrawl, and rapid
corpora, which we reduce to 40% of their total
size, or to 23.2M parallel lines, with similarity-
based filtering. Thus, in total, we use almost 26M
lines of parallel data to train our systems, which
amounts to ca. 327M running words on the English
side. Furthermore, we added 7.9M sentence pairs
or ca. 145M running words of similarity-filtered
back-translated4 German monolingual data allowed
by the IWSLT 2020 evaluation.

In training, the in-domain and clean parallel data
had a weight of 5. All models were implemented
and trained with the RETURNN toolkit (Zeyer
et al., 2018). We used an embedding size of 620
and LSTM state sizes of 1000.

As heldout tuning set, we use a combination
of IWSLT dev2010, tst2014, and MUST-C-dev
corpora. To obtain bilingual chunks as described
in Section 6, we word-align all of the filtered
parallel/back-translated and tuning data in portions
of up to 1M sentence pairs, each of them combined
with all of the in-domain and clean parallel data.
As heldout evaluation sets, we use IWSLT tst2015,
as well as MUST-C HE and COMMON test data.

For the text input condition, we applied almost
no preprocessing, tokenization was handled as part
of the subword segmentation with the sentence-
piece toolkit (Kudo and Richardson, 2018). The
vocabularies for both the source and the target sub-
word models had a size of 30K. For the speech
input condition, the additional preprocessing ap-
plied to the English side of the parallel data had
the goal to make it look like speech transcripts.
We lowercased the text, removed all punctuation
marks, expanded common abbreviations, especially
for measurement units, and converted numbers,
dates, and other entities expressed with digits into
their spoken form. For the cases of multiple read-
ings of a given number (e.g. one oh one, one
hundred and one), we selected one randomly,
so that the system could learn to convert alternative
readings in English to the same number expressed
with digits in German. Because of this preprocess-
ing, our system for the speech condition learned to
insert punctuation marks, restore word case, and

4The German-to-English system that we used to translate
these data into English is an off-line system trained using the
Transformer Base architecture (Vaswani et al., 2017) on the
in-domain and clean parallel data.

convert spoken number and entity forms to digits
as part of the translation process.

The proposed chunking method (Section 6) is
applied to the training corpus as a data preparation
step. We measured average chunk lengths of 2.9
source words and 2.7 target words. 40% of both the
source and target chunks consist of a single word,
about 20% are longer than 3 words.

We compute case-sensitive BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006) scores
as well as the average lagging (AL) metric (Ma
et al., 2019).

8.2 Results

Table 1 shows results for the proposed simultane-
ous MT system. For reference, we first provide
the translation quality of an offline system that is
trained on full sentences. It is a transformer “base”
model (Vaswani et al., 2017) that we trained on
the same data as the online systems. Row 1 shows
BLEU and TER scores for translation of the hu-
man reference transcription of the speech input
(converted to lower-case, punctuation removed),
whereas row 2 uses the automatic transcription gen-
erated by our streaming ASR system (Section 7).
The ASR system has a word error rate (WER) of
8.7 to 11.2% on the three test sets, causing a drop
of 4-6% BLEU absolute.

All following systems are cascaded streaming
ASR + MT online systems that produce translations
from audio input in real-time. Those systems have
an overall AL of 4.1 to 4.5 seconds, depending on
D. We compare between two categories of models:
unidirectional and bidirectional. For the unidirec-
tional models the backwards decoder (Equation 11)
was removed from the architecture. We show re-
sults for different values of source boundary delay
D (see Section 6.2). For the number of layers we
choose Lenc = 6 and Ldec = 2 for the unidirec-
tional models, and Lenc = 4 (both directions) and
Ldec = 1 for the bidirectional models, such that
the number of parameters is comparable. Contra-
dicting our initial assumption, bidirectional mod-
els do not outperform unidirectional models. This
might indicate be due to the fact that the majority
of chunks are too short to benefit from a backwards
encoding. Also, the model is not sensitive to the
delay D. This confirms our assumption that the ad-
ditional context of future source words is primarily
useful for making the source boundary decision,
and for this a context of 2 following (sub-)words

243



System Delay tst2015 must-c-HE must-c-COMMON
BLEU TER BLEU TER BLEU TER

Offline baseline, Transformer
using reference transcript n/a 32.7 50.9 30.1 54.3 32.6 48.9
using streaming ASR n/a 28.6 56.3 26.0 59.2 26.4 57.3

Proposed simultaneous NMT 2 24.8 60.2 21.7 63.0 21.9 60.2
unidirectional, 3 24.6 60.2 22.6 62.7 21.8 60.8
(6 enc. 2 dec.) 4 24.6 61.1 22.8 62.8 21.7 61.5

Proposed simultaneous NMT 2 24.6 60.0 21.4 62.8 21.9 60.6
bidirectional, 3 24.4 60.5 22.0 62.7 21.7 61.1
(2x4 enc. 1 dec.) 4 24.6 61.0 21.8 63.1 21.9 61.4

Table 1: Experimental results (in %) for simultaneous NMT of speech, IWSLT 2020 English→German.
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Figure 2: BLEU vs. AL for bidirectional systems from
Table 2, generated using a delay D of 2, 3, and 4.

is sufficient. For translation, the model does not
depend on this “extra” context but instead is able
to make sufficiently good chunking decisions.

Table 2 shows results for the case of streamed
text input (cased and with punctuation marks). We
compare our results to a 4-layer unidirectional sys-
tem that was trained using the wait-k policy (Ma
et al., 2019). For this, we chunk the training data
into single words, except for a first chunk of size
k = 9 on the source side, and set the delay to
D = 0. All of our systems outperform this wait-k
system by large margins. We conclude that the
alignment-based chunking proposed in Section 6
is able to provide better source context than a fixed
policy and that the source boundary detection com-
ponent described in Section 4.1 successfully learns
to reproduce this chunking at inference time. Also
for the text condition, we do not observe large dif-
ferences between uni- and bidirectional models and
between different delays.

For all systems, we report AL scores averaged
over all test sets. Figure 2 breaks down the scores to
the individual test sets for the bidirectional models.
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Figure 3: BLEU vs. the length normalization factor (α)
on the tuning set (dev2010 + tst2014 + MUST-C-dev).

For a source boundary delay D = 2 we observe an
AL of 4.6 to 4.7 words. When increasing D, we
increase the average lagging score by roughly the
same amount, which is expected, since the addi-
tional source context for the boundary decision is
not translated in the same step where it is added.
As discussed before, translation quality does not
consistently improve from increasing D.

We found tuning of length normalization to
be important, as the average decoding length for
chunks is much shorter than in offline translation.
For optimal results, we divided the model scores by
Iα, I being the target length, and tuned the param-
eter α. Figure 3 shows that α = 0.9 works best in
our experiments, independent of the source bound-
ary delay D. This value is used in all experiments.

Furthermore, we found the model to be very
sensitive to a source boundary probability threshold
tb different than 0.5 regarding translation quality.
This means the “translating” part of the network
strongly adapts to the chunking component.
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System Delay Avg. tst2015 must-c-HE must-c-COMMON
AL BLEU TER BLEU TER BLEU TER

Baseline wait-k (k=9) - 27.4 55.8 25.1 59.5 27.4 54.2
Proposed simultaneous MT 2 4.72 30.2 52.6 28.8 55.0 30.0 50.8

unidirectional 3 5.26 30.3 53.2 28.8 55.2 29.7 50.8
(6 enc. 2 dec.) 4 6.17 29.9 53.1 28.6 55.1 29.6 50.8

Proposed simultaneous MT 2 4.65 29.3 53.4 28.1 55.4 29.7 50.9
bidirectional 3 5.46 29.6 53.7 29.0 54.8 29.7 51.6
(2x4 enc. 1 dec.) 4 6.15 29.2 54.0 28.3 55.3 29.7 51.5

Table 2: Experimental results (in %) for simultaneous NMT of text input, IWSLT 2020 English→German.

9 Conclusion

We proposed a novel neural model architecture for
simultaneous MT that incorporates a component
for splitting the incoming source stream into trans-
latable chunks. We presented how we generate
training examples for such chunks from statistical
word alignment and how those can be improved
via language models. Experiments on the IWSLT
2020 English-to-German task proved that the pro-
posed learned source chunking outperforms a fixed
wait-k strategy by a large margin. We also investi-
gated the value of backwards source encoding in
the context of simultaneous MT by comparing uni-
and bidirectional versions of our architecture.
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Abstract

Automatic speech recognition (ASR) systems
are primarily evaluated on transcription accu-
racy. However, in some use cases such as sub-
titling, verbatim transcription would reduce
output readability given limited screen size
and reading time. Therefore, this work fo-
cuses on ASR with output compression, a task
challenging for supervised approaches due to
the scarcity of training data. We first inves-
tigate a cascaded system, where an unsuper-
vised compression model is used to post-edit
the transcribed speech. We then compare sev-
eral methods of end-to-end speech recognition
under output length constraints. The exper-
iments show that with limited data far less
than needed for training a model from scratch,
we can adapt a Transformer-based ASR model
to incorporate both transcription and compres-
sion capabilities. Furthermore, the best perfor-
mance in terms of WER and ROUGE scores
is achieved by explicitly modeling the length
constraints within the end-to-end ASR system.

1 Introduction

Automatic speech recognition (ASR) has become
ubiquitous in human interaction with digital de-
vices, such as keyboard voice inputs (He et al.,
2019) and virtual home assistants (Li et al., 2017).
While transcription accuracy is often the primary
goal when designing ASR systems, in some use
cases the readability of outputs is crucial to user
experience. A prominent example is subtitling for
TV. In this case, the audience need to multitask,
i.e. simultaneously watch video contents, listen to
speech utterances, and read subtitles. To avoid a
visual overload, not every spoken word needs to
be displayed. Meanwhile, the shortened subtitles
must still retain the meaning of the spoken content.
Moreover, large deviations from the original utter-
ance are also undesirable, as the disagreement with
auditory input would create a distraction.

To compress the subtitles, one straightforward
approach is to post-process ASR transcriptions.
The task of sentence compression has been well-
studied (Knight and Marcu, 2002; Clarke and La-
pata, 2006; Rush et al., 2015). In extractive com-
pression (Filippova et al., 2015; Angerbauer et al.,
2019), only deletion operations are performed on
the input. Despite the simplicity, this approach
tends to produce outputs that are less grammati-
cal (Knight and Marcu, 2002). On the other hand,
abstractive compression (Cohn and Lapata, 2008;
Rush et al., 2015; Chopra et al., 2016; Yu et al.,
2018) involves more sophisticated input reformu-
lation, such as word reordering and paraphrasing
(Clarke and Lapata, 2006). For the task of com-
pressing subtitles, however, the extent of rewriting
must be controlled in order to retain consistency
with spoken utterances.

From a practical point of view, building a sen-
tence compression system typically requires train-
ing corpora where the target sequences are sum-
marized. For most languages and domains, there
exists scarcely any resource suitable for supervised
training. This low-resource condition is even more
severe for audio inputs. To the best of our knowl-
edge, currently there is no publicly available spo-
ken language compression corpora.

Given the challenges outlined above, this work
investigates ASR with output compression. We
test our approaches on German TV subtitles. The
combination of this task and the use case is to the
extent of our knowledge previously unexplored.

The first contribution of this work is a compar-
ison of cascaded and end-to-end approaches to
generating compressed ASR transcriptions, where
the former consists of separate ASR and compres-
sion modules, and the latter integrates transcription
and compression. The experiments show that our
sentence compression module trained in an unsu-
pervised fashion tends to excessively paraphrase,
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whereas the end-to-end model can be better adapted
to the task of interest. Secondly, we show that,
after fine-tuning on a small adaption corpus, an
ASR model can perform transcription and com-
pression simultaneously. Without being given ex-
plicit length constraints, the adapted model shows
increased recognition accuracy on rare words as
well as paraphrasing capabilities to produce shorter
outputs. Furthermore, by explicitly encoding the
length constraints, we achieve further performance
gains in addition to those brought by adaptation.

2 Task

The task of creating readable subtitles for video
contents has several unique properties. First, due
to limited screen size and reading time, not every
spoken word needs to be transcribed, especially
when utterances are spoken fast. A full transcrip-
tion could even hamper user experience due to poor
readability. Second, although output shortening is
typically realized by deleting non-essential words,
the output is not only deletion-based. A real-life ex-
ample from the German TV program Tagesschau1

shown in Table 1 contain rephrasing (from “freed
from” to “without”) in addition to word removal
(dropping the word “ethically”). A further require-
ment is that the subtitles should stay reasonably
authentic to the spoken contents, only modifying
them when necessary. Otherwise, the disagreement
with audio contents could become distracting to the
audience.

Within the framework of common NLP tasks, the
task of generating readable subtitles combines ASR
and abstractive compression, while being subjected
to the additional requirements as outlined above.

Spoken: Befreit vom fraktionszwang soll das Parlament
wohl nach der Sommerpause die ethisch schwierige Frage
debattieren. (Freed from pressure from the coalition party,
the parliamentary should debate the ethically difficult ques-
tion after the summer break.)
Subtitle: Ohne Fraktionszwang soll das Parlament wohl
nach der Sommerpause die schwierige Frage debattieren.
(Without pressure from the coalition party, the parliamen-
tary should debate the difficult question after the summer
break.)

Table 1: Examples of TV subtitles compared to actual
spoken words. Underlined words are the differences
between the spoken words and the subtitles.

1https://www.tagesschau.de/

3 ASR with Output Length Constraints

3.1 Baseline ASR Model with Adaptation

For the baseline ASR model, we use the Trans-
fomer architecture (Vaswani et al., 2017) similar to
that by Pham et al. (2019). As there is no spoken
language compression corpus available to us that
is large enough for training an end-to-end model
from scratch, we first train an ASR model without
output compression, and then adapt it to our task of
interest using a small web-scraped corpus. In the
first training stage, the model is solely trained for
transcribing speech. In the fine-tuning stage, we let
the model continue training at a reduced learning
rate on the adaptation corpus with shortened tran-
scriptions. The intended goal of adaptation is to let
the model learn the compression task on the basis
of the transcription capability acquired before.

3.2 End-to-End Length-Constrained ASR

With the baseline introduced above, the ASR model
is not aware of the compression task until the adap-
tation step. If the model already has a sense of
output length constraints earlier, i.e. when train-
ing for the ASR task, it could better utilize the
abundance of training data. Motivated by this hy-
pothesis, we inject information about the allowable
output lengths using a count-down at each decod-
ing step, as illustrated in Figure 1. In a vanilla
decoder, the hidden state at position i would ingest
an embedding of the previously generated token.
With the count-down for target length t, decoder
state yi additionally ingests a representation of the
number of allowed output tokens, t− i.

y0 y1 y2 ... yt

t t− 1 t− 2 ... 0

w1 w2 w3

Figure 1: An illustration of the length countdown dur-
ing decoding. The values are represented with learned
embeddings or trigonometric encoding.

We explore two ways to represent the length
count-down. The first one utilizes length embed-
dings learned during training, motivated by the
approach Kikuchi et al. (2016) proposed. Given a

248



target sequence of length t, at decoding time step
i, the input to decoder hidden state yi is based on
a concatenation of the previous state yi−1 and an
embedding of the remaining length

yi−1 ⊕ emb(t− i), (1)

where emb(t− i) is an embedding of the number
of allowed tokens. To keep the same dimension-
ality as that of the original word embedding, the
output from Equation 1 further undergoes a linear
transformation followed by the ReLU activation.

With the length embedding approach, the model
learns representations of different length values
during training. Therefore, learning to represent
rarely-encountered lengths may be difficult.

The second method modifies the trigonomet-
ric positional encoding from the Transformer
(Vaswani et al., 2017) to represent the remaining
length rather than the current position. This method
has been applied in summarization (Takase and
Okazaki, 2019) and machine translation (Lakew
et al., 2019; Niehues, 2020) to limit output lengths.
Motivated by these examples from related sequence
generation tasks, we explore the “backward” posi-
tional encoding in ASR models.

With the original positional encoding, for input
dimension d ∈ {0, 1, . . . , D − 1}, the encoding at
position i is defined as

{
sin(i/10000d/D), if d is even
cos(i/10000(d−1)/D), if d is odd.

(2)

The backward positional encoding is the same
as Equation (2), except that the current position i
is replaced by the remaining length t− i. Given a
target sequence of length t, the length encoding at
decoding step i becomes
{

sin((t− i)/10000d/D), if d is even
cos((t− i)/10000(d−1)/D), if d is odd.

(3)

Like the positional encoding, the length encod-
ing is also summed together with the input embed-
ding to decoder hidden states. Moreover, since the
encoding is based on sinusoids, it can be easily ex-
trapolated to lengths unseen during training. This
is a potential advantage over the learned length
embeddings.

3.3 Unsupervised Sentence Compression
Compared to training ASR models to jointly
perform transcription and compression, a more

straightforward approach is to post-edit ASR out-
puts using a compression model. However, training
such a model in a supervised fashion requires reli-
able target sequences. Due to the scarcity of suit-
able training corpora, we choose an unsupervised
approach inspired by multilingual translation (Ha
et al., 2017; Johnson et al., 2017).

Similar to in Niehues (2020), this approach re-
lies on a multilingual translation system that is
trained on several language pairs. At training time,
language tokens are embedded together with the
source and target sentences. At test time, the model
is given the same source and target language token,
which is a translation direction unseen in training.
Since the multilingual training enables zero-shot
translation, the model is able to reformulate the
input in the same language. To achieve output
compression, the length constraints introduced in
Section 3.2 are applied in the decoder.

4 Experiment Setup

4.1 Datasets

Table 2 provides an overview of audio corpora we
use. The baseline ASR model is trained on the Ger-
man part of LibriVoxDeEn (Beilharz et al., 2020), a
recently released corpus consisting of open-domain
German audio books. Since the corpus creators did
not suggest a train-dev-test partition, we split the
dataset ourselves. The test set contains the follow-
ing books: Jonathan Frock2, Jolanthes Hochzeit
and Kammmacher.

For the spoken language compression adaptation
corpus, we collect spoken utterances and subtitles
from the German news program Tagesschau from
1 January to 15 August 2019. To control for record-
ing condition and disfluency, we exclude interviews
or press conferences and only keep utterances from
the news anchors. The utterances are segmented
based on the start and end time of subtitles. Since
the timestamps do not always precisely correspond
to utterance boundaries, we manually verify the
test set and edit when necessary.

For the unsupervised compression system, we
use the multilingual translation corpus from the
IWSLT 2017 evaluation campaign (Cettolo et al.,
2017). It consists of English, German, Dutch, Ital-
ian and Romanian parallel sentences based on TED

2In the recordings of Jonathan Frock, we found some
sections with misaligned utterances therefore incorrect tran-
scriptions. The following sections are excluded from our test
set: 00006 jonathanfrock, 00007 jonathanfrock.
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Dataset Total length (h:m) Total utterances Average length (s) Total words

LibriVoxDeEn (train) 469:21 206,490 8.18 3,622,560
LibriVoxDeEn (test) 5:17 2,446 7.78 51,314
Tagesschau (adapt) 37:28 11,559 11.67 243,728
Tagesschau (test) 46 213 13.01 4,864

Table 2: Corpus statistics.

talks. All 10 × 2 translation directions are used
in training. At test time, the model is given the
same source and target language tag (German in
our case) in order to generate summarization in the
same language. We use the positional embedding
introduced in Section 3.2 for length control.

4.2 Preprocessing

We use the Kaldi toolkit (Povey et al., 2011)
to preprocess the raw audio utterances into 23-
dimensional filter banks. We choose not to ap-
ply any utterance-level normalization to allow for
future work towards online processing. For text
materials, i.e. audio transcriptions and the transla-
tion source and target sentences, we use byte-pair
encoding (BPE) (Sennrich et al., 2016) to create
subword-based dictionaries.

4.3 Hyperparameters

For the ASR model, we adopt many reported val-
ues in the work of Pham et al. (2019), including
the optimizer choice, learning rate, warmup steps,
dropout rate, label smoothing rate, and embedding
dimension. There are several parameters that we
choose differently. The size of the inner feed for-
ward layer is 2048. Moreover, we use 32 encoder
and 12 decoder layers, and BPE of size 10,000. For
the compression model, we use a Transformer with
8 encoder and decoder layers each.3

5 Experiments

5.1 Post-Editing with Compression Model

To gain an initial understanding of the task, we
start with a more controlled setup, where the test
utterances are transcribed by a commercial off-the-
shelf ASR system. The transcriptions are then post-
processed with our compression model.

First, we analyze the level of desired output com-
pression by contrasting the lengths of the off-the-
shelf transcriptions against those of the references.

3The code is available at https://github.com/
quanpn90/NMTGMinor/tree/DbMajor.
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Figure 2: Histogram of compression rate on the test set.
Ratios lower than 1 are outliers where the off-the-shelf
ASR model terminates decoding prematurely.

Ground-truth: (17 words) Allerdings können Aus-
nahmeanträge gestellt werden, von Pendlern und von
Stuttgartern, was Tausende auch bereits getan haben.
(However, commuters and Stuttgarter can apply for
exception-permits, which thousands have already done.)
Reference: (6 words) Es können aber Ausnahmeantrge
gestellt werden. (However, exception-permits can be ap-
plied for.)

Ground-truth: (13 words) In der Debatte über neue
Regeln für Organspenden gibt es einen ersten Gesetzen-
twurf. (There is a first draft law in the debate about new
rules for organ donation.)
Reference: (12 words) In der Debatte über neue Regeln
für Organspenden gibt es einen Gesetzentwurf. (There is a
draft law in the debate about new rules for organ donation.)

Table 3: Two examples of various levels of compres-
sion, where the first shortens from 17 to 6 words, and
the second only removes one word.

In Figure 2, we plot the distribution of the ratio be-
tween transcription lengths and target lengths over
the test set. The first observation is that most of the
transcriptions require shortening, as shown by the
high frequencies of ratios over 1.

Moreover, the compression ratio varies across
different utterances. Table 3 shows two examples,
where the first compressed from 17 to 6 words,
while the second only deletes one word. When
inspecting the original videos, we notice that the
first example contains many other visual contents,
some also in text form, whereas the second exam-
ple only involves the new anchorwoman speaking.
The examples showcase that the level of desired
compression depends on various factors, such as
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Model Ratio (output to desired length) WER R-1 R-2 R-L

Off-the-shelf ASR 1.09 41.5 75.9 58.9 72.6
+ compression 0.95 69.1 55.7 29.5 51.6

Baseline ASR 1.21 57.7 65.2 43.6 61.9
+ compression 1.00 74.3 48.5 23.3 44.7

Table 4: Word error rate and summarization quality on the test set by cascading two separate models for ASR and
sentence compression.

Ground-truth Es ist kurz nach Mitternacht, als plötzlich ein Auto in eine Gruppe von Menschen
steuert, die ausgelassen ins neue Jahr feiern. It is just after midnight, when a car
suddenly drives into a group of people who joyfully celebrate the new year.

Reference Kurz nach Mitternacht steuert ein Auto in eine Gruppe von Menschen, die ins neue
Jahr feiern. Just after midnight a car drives into a group of people who celebrate the
new year.

Unsupervised
compression

Kurz nach Mitternacht fährt ein Auto plötzlich in eine Gruppe von Leuten, die das
nächste Jahr feiern. Just after midnight a car suddenly drives into a group of people
who celebrate the next year.

Ground-truth Unter dem Eindruck der Massenproteste hatten sich zuletzt auch hochrangige Militärs
von ihm abgewandt. Under the impression of mass protests, senior military officials
have finally also turned away from him.

Reference Unter dem Eindruck der Proteste wandten sich zuletzt auch hochrangige Militärs ab.
Under the impression of protests, senior military officials finally also turned away.

Unsupervised
compression

Unter dem Eindruck von Massenprotestieren waren auch hochrangige Militärs von
ihm entfernt. Under the impression of mass protesting, senior military officials were
also distanced from him.

Table 5: Examples outputs of the unsupervised compression model, where undesired paraphrasing is underlined.
English translations are in gray.

the amount of visual information simultaneously
shown on the screen. Therefore, a globally fixed
compression rate would not be suitable.

To comply with length constraints, the ASR out-
puts are shortened by the unsupervised sentence
compression model. As the system is trained based
on subwords, we use the number of BPE-tokens in
the reference as target length. The first two rows in
Table 4 contrast the output quality before and after
compression, as measured in case-insensitive word
error rate (WER), and ROUGE scores (Lin, 2004).4

To our surprise, compression has a large negative
impact on the outputs in all four metrics, creating a
gap of over 20% absolute. Via an exhaustive man-
ual inspection over the test set, we find that the un-
supervised compression model tends to paraphrase
much more frequently than the references. While

4Ideally, these metrics should be accompanied by an inde-
pendent human evaluation, which we could not perform due
to resource constraints.

the paraphrased output is often valid both gram-
matically and semantically, the deviation from the
references leads to higher WER and lower ROUGE
scores. Two examples are given in Table 5, where
several synonym replacements appear in the com-
pression outputs, e.g. “fährt” for “steuert” (both
“drives”), “Leute” for “Menschen” (both “people”),
“nächste Jahr” for “neue Jahr” (“next year” for “new
year”). In all these places, the references keep the
original spoken words unchanged. Given the nature
of our task, it is indeed undesirable to paraphrase
excessively, as subtitles that are too different from
the original spoken utterances could create a cogni-
tive overload to users.

Considering these downsides, an ASR system
is trained from scratch to provide more flexibility
of structural modification. On our self-partitioned
LibriVoxDeEn test set, we achieve a WER of 9.2%.
The compression performance is reported in the
lower section of Table 4. As this model is only
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Model Ratio (output to desired length) WER R-1 R-2 R-L

Baseline ASR 1.12 57.7 65.2 43.6 61.9
+adapt 1.05 38.5 76.8 58.7 74.4
+adapt+stop decoding 0.96 39.9 74.6 57.0 72.6

Table 6: Word error rate and summarization quality on the test set by the baseline ASR model. Fine-tuning on
in-domain data is beneficial for both shortening outputs and increasing transcription quality.

Reference In Brasilien ist Präsident Bolsonaro vereidigt worden.
In Brazil new president Bolsonaro has been inaugurated.

Before adaptation In Brasilien ist der neue Präsident voll zu Narro vereidigt worden.
In Brazil the new president “voll zu Narro” has been inaugurated.

After adaptation In Brasilien wurde der neue Präsident Bolsonaro vereidigt.
In Brazil the new president Bolsonaro was inaugurated.

Table 7: Example outputs of the ASR model before and after adapting to the compression task. After adaptation,
the model can perform shortening by changing tense, and correctly recognize the proper noun “Bolsonaro”. English
translations are below each sentence in gray.

trained on LibriVoxDeEn audio books, its perfor-
mance suffers from the train-test domain mismatch.
This is exhibited by the gap of nearly 10% to the off-
the-shelf system, which is trained on larger volume
of data from various domains. Moreover, the tran-
scription errors by the ASR system carry over as the
input of the compression model, which is further
disadvantageous to the final output quality. Lastly,
similar to previous observations, post-processing
by the compression model has a negative effect in
terms of the evaluation metrics.

Overall, the performance of the unsupervised
compression model suffers from paraphrasing. As
an anonymous reviewer suggested, the aggressive
paraphrasing can be remedied during decoding. For
example, given a large beam size, we can select
candidates that contain less paraphrasing. Other-
wise, training with a paraphrasing penalty could
also alleviate the problem. While we have not
explored these methods here, they would indeed
provide a more complete picture when comparing
the cascaded and end-to-end approach.

5.2 Fine-Tuning ASR Model for Compression

Our baseline ASR model is trained on a different
domain than the test set, and only for the transcrip-
tion task. To improve performance on our task of
interest, we apply fine-tuning on the adaptation cor-
pus. The results are in Table 6. For easy visual
comparison, the pre-adaptation performance in the
first row is repeated from Table 4. Contrasting the
performance before and after adaptation, we see no-

ticeable gains brought by adaptation in terms of all
four quality metrics. Moreover, as evidenced by the
reduced ratio of output to desired length, the model
already performs shortening, despite not having
received explicit length constraints. Table 7 shows
an example where the adapted model changes verb
tense to reduce output length. Specifically, by us-
ing the simple past (“wurde vereidigt / was inau-
gurated”) instead of the present perfect tense (“ist
vereidigt worden / has been inaugurated”), the out-
put becomes shorter. Meanwhile, we also observe
the correct transcription of the proper noun “Bol-
sonaro”, which was mistakenly transcribed to the
phonetically-similar “voll zu Narro” before adap-
tion. This illustrates that the adaptation step en-
ables the model to improve recognition quality and
compress its outputs simultaneously.

Despite the positive observations, the desired
length constraints are not yet fully satisfied, as
shown by the ratio of 1.05 between output to de-
sired lengths. To examine the scenario of fully
obeying the length constraints, we stop decoding
once the number of allowed tokens runs out. The
result is reported in the last row of Table 6. The
ratio of 0.96 is lower than 1 because of a few in-
stances where decoding stops before the count-
down reaches zero. As the same output sequence
can be constructed by different BPE-units, choos-
ing longer subword units earlier on can lead to
reaching the end-of-sequence token before deplet-
ing the number of allowed tokens. Lastly, from the
quality metrics in the last row of Table 6, we see
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Model Ratio (output to desired length) WER R-1 R-2 R-L

(1): Baseline (satisfy length) 0.97 55.1 62.5 41.5 60.4
(2): + adapt 0.96 39.9 74.6 57.0 72.6

(3): Length embedding 1.00 57.8 61.9 40.5 59.8
(4): + adapt 0.96 39.3 74.3 55.2 72.5

(5): Length encoding 1.00 57.4 62.6 40.7 60.1
(6): + adapt 0.96 38.6 75.1 56.4 73.2

Table 8: Word error rate and summarization quality by the models with length count-down. Adaptation results in
large gains. The model with length encoding outperforms the baseline and the one with length embedding.

Reference [... 75 tokens] Sea-Watch spricht von einer politisch motivierten Blockade, um
Rettungsaktionen zu verhindern. Sea-Watch speaks of a politically motivated
blockade to prevent bailouts.

Len. Encoding [... 83 tokens] Die Hilfsorganisation Sea-Watch spricht von einer politisch
motivierten Blockade. The aid organization Sea-Watch speaks of a politically
motivated blockade.

Len. Embedding [... 82 tokens] Die Hilfsorganisation Sea-Watch spricht von einer politisch
motivierten Blockade zu verhinder. The aid organization Sea-Watch speaks of a
politically motivated blockade to prevent.

Table 9: Comparison of length encoding and length embedding models (after adaptation). When facing exception-
ally long outputs, the length embedding model tends to stop abruptly, producing non-grammatical half-sentences.

that the forced termination of decoding comes with
higher WER and lower ROUGE scores, indicating
reduced output quality when fully satisfying the
target length constraints.

5.3 Models with Explicit Length Constraints

While the baseline ASR model achieves some de-
gree of compression after adaptation, it cannot fully
comply with length constraints. Therefore, the fol-
lowing experiments examine the effects of training
with explicit length count-downs. In Table 8, we
report the performance of the ASR models with
length embedding or encoding, as introduced in
Section 3.2. For a complete comparison, in the first
two rows of Table 8, we also include the baseline
performance with forced termination of decoding.

Rows (3) and (5) show the performance of the
two length count-down methods before adaptation.
As the ratios of output to desired length are equal
to 1, the models are always faithful to the given
length constraints. This shows the effectiveness
of injecting allowable length in training. However,
we also observe that there is no quality gain over
the baseline in row (1). To investigate the reason
for this, we experimented by decoding one sam-
ple sequence with different allowable lengths. As

we gradually reduce the target length, the mod-
els first shorten their outputs by removing punc-
tuation marks. Afterwards, instead of shortening
the outputs by summarization, they stop decoding
when running out of allowed number of tokens.
Indeed, during training, the models are only incen-
tivized to accurately transcribe the spoken utter-
ance and to stop decoding when the count-down
reaches zero. The same behavior therefore carries
over to test time. Contrary to abstractive summa-
rization (Takase and Okazaki, 2019) and machine
translation (Lakew et al., 2019), in ASR, an input
sequence has one single ground-truth transcription
rather than multiple viable outputs. This could lead
to a different level of abstraction than required in
summarization or translation models. These obser-
vations with the unadapted model also highlight
the importance of the subsequent fine-tuning step.

The results after adaptation are reported in rows
(4) and (6). The large improvement in WER and
ROUGE scores is in line with the previous find-
ing when adapting the baseline. When decoding
with length count-down, we define the target out-
put length as the minimum of the baseline output
length and the reference length. This ensures the
same output-to-desired length ratio as the baseline
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in row (1). Here, the first observation is that the
length encoding model in row (5) outperforms the
baseline in three of the four evaluation metrics.
This suggests that it is beneficial to represent the
constraints explicitly during training. Moreover,
the length encoding model also consistently outper-
forms its embedding-based counterpart. This could
be because the length encoding can extrapolate to
any length values, and is equipped with a sense of
relative differences between numerical values at
initialization. On the other hand, the length em-
bedding would need to learn the representation for
different lengths during training. When inspecting
the outputs for long utterances, we found that the
embedding model is more likely to abruptly stop,
such as the example shown in Table 9.

6 Related Work

6.1 Length-Controlled Text Generation

Controlling output length of natural language gen-
eration systems has been studied for several tasks.

For abstractive summarization, Kikuchi et al.
(2016) proposed two methods to incorporate length
constraints into LSTM-based encoder-decoder
models. The first method uses length embedding
at every decoding step, while the second adds the
desired length in the first decoder state. For con-
volutional models, Fan et al. (2018) used special
tokens to represent quantized length ranges, and
provides the desired token to the decoder before
output generation. Liu et al. (2018) adopted a more
general approach, where the decoder directly in-
gests the desired length. More recently, Takase
and Okazaki (2019) modified the positional encod-
ing from the Transformer (Vaswani et al., 2017) to
encode allowable lengths. Makino et al. (2019) pro-
posed a loss function that encourages summaries
within desired lengths. Saito et al. (2020) intro-
duced a model that controls both output length and
informativeness.

For machine translation, Lakew et al. (2019)
used both the length range token and reverse length
encoding. Niehues (2020) used the length embed-
ding, encoding, as well as a combination of the orig-
inal positional encoding and length count-down.

6.2 Sentence Compression

Our task of length-controlled ASR outputs is re-
lated to sentence compression, as the transcriptions
can be compressed in post-processing. An early
approach of supervised extractive sentence com-

pression was by Filippova et al. (2015), who pro-
posed to predict the delete-or-keep choice for each
output symbol. Angerbauer et al. (2019) extended
this approach by integrating the desired compres-
sion ratio as part of the prediction label. Yu et al.
(2018) proposed to combine the merits of extrac-
tive and abstractive approaches by first deleting
on non-essential words and then generating new
words. For unsupervised compression, Fevry and
Phang (2018) trained a denoising auto-encoder to
reconstruct original sentences, and in this way cir-
cumvented the need for supervised corpora.

7 Conclusion

In this work, we explored the task of compressing
ASR outputs to enhance subtitle readability. This
task has several unique properties. First, the com-
pression is not solely deletion-based. Moreover,
unnecessary paraphrasing must be limited to main-
tain a consistent user experience between hearing
and reading.

We first investigated cascading an ASR module
with a sentence compression model. Due to the
absence of supervised corpora, the compression
model is trained in an unsupervised fashion. Exper-
iments showed that the outputs generated this way
do not suit our task requirements because of unnec-
essary paraphrasing. We then adapted an end-to-
end ASR model on a small corpus with compressed
transcriptions. Via adaptation, the model learned to
both shorten its outputs and improve transcription
quality. Nevertheless, the given length constraints
were not fully satisfied. Lastly, by explicitly inject-
ing length constraints via reverse positional encod-
ing, we achieved further performance gain, while
completely adhering to length constraints.

A direction for future work is to incorporate
more diverse measurements of output length as
well as complexity. In this work, we measured
length by the number of BPE-tokens. While this
typically corresponds to the output length perceived
visually, a more direct metric would be the number
of characters. Moreover, output complexity, such
as the proportion of long words, is also important
for readability and therefore worth exploring. In
a broader scope, as an anonymous reviewer sug-
gested, a way to alleviate the resource scarcity for
end-to-end ASR compression is to augment the
training data with synthesized utterances from sum-
marization corpora. We expect the augmentation to
be complementary to our approaches in this work.
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Abstract

We present enhancements to a speech-to-
speech translation pipeline in order to perform
automatic dubbing. Our architecture features
neural machine translation generating output
of preferred length, prosodic alignment of the
translation with the original speech segments,
neural text-to-speech with fine tuning of the
duration of each utterance, and, finally, au-
dio rendering to enriches text-to-speech out-
put with background noise and reverberation
extracted from the original audio. We report
and discuss results of a first subjective evalua-
tion of automatic dubbing of excerpts of TED
Talks from English into Italian, which mea-
sures the perceived naturalness of automatic
dubbing and the relative importance of each
proposed enhancement.

1 Introduction

Automatic dubbing can be regarded as an exten-
sion of the speech-to-speech translation (STST)
task (Wahlster, 2013), which is generally seen as
the combination of three sub-tasks: (i) transcrib-
ing speech to text in a source language (ASR), (ii)
translating text from a source to a target language
(MT) and (iii) generating speech from text in a tar-
get language (TTS). Independently from the im-
plementation approach (Weiss et al., 2017; Waibel,
1996; Vidal, 1997; Metze et al., 2002; Nakamura
et al., 2006; Casacuberta et al., 2008), the main
goal of STST is producing an output that reflects
the linguistic content of the original sentence. On
the other hand, automatic dubbing aims to replace
all speech contained in a video document with
speech in a different language, so that the result
sounds and looks as natural as the original. Hence,
in addition to conveying the same content of the
original utterance, dubbing should also match the

∗∗ Contribution while the author was with Amazon.

original timbre, emotion, duration, prosody, back-
ground noise, and reverberation.

While STST has been addressed for long time
and by several research labs (Waibel, 1996; Vidal,
1997; Metze et al., 2002; Nakamura et al., 2006;
Wahlster, 2013), relatively less and more sparse
efforts have been devoted to automatic dubbing
(Matous̆ek et al., 2010; Matous̆ek and Vı́t, 2012;
Furukawa et al., 2016; Öktem et al., 2019), al-
though the potential demand of such technology
could be huge. In fact, multimedia content cre-
ated and put online has been growing at expo-
nential rate, in the last decade, while availability
and cost of human skills for subtitling and dub-
bing still remains a barrier for its diffusion world-
wide.1 Professional dubbing (Martı́nez, 2004) of a
video file is a very labor intensive process that in-
volves many steps: (i) extracting speech segments
from the audio track and annotating these with
speaker information; (ii) transcribing the speech
segments, (iii) translating the transcript in the tar-
get language, (iv) adapting the translation for tim-
ing, (v) casting the voice talents, (vi) perform-
ing the dubbing sessions, (vii) fine-aligning the
dubbed speech segments, (viii) mixing the new
voice tracks within the original soundtrack.

Automatic dubbing has been addressed both in
monolingual cross-lingual settings. In (Verhelst,
1997), synchronization of two speech signals with
the same content was tackled with time-alignment
via dynamic time warping. In (Hanzlı̀c̆ek et al.,
2008) automatic monolingual dubbing for TV
users with special needs was generated from subti-
tles. However, due to the poor correlation between
length and timing of the subtitles, TTS output fre-

1Actually, there is still a divide between coun-
tries/languages where either subtitling or dubbing are the
preferred translation modes (Kilborn, 1993; Koolstra et al.,
2002). The reasons for this are mainly economical and his-
torical (Danan, 1991).
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quently broke the timing boundaries. To avoid
unnatural time compression of TTS’s voice when
fitting its duration to the duration of the original
speech, (Matous̆ek et al., 2010) proposed phone-
dependent time compression and text simplifica-
tion to shorten the subtitles, while (Matous̆ek and
Vı́t, 2012) leveraged scene-change detection to re-
lax the subtitle time boundaries. Regarding cross-
lingual dubbing, lip movements synchronization
was tackled in (Furukawa et al., 2016) by di-
rectly modifying the actor’s mouth motion via
shuffling of the actor’s video frames. While the
method does not use any prior linguistic or pho-
netic knowledge, it has been only demonstrated
on very simple and controlled conditions. Finally,
mostly related to our contribution is (Öktem et al.,
2019), which discusses speech synchronization at
the phrase level (prosodic alignment) for English-
to-Spanish automatic dubbing.

In this paper we present research work to en-
hance a STST pipeline in order to comply with
the timing and rendering requirements posed by
cross-lingual automatic dubbing of TED Talk
videos. Similarly to (Matous̆ek et al., 2010), we
also shorten the TTS script by directly modify-
ing the MT engine rather than via text simplifica-
tion. As in (Öktem et al., 2019), we synchronize
phrases across languages, but follow a fluency-
based rather than content-based criterion and re-
place generation and rescoring of hypotheses in
(Öktem et al., 2019) with a more efficient dy-
namic programming solution. Moreover, we ex-
tend (Öktem et al., 2019) by enhancing neural MT
and neural TTS to improve speech synchroniza-
tion, and by performing audio rendering on the
dubbed speech to make it sound more real inside
the video.

In the following sections, we introduce the over-
all architecture (Section 2) and the proposed en-
hancements (Sections 3-6). Then, we present re-
sults (Section 7) of experiments evaluating the nat-
uralness of automatic dubbing of TED Talk clips
from English into Italian. To our knowledge, this
is the first work on automatic dubbing that in-
tegrates enhanced deep learning models for MT,
TTS and audio rendering, and evaluates them on
real-world videos.

2 Automatic Dubbing

With some approximation, we consider here auto-
matic dubbing of the audio track of a video as the

Figure 1: Speech-to-speech translation pipeline (dotted
box) with enhancements to perform automatic dubbing
(in bold).

task of STST, i.e. ASR + MT + TTS, with the ad-
ditional requirement that the output must be tem-
porally, prosodically and acoustically close to the
original audio. We investigate an architecture (see
Figure 1) that enhances the STST pipeline with (i)
enhanced MT able to generate translations of vari-
able lengths, (ii) a prosodic alignment module that
temporally aligns the MT output with the speech
segments in the original audio, (iii) enhanced TTS
to accurately control the duration of each produce
utterance, and, finally, (iv) audio rendering that
adds to the TTS output background noise and re-
verberation extracted from the original audio. In
the following, we describe each component in de-
tail, with the exception of ASR, for which we use
(Di Gangi et al., 2019a) an of-the-shelf online ser-
vice2.

3 Machine Translation

Our approach to control the length of MT output
is inspired by target forcing in multilingual neu-
ral MT (Johnson et al., 2017; Ha et al., 2016).
We partition the training sentence pairs into three
groups (short, normal, long) according to the tar-
get/source string-length ratio. In practice, we se-
lect two thresholds t1 and t2, and partition training
data according to the length-ratio intervals [0, t1),[t1, t2) and [t2,∞]. At training time a length to-
ken is prepended to each source sentence accord-
ing to its group, in order to let the neural MT
model discriminate between the groups. At infer-
ence time, the length token is instead prepended to
bias the model to generate a translation of the de-
sired length type. We trained a Transformer model
(Vaswani et al., 2017) with output length control
on web crawled and proprietary data amounting to
150 million English-Italian sentence pairs (with no
overlap with the test data). The model has encoder
and decoder with 6 layers, layer size of 1024, hid-
den size of 4096 on feed forward layers, and 16

2Amazon Transcribe: https://aws.amazon.com/transcribe.
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heads in the multi-head attention. For the reported
experiments, we trained the models with thresh-
olds t1 = 0.95 and t2 = 1.05 and generated at
inference time translations of the shortest type, re-
sulting, on our test set, in an average length ratio of
0.97. A reason for the length exceeding the thresh-
old could be that for part of test data the model did
not learn ways to keep the output short. A detailed
account of the approach, the followed training pro-
cedure and experimental results on the same task
of this paper, but using slightly different thresh-
olds, can be found in (Lakew et al., 2019). The
paper also shows that human evaluation conducted
on the short translations resulted in a minor loss in
quality with respect to the model without output
length control. Finally, as baseline MT system for
our evaluation experiments we used an online ser-
vice 3

4 Prosodic Alignment

Prosodic alignment (Öktem et al., 2019) is the
problem of segmenting the target sentence to opti-
mally match the distribution of words and pauses4.
Let e = e1, e2, . . . , en be a source sentence of n
words which is segmented according to k break-
points 1 ≤ i1 < i2 < . . . ik = n, shortly denoted
with i. Given a target sentence f = f1, f2, . . . , fm
of m words, the goal is to find within it k corre-
sponding breakpoints 1 ≤ j1 < j2 < . . . jk = m
(shortly denoted with j) that maximize the proba-
bility:

max
j

log Pr(j ∣ i,e, f) (1)

By assuming a Markovian dependency on j, i.e.:

Pr(j ∣ i,e, f) = k∑
t=1 log Pr(jt ∣ jt−1; t, i,e, f) (2)

and omitting from the notation the constant terms
i,e, f , we can derive the following recurrent quan-
tity:

Q(j, t) = max
j′<j log Pr(j ∣ j′; t) +Q(j′, t − 1) (3)

where Q(j, t) denotes the log-probability of the
optimal segmentation of f up to position j with
t break points. It is easy to show that the solu-
tion of (1) corresponds to Q(m,k) and that opti-
mal segmentation can be efficiently computed via

3Amazon Translate: https://aws.amazon.com/translate.
4In this work the minimum pause interval is set to 300ms.

Pauses are detected from the time stamps produce by force-
aligning audio with the transcript (Ochshorn and Hawkins,
2017).

dynamic-programming. Let f̃t = fjt−1+1, . . . , fjt
and ẽt = eit−1+1, . . . , eit indicate the t-th segments
of f and e, respectively, we define the conditional
probability of the t-th break point in f by:

Pr(jt ∣ jt−1, t) ∝ exp(1 − ∣d(ẽt) − d(f̃t)∣
d(ẽt) )

×Pr(br ∣ jt, f) (4)

The first term computes the relative match in du-
ration between the corresponding t-th segments5,
while the second term measure the linguistic plau-
sibility of a placing a break after the jt in f . For
this, we simply compute the following ratio of nor-
malized language model probabilities of text win-
dows centered on the break point, by assuming or
not the presence of a pause (br) in the middle:

Pr(br ∣ j, f) = Pr(fj ,br, fj+1)1/3
Pr(fj ,br, fj+1)1/3 +Pr(fj , fj+1)1/2

The rational of our model is that we want to fa-
vor split points were also TTS was trained to pro-
duce pauses. TTS was in fact trained on read
speech that generally introduces pauses in corre-
spondence of punctuation marks such as period,
comma, semicolon, colon, etc. Notice that our
interest, at the moment, is to produce fluent TTS
speech, not to closely match the speaking style of
the original speaker. In our implementation, we
use a larger text window (last and first two words),
we replace words with parts-of speech, and esti-
mate the language model with KenLM (Heafield,
2011) on the training portion of the MUST-C cor-
pus tagged with parts-of-speech using an online
service6.

5 Text To Speech

Our neural TTS system consists of two modules:
a Context Generation module, which generates a
context sequence from the input text, and a Neural
Vocoder module, which converts the context se-
quence into a speech waveform. The first one is
an attention-based sequence-to-sequence network
(Prateek et al., 2019; Latorre et al., 2019) that
predicts a Mel-spectrogram given an input text.
A grapheme-to-phoneme module converts the se-
quence of words into a sequence of phonemes

5We approximate the duration d(⋅) of a segment with the
sum of the lengths of its words. We plan to use better approx-
imations in the future, e.g. the number of syllables (Öktem
et al., 2019).

6Amazon Comprehend:https://aws.amazon.com/comprehend.

259



plus augmented features like punctuation marks
and prosody related features derived from the text
(e.g. lexical stress). For the Context Generation
module, we trained speaker-dependent models on
two Italian voices, male and female, with 10 and
37 hours of high quality recordings, respectively.
We use the Universal Neural Vocoder introduced
in (Lorenzo-Trueba et al., 2019), pre-trained with
2000 utterances per each of the 74 voices from a
proprietary database.
To ensure close matching of the duration of Ital-
ian TTS output with timing information extracted
from the original English audio, for each utter-
ance we re-size the generated Mel spectrogram us-
ing spline interpolation prior to running the Neu-
ral Vocoder. We empirically observed that this
method produces speech of better quality than tra-
ditional time-stretching.

6 Audio Rendering

6.1 Foreground-Background Separation

The input audio can be seen as a mixture of fore-
ground (speech) and background (everything else)
and our goal is to extract the background and add
it to the dubbed speech to make it sound more
real and similar to the original. Notice that in
the case of TED talks, background noise is mainly
coming from the audience (claps and laughs) but
sometime also from the speaker, e.g. when she
is explaining some functioning equipment. For
the foreground-background separation task, we
adapted (Giri et al., 2019; Tolooshams et al., 2020)
the popular U-Net (Ronneberger et al., 2015) ar-
chitecture, which is described in detail in (Jans-
son et al., 2017) for a music-vocal separation task.
It consists of a series of down-sampling blocks,
followed by one bottom convolutional layer, fol-
lowed by a series of up-sampling blocks with skip
connections from the down-sampling to the up-
sampling blocks. Because of the down-sampling
blocks, the model can compute a number of high-
level features on coarser time scales, which are
concatenated with the local, high-resolution fea-
tures computed from the same-level up-sampling
block. This concatenation results into multi-
scale features for prediction. The model oper-
ates on a time-frequency representation (spectro-
grams) of the audio mixture and it outputs two
soft ratio masks corresponding to foreground and
background, respectively, which are multiplied
element-wise with the mixed spectrogram, to ob-

tain the final estimates of the two sources. Finally,
the estimated spectrograms go through an inverse
short-term Fourier transform block to produce raw
time domain signals. The loss function used to
train the model is the sum of the L1 losses between
the target and the masked input spectrograms, for
the foreground and the background (Jansson et al.,
2017), respectively. The model is trained with
the Adam optimizer on mixed audio provided with
foreground and background ground truths. Train-
ing data was created from 360 hours of clean
speech from Librispeech (foreground) and 120
hours of recording taken from audioset (Gemmeke
et al., 2017) (background), from which speech was
filtered out using a Voice Activity Detector (VAD).
Foreground and background are mixed for differ-
ent signal-to-noise ratio (SNR), to generate the au-
dio mixtures.

6.2 Re-reverberation

In this step, we estimate the environment rever-
beration from the original audio and apply it to
the dubbed audio. Unfortunately, estimating the
room impulse response (RIR) from a reverberated
signal requires solving an ill-posed blind deconvo-
lution problem. Hence, instead of estimating the
RIR, we do a blind estimation of the reverberation
time (RT), which is commonly used to assess the
amount of room reverberation or its effects. The
RT is defined as the time interval in which the en-
ergy of a steady-state sound field decays 60 dB be-
low its initial level after switching off the excita-
tion source. In this work we use a Maximum Like-
lihood Estimation (MLE) based RT estimate (see
details of the method in (Löllmann et al., 2010)).
Estimated RT is then used to generate a synthetic
RIR using a publicly available RIR generator (Ha-
bets, 2006). This synthetic RIR is finally applied
to the dubbed audio.

7 Experimental Evaluation

We evaluated our automatic dubbing architecture
(Figure 1), by running perceptual evaluations in
which users are asked to grade the naturalness
of video clips dubbed with three configurations
(see Table 1): (A) speech-to-speech translation
baseline, (B) the baseline with enhanced MT and
prosodic alignment, (C) the former system en-
hanced with audio rendering.7 Our evaluation fo-

7Notice that after preliminary experiments, we decided
to not evaluate the configuration A with Prosodic Alignment,
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System Condition
R Original recording (reference)
A Speech-to-speech translation (baseline)
B A with Enhanced MT and Pros. Align.
C B with Audio Rendering

Table 1: Evaluated dubbing conditions.

Figure 2: MUSHRA perceptual evaluation interface

cuses on two questions:

• What is the overall naturalness of automatic
dubbing?

• How does each introduced enhancement con-
tribute to the naturalness of automatic dub-
bing?

We adopt the MUSHRA (MUlti Stimulus test
with Hidden Reference and Anchor) methodology
(MUSHRA, 2014), originally designed to evaluate
audio codecs and later also TTS. We asked listen-
ers to evaluate the naturalness of each versions of
a video clip on a 0-100 scale. Figure 2 shows the
user interface. In absence of a human dubbed ver-
sion of each clip, we decided to use, for calibration
purposes, the clip in the original language as hid-
den reference. The clip versions to evaluate are
not labeled and randomly ordered. The observer
has to play each version at least once before mov-
ing forward and can leave a comment about the
worse version.

In order to limit randomness introduced by ASR
and TTS across the clips and by MT across ver-

given its very poor quality, as also reported in (Öktem et al.,
2019). Other intermediate configurations were not explored
to limit the workload of the subjects participating in the ex-
periment.

sions of the same clip, we decided to run the ex-
periments using manual speech transcripts,8 one
TTS voice per gender, and MT output by the base-
line (A) and enhanced MT system (B-C) of qual-
ity judged at least acceptable by an expert.9 With
these criteria in mind, we selected 24 video clips
from 6 TED Talks (3 female and 3 male speak-
ers, 5 clips per talk) from the official test set of the
MUST-C corpus (Di Gangi et al., 2019b) with the
following criteria: duration of around 10-15 sec-
onds, only one speaker talking, at least two sen-
tences, speaker face mostly visible.
We involved in the experiment both Italian and
non Italian listeners. We recommended all par-
ticipants to disregard the content and only focus
on the naturalness of the output. Our goal is to
measure both language independent and language
dependent naturalness, i.e. to verify how speech
in the video resembles human speech with respect
to acoustics and synchronization, and how intelli-
gible it is to native listeners.

7.1 Results

We collected a total of 657 ratings by 14 volun-
teers, 5 Italian and 9 non-Italian listeners, spread
over the 24 clips and three testing conditions. We
conducted a statistical analysis of the data with lin-
ear mixed-effects models using the lme4 package
for R (Bates et al., 2015). We analyzed the nat-
uralness score (response variable) against the fol-
lowing two-level fixed effects: dubbing system A
vs. B, system A vs. C, and system B vs. C. We run
separate analysis for Italian and non-Italian listen-
ers. In our mixed models, listeners and video clips
are random effects, as they represent a tiny sam-
ple of the respective true populations(Bates et al.,
2015). We keep models maximal, i.e. with inter-
cepts and slopes for each random effect, end re-
move terms required to avoid singularities. Each
model is fitted by maximum likelihood and signif-
icance of intercepts and slopes are computed via
t-test.

Table 2 summarized our results. In the first
comparison, baseline (A) versus the system with
enhanced MT and prosody alignment (B), we
see that both non-Italian and Italian listeners per-
ceive a similar naturalness of system A (46.81 vs.

8We would clearly expect significant drop in dubbing
quality due to the propagation of ASR errors.

9We use the scale: 1 - Not acceptable: not fluent or not
correct; 2 - Acceptable: almost fluent and almost correct; 3 -
Good: fluent and correct.
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47.22). When moving to system B, non-Italian lis-
teners perceive a small improvement (+1.14), al-
though not statistically significant, while Italian
speaker perceive a statistically significant degra-
dation (-10.93).

In the comparison between B and C (i.e. B en-
hanced with audio rendering), we see that non-
Italian listeners observe a significant increase
in naturalness (+10.34), statistically significant,
while Italian listeners perceive a smaller and not
statistical significant improvement (+1.05).

The final comparison between A and C gives al-
most consistent results with the previous two eval-
uations: non-Italian listeners perceive better qual-
ity in condition C (+11.01), while Italian listen-
ers perceive lower quality (-9.60). Both variations
are however not statistically significant due to the
higher standard errors of the slope estimates ∆C.
Notice in fact that each mixed-effects model is
trained on distinct data sets and with different ran-
dom effect variables. A closer look at the random
effects parameters indeed shows that for the B vs.
C comparison, the standard deviation estimate of
the listener intercept is 3.70, while for the A vs.
C one it is 11.02. In other words, much higher
variability across user scores is observed in the A
vs. C case rather than in the B vs. C case. A
much smaller increase is instead observed across
the video-clip random intercepts, i.e. from 11.80
to 12.66. The comments left by the Italian listen-
ers tell that the main problem of system B is the
unnaturalness of the speaking rate, i.e. is is either
too slow, too fast, or too uneven.

The distributions of the MUSHRA scores pre-
sented at the top of Figure 3 confirm our analy-
sis. What is more relevant, the distribution of the
rank order (bottom) strengths our previous analy-
sis. Italian listeners tend to rank system A the best
system (median 1.0) and vary their preference be-
tween systems B and C (both with median 2.0). In
contrast, non-Italian rank system A as the worse
system (median 2.5), system B as the second (me-
dian 2.0), and statistically significantly prefer sys-
tem C as the best system (median 1.0).

Hence, while our preliminary evaluation found
that shorter MT output can potentially enable bet-
ter synchronization, the combination of MT and
prosodic alignment appears to be still problematic
and prone to generate unnatural speech. In other
words, while non-Italian listeners seem to value
synchronicity achieved through prosodic align-

Non Italian Italian
Fixed effects Estim SE Estim. SE
A intercept 46.81● 4.03 47.22● 6.81
∆B slope +1.14 4.02 -10.93∗ 4.70
B intercept 47.74● 3.21 35.19● 7.22
∆C slope +10.34+ 3.53 +1.05 2.30
A intercept 46.92● 4.95 45.29● 7.42
∆C slope +11.01 6.51 -9.60 4.89

Table 2: Summary of the analysis of the evaluation with
mixed-effects models. From top down: A vs. B, B vs.
C, A vs. C. For each fixed effect, we report the esti-
mate and standard error. Symbols ●, ∗, + indicate sig-
nificance levels of 0.001, 0.01, and 0.05, respectively.

Figure 3: Boxplots with the MUSHRA scores (top) and
Rank Order (bottom) per system and mother language
(Italian vs Non-Italian).

ment, Italian listeners seem to prefer trading syn-
chronicity for more fluent speech. We think that
more work is needed to get MT closer to the script
adaptation (Chaume, 2004) style used for dubbing,
and to improve the accuracy of prosodic align-
ment.

The incorporation of audio rendering (system
C) significantly improves the experience of the
non-Italian listeners (66 in median) respect to sys-
tems B and C. This points out the relevance of
including para-linguist aspects (i.e. applause’s,
audience laughs in jokes,etc.) and acoustic con-
ditions (i.e. reverberation, ambient noise, etc.).
For the target (Italian) listeners this improvement
appears instead masked by the disfluencies intro-
duced by the prosodic alignment step. If we try to
directly measure the relative gains given by audio
rendering, we see that Italian listeners score sys-
tem B better than system A 27% of the times and
system C better than A 31% of the times, which
is a 15% relative gain. On the contrary non-Italian
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speakers score B better than A 52% of the times,
and C better than A 66% of the times, which is a
27% relative gain.

8 Conclusions

We have perceptually evaluated the naturalness of
automatic speech dubbing after enhancing a base-
line speech-to-speech translation system with the
possibility to control the verbosity of the transla-
tion output, to segment and synchronize the tar-
get words with the speech-pause structure of the
source utterances, and to enrich TTS speech with
ambient noise and reverberation extracted from
the original audio. We tested our system with both
Italian and non-Italian listeners in order to evaluate
both language independent and language depen-
dent naturalness of dubbed videos. Results show
that while we succeeded at achieving synchro-
nization at the phrasal level, our prosodic align-
ment step negatively impacts on the fluency and
prosody of the generated language. The impact
of these disfluencies on native listeners seems to
partially mask the effect of the audio rendering
with background noise and reverberation, which
instead results in a major increase of naturalness
for non-Italian listeners. Future work will be de-
voted to better adapt machine translation to the
style used in dubbing and to improve the qual-
ity of prosodic alignment, by generating more ac-
curate sentence segmentation and by introducing
more flexible synchronization.
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2010. Automatic dubbing of TV programmes for the
hearing impaired. In Proc. IEEE Signal Processing,
pages 589–592.

J. Matous̆ek and J. Vı́t. 2012. Improving automatic
dubbing with subtitle timing optimisation using
video cut detection. In Proc. ICASSP, pages 2385–
2388.

F. Metze, J. McDonough, H. Soltau, A. Waibel,
A. Lavie, S. Burger, C. Langley, K. Laskowski,
L. Levin, T. Schultz, F. Pianesi, R. Cattoni, G. Laz-
zari, N. Mana, and E. Pianta. 2002. The NE-
SPOLE! Speech-to-speech Translation System. In
Proc. HLT, pages 378–383.

MUSHRA. 2014. Method for the subjective assess-
ment of intermediate quality level of coding systems.
International Communication Union. Recommen-
dation ITU-R BS.1534-2.

S. Nakamura, K. Markov, H. Nakaiwa, G. Kikui,
H. Kawai, T. Jitsuhiro, J. Zhang, H. Yamamoto,
E. Sumita, and S. Yamamoto. 2006. The ATR
Multilingual Speech-to-Speech Translation System.
IEEE Trans. on Audio, Speech, and Language Pro-
cessing, 14(2):365–376.

R. M. Ochshorn and M. Hawkins. 2017. Gentle Forced
Aligner. Https://lowerquality.com/gentle/.
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Abstract

A variety of natural language tasks require pro-
cessing of textual data which contains a mix
of natural language and formal languages such
as mathematical expressions. In this paper,
we take unit conversions as an example and
propose a data augmentation technique which
lead to models learning both translation and
conversion tasks as well as how to adequately
switch between them for end-to-end localiza-
tion.

1 Introduction

Neural networks trained on large amounts of data
have been shown to achieve state-of-the art solu-
tions on most NLP tasks such as textual entail-
ment, question answering, translation, etc. In par-
ticular, these solutions show that one can success-
fully model the ambiguity of language by making
very few assumptions about its structure and by
avoiding any formalization of language. However,
unambiguous, formal languages such as numbers,
mathematical expressions or even programming
languages (e.g. markup) are abundant in text and
require the ability to model the symbolic, “proce-
dural” behaviour governing them. (Ravichander
et al., 2019; Dua et al., 2019).

An example of an application where such ex-
amples are frequent is the extension of machine
translation to localization. Localization is the
task of combining translation with “culture adapta-
tion”, which involves, for instance, adapting dates
(12/21/2004 to 21.12.2004), calendar conversions
(March 30, 2019 to Rajab 23, 1441 in Hijri Cal-
endar) or conversions of currencies or of units of
measure (10 kgs to 22 pounds).

Current approaches in machine translation han-
dle the processing of such sub-languages in one
of two ways: The sub-language does not receive
any special treatment but it may be learned jointly

with the main task if it is represented enough in the
data. Alternatively, the sub-language is decoupled
from the natural text through pre/post processing
techniques: e.g. a miles expression is converted
into kilometers in a separate step after translation.

Arguably the first approach can successfully deal
with some of these phenomena: e.g. a neural net-
work may learn to invoke a simple conversion rule
for dates, if enough examples are seen training.
However, at the other end of the spectrum, cor-
rectly converting distance units, which itself is a
simple algorithm, requires knowledge of numbers,
basic arithmetic and the specific conversion func-
tion to apply. It is unrealistic to assume a model
could learn such conversions from limited amounts
of parallel running text alone. Furthermore, this is
an unrealistic task even for distributional, unsuper-
vised pre-training (Turney and Pantel, 2010; Baroni
and Lenci, 2010; Peters et al., 2018), despite the
success of such methods in capturing other non-
linguistic phenomena such as world knowledge or
cultural biases (Bolukbasi et al., 2016; Vanmassen-
hove et al., 2018).1

While the second approach is currently the pre-
ferred one in translation technology, such decou-
pling methods do not bring us closer to end-to-end
solutions and they ignore the often tight interplay of
the two types of language: taking unit conversion
as an example, approximately 500 miles, should be
translated into ungefähr 800 km (approx. 800km)
and not ungefähr 804 km (approx. 804km).

In this paper we highlight several of such lan-
guage mixing phenomena related to the task of lo-
calization for translation and focus on two distance
(miles to kilometers) and temperature (Fahrenheit
to Celsius) conversion tasks. Specifically, we per-

1(Wallace et al., 2019) show that numeracy is encoded
in pre-trained embeddings. While promising, this does not
show that more complex and varied manipulation of numerical
expressions can be learned in a solely unsupervised fashion.
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form experiments using the popular MT trans-
former architecture and show that the model is
successful at learning these functions from symboli-
cally represented examples. Furthermore, we show
that data augmentation techniques together with
small changes in the input representation produce
models which can both translate and appropriately
convert units of measure in context.

2 Related work

Several theoretical and empirical works have ad-
dressed the computational capabilities end expres-
siveness of deep learning models. Theoretical stud-
ies on language modeling have mostly targeted
simple grammars from the Chomsky hierarchy. In
particular, Hahn (2019) proves that Transformer
networks suffer limitations in modeling regular
periodic languages (such as anbn) as well as hi-
erarchical (context-free) structures, unless their
depth or self-attention heads increase with the input
length. On the other hand, Merrill (2019) proves
that LSTM networks can recognize a subset of peri-
odic languages. Also experimental papers analyzed
the capability of LSTMs to recognize these two
language classes (Weiss et al., 2018; Suzgun et al.,
2019; Sennhauser and Berwick, 2018; Skachkova
et al., 2018; Bernardy, 2018), as well as natural lan-
guage hierarchical structures (Linzen et al., 2016;
Gulordava et al., 2018). It is worth noticing, how-
ever, that differently from formal language recog-
nition tasks, state of the art machine translation
systems (Barrault et al., 2019; Niehues et al., 2019)
are still based on the Transformer architecture .

Other related work addresses specialized neural
architectures capable to process and reason with nu-
merical expressions for binary addition, evaluating
arithmetic expressions or other number manipula-
tion tasks (Joulin and Mikolov, 2015; Saxton et al.,
2019; Trask et al., 2018; Chen et al., 2018). While
this line of work is very relevant, we focus on the
natural intersection of formal and everyday lan-
guage. The types of generalization that these stud-
ies address, such as testing with numbers orders of
magnitude larger than those in seen in training, are
less relevant to our task.

The task of solving verbal math problems (Mi-
tra and Baral, 2016; Wang et al., 2017; Koncel-
Kedziorski et al., 2016; Saxton et al., 2019) specifi-
cally addresses natural language mixed with formal
language. Similarly, (Ravichander et al., 2019) in-
troduces a benchmark for evaluating quantitative

reasoning in natural language inference and (Dua
et al., 2019) one for symbolic operations such as
addition or sorting in reading comprehension. How-
ever these papers show the best results with two-
step approaches, which extract the mathematical
or symbolic information from the text and further
manipulate it analytically. We are not aware of any
other work successfully addressing both machine
translation and mathematical problems, or any of
the benchmarks above, in an end-to-end fashion.

3 Unit conversion in MT localization

The goal of localization is to enhance plain content
translation so that the final result looks and feels as
being created for a specific target audience.

Parallel corpora in general include localiza-
tion of formats numeric expressions (e.g. from
1,000,000.00 (en-us) to 1.000.000,00 (de-de)). For-
mat conversions in most of the cases reduce to
operations such as reordering of elements and re-
placement of symbols, which quite naturally fit
inside the general task of machine translation. In
this paper, we are interested in evaluating the ca-
pability of neural MT models to learn less natural
operations, which are typically involved in the con-
version of time expressions (e.g. 3:30pm→ 15:30)
and units of measure, such as lengths (10ft to 3m)
and temperatures (55F to 12.8C).

We choose two measure unit conversion tasks
that are very prevalent in localization: Fahrenheit
to Celsius temperature conversion and miles to kilo-
meters. We address the following questions: 1) Can
a standard NMT architecture, the transformer, be
used to learn the functions associated with these
two conversion tasks (Section 3.1) and 2) Can the
same architecture be used to train a model that can
do both MT and unit conversion? (Section 3.2)

3.1 Unit conversion

Network architecture We use the state-of-the-
art transformer architecture (Vaswani et al., 2017)
and the Sockeye Toolkit (Hieber et al., 2017) to
train a network with 4 encoder layers and 2 de-
coder layers for a maximum of 3000 epochs (See
Appendix A for details). As the vocabulary size
is small the training is still very efficient. For the
experiments training several tasks jointly we facil-
itate the context-switching between the different
tasks with an additional token-level parallel stream
(source factors) (Sennrich and Haddow, 2016). We
use two values for the digits in numerical expres-
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Figure 1: Conversion accuracy with ±10−4 tolerance on
relative error, as a function of the number of the target conver-
sion examples in the train data. Functions are learned both in
isolation and in a joint setting (MtoKm + FtoC) which adds to
training an equal amount of data for the other function.

sions (distance/temperature) and a third value for
all other tokens. These are concatenated to each
token as 8-dimensional embeddings.

Data The models are trained with parallel
examples of the two functions, one affine:
°F→ °C(x) = (x − 32) × 5

9 and one linear:
mi→ km(x) = x × 1.60934. For each task, we
generate training data of various input lengths rang-
ing from 1 to 6 digits in the input. The input is
distributed uniformly w.r.t 1) integer versus single
digit precision (with the output truncated to same
precision as the input) and 2) the length of the in-
put in digits. We over-sample when there are not
enough distinct data points, such as in the case of
double- or single-digit numbers. The numerical
input is tokenized into digits (e.g. 5 2 1 miles) and
we train individual models for the two functions,
as well as joint models, using held-out data for val-
idation and testing. Note that unlike previous work,
we are interested only in interpolation generaliza-
tion: test numbers are unseen, but the range of test
numbers does not increase.

Results Results as a function of the amount of
training data are given in Figure 1. Test sets are syn-
thetic and contain numbers in [103 − 106] range.

The results show that the transformer architec-
ture can learn the two functions perfectly, however,
interestingly enough, the two functions are learned
differently. While the degree conversion is learned
with a high accuracy with as little as several thou-
sand examples, the distance conversion is learned
gradually, with more data leading to better and
better numerical approximations: in this case the
model reaches high precision in conversion only
with data two orders of magnitude larger. Both
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Figure 2: Accuracy of localization conversion (tolerance
0.01%) on regular and challenge sets. All models use source
factors and are trained using: 2.2M MT data + 15k Loc data +
varying amounts of Conv data.

functions are learned with less data when training
is done jointly and source factors are used - this
suggests that, despite the fact that the functions
are very different, joint training may facilitate the
learning of numbers as a general concept and helps
learn additional functions more efficiently.

3.2 Joint MT and unit conversion

In a second set of experiments we investigate if the
transformer model is able to perform both the trans-
lation and the unit conversion tasks and learns to
adequately switch from one to the other in context.
We use the same architecture as in the previous
section, with minor modifications: we use subword
embeddings with a shared vocabulary of size 32000
and a maximum number of epochs of 30.

Data As standard MT parallel data we use a
collection containing Europarl (Koehn, 2005) and
news commentary data from WMT En→De shared
task 2019 totalling 2.2 million sentences.2 Stan-
dard translation test sets do not have, however,
enough examples of unit conversions and in fact
corpora such as CommonCrawl show inconsistent
treatment of units. For this reason, we create a
unit conversion (Localization) data set. We ex-
tract sentences containing Fahrenheit/Celsius and
miles/km from a mix of open source data sets
namely, ParaCrawl, DGT (Translation Memories),
Wikipedia and OpenSubtitles, TED talks from
OPUS (Tiedemann, 2012). Regular expressions
are used to extract the sentences containing the
units and modify the source or the reference by

2We opt for a smaller experiment in order to speed up
computations and to prioritize efficiency in our experiments
(Strubell et al., 2019). We have no reason to assume any
dependency on the data size.
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Example
Conv 5 2 1 miles 8 3 9 km
MT We do not know what is happening. Wir wissen nicht, was passiert.
Loc. The venue is within 3 . 8 miles from the city center Die Unterkunft ist 6 km vom Stadtzentrum entfernt

Table 1: The three types of data used in training the joint model: unit conversion data, standard MT data and localization (Loc)
data containing unit conversions in context.

news17 Loc-dist Loc-temp
S.f. #Loc Bleu Bleu Acc. Bleu Acc.

- 0 22.7 20.6 0% 16.1 0%
- 5k 22.7 56.7 52.3% 44.1 48.3%
- 15k 23.0 61.7 76.2% 48.5 80.3%
- 30k 23.0 65.0 90.3% 48.9 81.3%
X 0 22.9 19.5 1% 16.6 3.4%
X 5k 22.9 58.7 69.4% 46.8 64.8%
X 15k 23.2 63.0 88.0% 48.6 77.8%
X 30k 22.6 64.0 88.3% 48.8 79.4%

Table 2: Bleu scores and accuracy on conversion of degrees
(temp) and miles (dist) expressions in Loc test sets. Conver-
sion accuracy is computed with a tolerance of 0.01%. All
models are trained using: 2.2M MT+ 100k Conv + #Loc data
(col 2) for each function, with and without Source factors
(column 1).

converting the matched units. For example, if 5 km
is matched in the reference, we modify the source
expression to 3.1 miles.3 We are able to extract a
total of 7k examples for each of the two conversion
tasks and use 5k for training and 2k for testing,
making sure the train/test numerical expressions
are distinct.

Results In the experimental setting, we distin-
guish the following three types of data: transla-
tion (MT), conversion (Conv) and localization data
(conversion in context) (Loc), and measure perfor-
mance when varying amounts of Conv and Loc
are used in training. Examples of these data types
are given in Table 1. The first set of experiments
(Table 2) uses MT and Conv data and tests the mod-
els’ performance with varying amounts of Loc data.
We observe that for localization performance, Loc
data in training is crucial: accuracy jumps from 2%
when no Loc data is used to 66% for 5k Loc and to
82%, on average, with 15k localization examples
for each function (w. source factors). However,
the 15k data points are obtained by up-sampling
the linguistic context and replacing the unit con-
versions with new unit conversions, and therefore
no “real” new data is added. We observe no further
improvements when more Loc data is added. Re-
garding the use of source factors, they help when
the localization data is non-existent or very limited,

3Scripts to create this data will be released, however the
data used itself does not grant us re-distribution rights.

however their benefits are smaller otherwise.
The Bleu scores measured on a news data set as

well as on the localization data sets show no degra-
dation from a baseline setting, indicating that the
additional data does not affect translation quality.
The exception is the #Loc-0 setting, in which the
model wrongly learns to end all localization sen-
tences with km and C tokens respectively, as seen
in the Conv data. Similarly to the previous results,
temp conversions are learned either correctly or not
at all while the distance ones show numerical ap-
proximation errors: When measuring exact match
in conversion (0.0 tolerance), the temperature ac-
curacy remains largely the same while the distance
accuracy drops by up to 30%.

Given the observation that Loc data is crucial, we
perform another set of experiments to investigate if
the Conv data is needed at all. Results are shown in
Figure 2. In light of the limited amount of real dis-
tinct conversions that we see in testing, we create
two additional challenge sets which use the same
linguistic data and replace the original conversions
with additional ones uniformly distributed w.r.t the
length in digits from 1 to 6. The results indicate
that conversion data is equally critical, and that the
conversion cannot be learned from the localization
data provided alone. The localization data rather
acts as a “bridge” allowing the network to combine
the two tasks it has learned independently.

4 Conclusions

We have outlined natural/formal language mixing
phenomena in the context of end-to-end localiza-
tion for MT and have proposed a data augmentation
method for learning unit conversions in context.
Surprisingly, the results show not only that a single
architecture can learn both translation and unit con-
versions, but can also appropriately switch between
them when a small amount of localization data is
used in training. For future work we plan to cre-
ate a diverse localization test suite and investigate
if implicit learning of low-level concepts such as
natural numbers takes place and if unsupervised
pre-training facilitates such learning.
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A Appendix

encoder-config:
act_type: relu
attention_heads: 8
conv_config: null
dropout_act: 0.1
dropout_attention: 0.1
dropout_prepost: 0.1
dtype: float32
feed_forward_num_hidden: 2048
lhuc: false
max_seq_len_source: 101
max_seq_len_target: 101
model_size: 512
num_layers: 4
positional_embedding_type:

fixed
postprocess_sequence: dr
preprocess_sequence: n
use_lhuc: false

decoder config:
act_type: relu
attention_heads: 8
conv_config: null
dropout_act: 0.1
dropout_attention: 0.1
dropout_prepost: 0.1
dtype: float32
feed_forward_num_hidden: 2048
max_seq_len_source: 101
max_seq_len_target: 101
model_size: 512
num_layers: 2
positional_embedding_type:

fixed
postprocess_sequence: dr
preprocess_sequence: n

config_loss: !LossConfig
label_smoothing: 0.1
name: cross-entropy
normalization_type: valid
vocab_size: 32302

config_embed_source: !
EmbeddingConfig

dropout: 0.0
dtype: float32
factor_configs: null
num_embed: 512

num_factors: 1
vocab_size: 32302

config_embed_target: !
EmbeddingConfig

dropout: 0.0
dtype: float32
factor_configs: null
num_embed: 512
num_factors: 1
vocab_size: 32302
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Abstract

Though people rarely speak in complete sen-
tences, punctuation confers many benefits to
the readers of transcribed speech. Unfortu-
nately, most ASR systems do not produce
punctuated output. To address this, we pro-
pose a solution for automatic punctuation that
is both cost efficient and easy to train. Our
solution benefits from the recent trend in
fine-tuning transformer-based language mod-
els. We also modify the typical framing of this
task by predicting punctuation for sequences
rather than individual tokens, which makes for
more efficient training and inference. Finally,
we find that aggregating predictions across
multiple context windows improves accuracy
even further. Our best model achieves a new
state of the art on benchmark data (TED Talks)
with a combined F1 of 83.9, representing a
48.7% relative improvement (15.3 absolute)
over the previous state of the art.

1 Introduction

Enabling computers to use speech as input has long
been an aspirational goal in the field of human com-
puter interaction. Recent advances have had dra-
matic impact across multiple domains (e.g. reliev-
ing medical professionals from having to transcribe
medical dictation (Edwards et al., 2017), improv-
ing real-time spoken language translation (Gu et al.,
2017), and affording convenience through conver-
sational interfaces like those in virtual personal
assistants (McTear et al., 2016)). For use cases that
require reading transcribed speech, however, it is
often still a challenge to recover meaningful clause
boundaries from disfluent, errorful utterances.

Humans rely on punctuation for readability, per-
haps because it lessens the burden of ambiguous
phrasing. Studies have found that removing punctu-
ation from manual transcriptions can be even more
detrimental to understanding than a word error rate

of 15% or 20% (Tündik et al., 2018). Reading
comprehension is also significantly slower with-
out punctuation (Jones et al., 2003). For down-
stream NLP models, the lack of clausal boundaries
can significantly decrease accuracy (e.g. a 4.6%
BLEU decrease in NMT; Vandeghinste et al. 2018).
This likely reflects the discrepancy between well-
segmented training corpora and ASR output.

To solve the lack of punctuation in ASR out-
put, we propose an automatic punctuation model,
which leverages the recent trend in unsupervised
pre-training (Devlin et al., 2019) and the parallel ar-
chitecture of transformer networks (Vaswani et al.,
2017). Unsupervised pre-training dramatically re-
duces the amount of labeled data required for su-
perior performance on this task. Additionally, the
model’s departure from a recurrent architecture al-
lows direct connections between all input tokens.
This enables the network to more easily model long-
distance dependencies (e.g. on one hand, ... on the
other, ...) for improved punctuation performance.
The departure from a recurrent architecture also
allows computations to be performed in parallel for
each layer with the speed of computations limited
by the number of layers rather than the number
of time steps (usually fewer). In addition to the
parallel nature of the hidden layers, our network
also predicts in parallel for all tokens in the input
simultaneously. This helps significantly speed up
inference compared with individual predictions for
each token. During training, the parallel predic-
tion task provides a richer signal compared with
a sequential task, thereby making more efficient
use of each example. Furthermore, advancing the
prediction window less than the window’s width
(e.g. steps of 20 with a window of 50) allows ag-
gregating multiple windows of context to predict a
token’s label. This allows the network to effectively
become its own prediction ensemble and boosts ac-
curacy further. Given that the aggregate predictions
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are independently obtained, these calculations too
can be performed in parallel.

2 Related Work

Our biggest departure from previous approaches
lies in the parallel nature of inference and the deep
bidirectional information flow of our model (for
more detail, see Devlin et al. 2019). This is in con-
trast with the vast majority of previous approaches
which use a variant of Recurrent Neural Network
architecture (Tundik et al., 2017; Vandeghinste
et al., 2018; Ballesteros and Wanner, 2016; Alumäe
et al., 2019; Szaszák, 2019; Öktem, 2018; Xu et al.,
2016; Pahuja et al., 2017; Tundik and Szaszak,
2018; Tündik et al., 2017; Tilk and Alumae, 2015;
Żelasko et al., 2018; Treviso and Aluı́sio, 2018).
This includes those that incorporate acoustic infor-
mation (B. Garg and Anika, 2018; Moro and Sza-
szak, 2017; Szaszák and Tündik, 2019; Nanchen
and Garner, 2019; Moró and Szaszák, 2017; Klejch
et al., 2016, 2017) and those that apply attention on
top (Tilk and Alumäe, 2016; Salloum et al., 2017;
Öktem et al., 2017; Kim, 2019; Juin et al., 2017).

Though non-sequential, several previous ap-
proaches use simpler network architectures (e.g.
DNNs (Yi et al., 2017; Che et al., 2016) or CNNs
(B. Garg and Anika, 2018; Che et al., 2016; Żelasko
et al., 2018)), which have less predictive power.
The handful of approaches that make use of Trans-
former architectures are not bidirectional (Chen
et al., 2020; Nguyen et al., 2019; Vāravs and Sal-
imbajevs, 2018; Wang et al., 2018). Our model
also differs from the above in that it leverages pre-
training to reduce training time and increase ac-
curacy. The one previous work that uses a pre-
trained bidirectional transformer (Cai and Wang,
2019) only predicts punctuation one token at a
time, which significantly increases both training
and inference time. It is also unable to aggregate
predictions across multiple contexts, limiting per-
formance.

3 Method

Architecture The network architecture can be
seen in Figure 1. The first component of
our network is a pre-trained language model
(RoBERTabase; Liu et al. 2019) employing the re-
cent deep bidirectional Transformer architecture
(Devlin et al., 2019; Vaswani et al., 2017). The net-
work’s input is a sequence of unpunctuated lower-
cased words tokenized using RoBERTa’s tokeniza-

tion scheme (see Liu et al. 2019 for more details).
We then add two additional linear layers after the
pre-trained network with each layer preserving the
fully-connected nature of the entire network. The
first linear layer maps from the masked language
model output space to a hidden state space for each
input token with parameters shared across tokens.
The second linear layer concatenates the hidden
state representations into a vector for the prediction
window which allows the tokens to interact arbi-
trarily within the window. We then apply batch nor-
malization (Ioffe and Szegedy, 2015) and dropout
(best results obtained with a rate of 0.2; Hinton
et al. 2012) prior to predicting punctuation marks
for all tokens in the window.

When aggregating predictions across contexts,
activations at the sequence layer are added for each
token prior to classification (see Figure 1 for visual-
ization). Prediction is performed in parallel during
both training and inference with the output size of
the final classifier being |classes| ∗ lengthwindow.
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Figure 1: The punctuation network takes as input a se-
quence of unpunctuated words tokenized in the same
manner as RoBERTa. It outputs predictions for these
sequences individually during training (layer On). For
validation and testing, however, these labels are aggre-
gated across overlapping context windows to obtain
the final punctuation predictions (layer Yn). Note that
while the pre-trained LM’s output begins as vocabulary
distributions, they cease to be so once the entire net-
work undergoes fine-tuning.
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Comma Period Question Overall
Models P R F P R F P R F P R F
DNN-A (Che et al., 2016) 48.6 42.4 45.3 59.7 68.3 63.7 — — — 54.8 53.6 54.2
CNN-2A (Che et al., 2016) 48.1 44.5 46.2 57.6 69.0 62.8 — — — 53.4 55.0 54.2
T-LSTM (Tilk and Alumae, 2015) 49.6 41.4 45.1 60.2 53.4 56.6 57.1 43.5 49.4 55.0 47.2 50.8
T-BRNN (Tilk and Alumäe, 2016) 64.4 45.2 53.1 72.3 71.5 71.9 67.5 58.7 62.8 68.9 58.1 63.1
T-BRNN-pre (Tilk and Alumäe, 2016) 65.5 47.1 54.8 73.3 72.5 72.9 70.7 63.0 66.7 70.0 59.7 64.4
Single-BiRNN (Pahuja et al., 2017) 62.2 47.7 54.0 74.6 72.1 73.4 67.5 52.9 59.3 69.2 59.8 64.2
Corr-BiRNN (Pahuja et al., 2017) 60.9 52.4 56.4 75.3 70.8 73.0 70.7 56.9 63.0 68.6 61.6 64.9
DRNN-LWMA (Kim, 2019) 63.4 55.7 59.3 76.0 73.5 74.7 75.0 71.7 73.3 70.0 64.6 67.2
DRNN-LWMA-pre (Kim, 2019) 62.9 60.8 61.9 77.3 73.7 75.5 69.6 69.6 69.6 69.9 67.2 68.6
RoBERTabase 76.9 75.4 76.2 86.1 89.3 87.7 88.9 87.0 87.9 84.0 83.9 83.9

Different Pre-trained Language Models
RoBERTalarge 74.3 76.9 75.5 85.8 91.6 88.6 83.7 89.1 86.3 81.3 85.9 83.5
XLNetbase 76.6 74.9 75.8 84.6 90.6 87.5 82.0 89.1 85.4 81.1 84.9 82.9
T5base 70.5 77.2 73.7 85.6 85.5 85.6 83.7 89.1 86.3 79.9 84.0 81.9
BERTbase 72.8 70.8 71.8 81.9 86.6 84.2 80.8 91.3 85.7 78.5 82.9 80.6
ALBERTbase 69.4 69.3 69.4 80.9 84.5 82.7 76.7 71.7 74.2 75.7 75.2 75.4
DistilRoBERTa 70.0 64.5 67.1 78.2 83.5 80.8 75.0 71.7 73.3 74.4 73.2 73.7

Table 1: Compared to previous approaches, our model achieves state of the art performance on the reference
transcripts of the TED Talks dataset as measured by precision (P), recall (R), and F-1 score (F). Experimental
results with different pre-trained language models are included below for comparison with the best RoBERTabase
model.

Training Schedule It is worth noting that we use
only the TED Talks dataset described below for
training but enjoy significant benefits from a sizable
pre-training corpus (Liu et al., 2019). Although
prediction is performed on multiple tokens at once,
the same number of training samples are generated
from the corpus by moving the sliding window one
token at a time over the input. To perform gradient
descent, we use LookAhead (Zhang et al., 2019)
with RAdam (Liu et al., 2020) as the base optimizer.
We use a simple cross-entropy function to calculate
the loss for each token’s classification prediction.

Our best performing model (see Table 1) uses
a prediction window size of 100, a final-layer
dropout of 0.2, and a hidden-state space of dimen-
sionality 1500. The top two linear layers (hence-
forth referred to as the “top layers”) are initially
trained from scratch while the transformer core
remains frozen. Then, having selected the model
version with the lowest validation loss from train-
ing the top layers, the transformer core is unfrozen,
and we fine-tune the parameters of the entire net-
work. We then select the model version with the
lowest validation loss to prevent overfitting.

We train the top layers for nine epochs with
a mini-batch size of 1000 (using 100-token se-
quences) while the transformer is frozen. The
lowest validation loss for the top layers is usually
achieved around the sixth epoch. We then unfreeze
the transformer and fine-tune the entire network for

three more epochs with a mini-batch size of 250.
We typically observe the lowest validation loss mid-
way through the first epoch while fine-tuning. It is
worth noting that a highly competitive model (82.6
overall F1) can be trained with just 1 epoch each
for the top layers and fine-tuning. This training
can be completed in slightly less than 1 hour on
a p3.16xlarge AWS instance (with 8x Tesla V100
GPUs).

For the LookAhead optimizer, we use a sync
rate of 0.5, and a sync period of 6. The RAdam
optimizer—used as the model’s base optimizer—
has its learning rate set to 10−5, β1 = 0.9, β2 =
0.999, ε = 10−8. We do not use weight decay.

Data To train the network and evaluate its per-
formance (both at test and validation time), we use
the IWSLT 2012 TED Talks dataset (Cettolo et al.,
2012). This dataset is a common benchmark in au-
tomatic punctuation (e.g. Kim 2019) and consists
of a 2.1M word training set, a 296k word valida-
tion set, and a 12.6k word test set (for reference
transcription, 12.8k for ASR output). Each word is
labeled with the punctuation mark that follows it,
yielding a 4-class classification problem: comma,
period, question mark, or no punctuation. The class
balance of the training dataset is as follows: 85.7%
no punctuation, 7.53% comma, 6.3% period, 0.47%
question mark.
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4 Results

The results of our best performing model relative to
previous results published on this benchmark can
be found in Table 1. Additionally, we conducted a
number of ablation experiments manipulating vari-
ous aspects of the architecture and training routine.
In providing accuracy comparisons, all results in
this section are reported in terms of the absolute
change in the overall F1 measure.

In place of the pre-trained RoBERTabase lan-
guage model, which provided the best result, we
also evaluated (in order of decreasing performance
relative to RoBERTa as implemented by Wolf et al.
(2020)1): XLNetbase (-1.0%; Yang et al. 2020),
T5base (-2.1%; Raffel et al. 2019), BERTbase (-
3.4%; Devlin et al. 2019), and ALBERTbase (-8.5%;
Lan et al. 2020). Full results from these models can
be seen at the bottom of Table 1. The performance
benefit of RoBERTabase over BERTbase is likely
due to the significant increase in pre-training cor-
pus size. The lower performance of ALBERTbase
may be due to the sharing of parameters across lay-
ers. It is interesting to note that XLNetbase provides
higher recall for periods and question marks and
T5base for commas and question marks, but both
sacrifice significant precision to achieve this.

In addition to the LookAhead optimizer using
RAdam as its base, we also evaluated: LookAhead
with Adam (-1.5%), RAdam alone (-1.6%), and
Adam alone (-2.9%; Kingma and Ba 2017). Given
the class imbalance inherent in the dataset between
the no punctuation class and all the punctuation
marks, we tested focal loss (Lin et al., 2018), class
weighting, and their combination, but found that
none outperformed simple cross-entropy loss.

Perhaps the most noteworthy result is the com-
parison between parallel prediction (described
above) and sequential prediction, wherein the for-
ward pass predicts punctuation for one token at
a time using a context window centered on that
token. Sequential prediction requires longer in-
ference times (>15x) yet yields only a marginal
performance benefit (2.2%) relative to a parallel
prediction without aggregation across multiple con-
texts. Ensembling predictions over multiple con-
texts overcomes the performance gap, while retain-
ing an advantage with respect to inference time.
Compared to the self-ensemble approach, sequen-
tial prediction is >4x slower and 5.4% less accu-

1Available from https://github.com/
huggingface/transformers

Predictions
per token

F1
Overall

CPU
Runtime

GPU
Runtime

1 76.3 1x 1x
2 79.4 1.8x 1.1x
3 81.8 2.6x 1.2x
6 83.2 5.2x 1.5x
9 83.9 7.7x 1.9x

Processor —
18x Intel Xeon
(c5.18xlarge)

8x Tesla V100
(p3.16xlarge)

Table 2: Aggregating multiple parallel predictions ex-
hibits a tradeoff between runtime and accuracy. Run-
time results on the TED test set are presented relative to
single predictions separately on CPU and GPU for ease
of reading. To relate the two, the CPU single predic-
tions are 9.4x slower than GPU. All runtime estimates
are obtained from the mean of 10 runs.

rate.
A less obvious choice must be made between a

single parallel prediction and multiple aggregated
predictions, given the additional runtime of multi-
ple predictions (see Table 2 for details). For our
purposes, the 7.6% improvement is worth the in-
crease in inference time, which is sub-linear given
GPU parallelization but still appreciable. While
our best method sums activations from different
contexts to obtain the aggregate predictions, we
also tested adding normalized probabilities across
classes and then renormalizing, but we found it
resulted in slightly worse performance (-0.3%).

In addition to the RoBERTabase model whose
results are reported here, we also trained with a
RoBERTalarge model. There was no appreciable
performance difference between the two sizes (the
large being -0.4% worse) however the large model
incurred a significant slowdown (≈1.5x). This may
imply that the base model size is adequately pow-
ered for punctuation tasks, at least on manually
transcribed English datasets similar to the bench-
mark. This is supported by the findings of Kovaleva
et al. (2019), who found BERTbase to be overpa-
rameterized for most downstream tasks, implying
RoBERTalarge would be extremely overparameter-
ized. A smaller pre-trained language model option
is DistilRoBERTa, a knowledge distilled version
of RoBERTa (analogous to DistilBERT: Sanh et al.
2020). The DistilRoBERTa network is 12% smaller
and performs inference ≈1.2x faster, but sacrifices
9.1% in accuracy on the benchmark.

The previous state of the art approach was a
multi-headed attention network on top of multi-
ple stacked bidirectional GRU layers (Kim, 2019).
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Given the recurrent nature of the GRU layers, the
network is subject to the shortcomings of sequen-
tial computation discussed in the Introduction. Our
findings illustrate yet another language task where
transformers outperform previous recurrent neural
network approaches.

Our approach enjoys a 48.7% relative improve-
ment (15.3 absolute) over the previous state of the
art (Kim, 2019). Given the ablation results pre-
sented above, we attribute the performance gains to
the deeply bi-directional transformer architecture,
the benefit of leveraging RoBERTa’s pre-trained
language model trained on ≈ 33B words, and the
aggregation of multiple prediction contexts for ro-
bust inference. Some performance gain may also
be attributed to the addition of an encoding layer
trained solely on the punctuation task.

One of the more notable findings is that the non-
recurrent nature of the entire network allows for a
large degree of parallelization resulting in a more
competitive runtime compared to previous recur-
rent approaches. While source code was not openly
available for benchmarking runtime against Kim
(2019), we did compare against a similar approach
from Tilk and Alumäe (2016)2, which was roughly
78.8x slower on GPUs and 1.2x slower on a CPU,
when evaluating the TED Talks test set.

The results presented here have not benefited
from any rigorous hyperparameter tuning (e.g. grid
search or Bayesian optimization). We leave that
to future work given that a rigorous systematic
approach may yield appreciable improvements in
accuracy.

5 Conclusion

We have presented a state of the art automatic punc-
tuation system which aggregates multiple predic-
tion contexts for robust inference on transcribed
speech. The use of multiple prediction contexts, un-
supervised pre-training, and increased parallelism
makes it possible to achieve significant perfor-
mance gains without increased runtime or cost.

On a different dataset, Boháč et al. (2017) re-
ported human agreement of around 76% for punc-
tuation location and 70% for use of the same punc-
tuation mark. Although we have yet to make a di-
rect comparison, it’s possible our model is already
competitive with human performance on this task.
Future work will explore how this performance

2The source code is available from https://github.
com/ottokart/punctuator2

translates in terms of readability and whether it is
sufficient to compensate for some amount of word
error, as suggested by Tündik et al. (2018).
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Recurrent Neural Network with Attention Mecha-
nism for Punctuation Restoration. pages 3047–
3051.

Marcos Vinı́cius Treviso and Sandra Maria Aluı́sio.
2018. Sentence Segmentation and Disfluency Detec-
tion in Narrative Transcripts from Neuropsycholog-
ical Tests. In Aline Villavicencio, Viviane Moreira,
Alberto Abad, Helena Caseli, Pablo Gamallo, Carlos
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Abstract

Translationese is a phenomenon present in
human translations, simultaneous interpreting,
and even machine translations. Some trans-
lationese features tend to appear in simulta-
neous interpreting with higher frequency than
in human text translation, but the reasons for
this are unclear. This study analyzes trans-
lationese patterns in translation, interpreting,
and machine translation outputs in order to
explore possible reasons. In our analysis we
(i) detail two non-invasive ways of detecting
translationese and (ii) compare translationese
across human and machine translations from
text and speech. We find that machine trans-
lation shows traces of translationese, but does
not reproduce the patterns found in human
translation, offering support to the hypothesis
that such patterns are due to the model (human
vs. machine) rather than to the data (written vs.
spoken).

1 Introduction

In recent years, a growing body of work has pointed
to the presence, across different genres and do-
mains, of a set of relevant linguistic patterns with
respect to syntax, semantics and discourse of hu-
man translations. Such patterns make translations
more similar to each other than to texts in the same
genre and style originally authored in the target
language. These patterns are together called “trans-
lationese” (Teich, 2003; Volansky et al., 2015).

Linguists classify translationese in two main cat-
egories: (i) source’s interference, or shining-though
as put forward by Teich (2003). For example, a
translation replicating a syntactic pattern which
is typical of the source language, and rare in the
target language, displays a typical form of shining-
through; (ii) aherence or over-adherence to the tar-
get language’s standards, that is normalisation. For
example, translating a sentence displaying marked

order in the source with a sentence displaying stan-
dard order in the target it a typical example of over-
normalization. Nonetheless, translationese’s main
causes remain unclear (Koppel and Ordan, 2011;
Schmied and Schäffler, 1996).

Translationese displays different patterns de-
pending on the translation’s mode and register: a
typical example is simultaneous interpreting, which
shows translationese patterns distinct from those
observed in written translations (Bernardini et al.,
2016). We can interpret differences as either (i) an
effect of the limitations of the human language ap-
paratus that constrain translations, (ii) an inevitable
effect of the structural and semantic differences be-
tween languages; or (iii) a combination of the two.
To test these hypotheses, it is common to compare
human translations (HT) produced under different
circumstances, e.g. written translation versus simul-
taneous interpreting, following the assumption that,
if translationese is a product of human cognitive
limitations, translations produced under higher cog-
nitive constrains should present more evident trans-
lationese symptoms. Machine translation (MT)
does not have any human cognitive limitation, but
current state-of-the-art systems learn to translate us-
ing human data, which is affected by translationese.
On the other hand, unlike human translators, most
standard modern MT systems still work at the level
of individual sentences (rather than document or
dialog) unaware of the surrounding co-text and con-
text. Taking these observations into account, this
paper explores the following research questions:

Q1 . Does machine translation replicate the
translationese differences observed between text
and speech in human translation?

Q2 . Do different machine translation architec-
tures learn differently enough to display distinctive
translationese patterns?

We study translationese in speech and writ-
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ten text by comparing human and machine trans-
lations to original documents. Specifically, we
present a comparison between three MT architec-
tures and the human translation of spoken and writ-
ten language in German and English, exploring the
question of whether MT replicates the differences
observed in human data between text-based and
interpreting-based translationese.

While some aspects of translationese tend to ap-
pear in simultaneous translation of speech with
higher frequency than in translation of text, it is
unclear whether such patterns are data- or model-
dependent. Since machine translation does not
have the cognitive limitations humans have (in
terms of memory, online processing, etc.), MT
systems should fail to replicate the differences be-
tween text and speech translationese observed in
human translations, if such differences are due to
the limits of human cognitive capacities.

Assuming that MT engines are trained only on
translated texts and not on simultaneous interpret-
ing, so that they cannot simply learn to mimic in-
terpreting’s translationese signal, the differences
between text and speech translationese observed in
human translation vs. interpreting are not expected
to the same extent in MT if they are an effect of
human cognitive limitations. If, on the other hand,
translationese patterns in text and speech are due to
characteristics inherent in the two modes of expres-
sion, MT systems’ translationese patterns should
mimic human translationese patterns.

The paper is organized as follows. Section 2
presents related work. Section 3 introduces the
translationese measures and Section 4 the data and
translation systems used in our study. Section 5
presents our results, comparing human with ma-
chine translations and comparing MT architectures
among themselves. Section 6 concludes the paper.

2 Related Work

Translationese seems to affect the semantic as well
as the structural level of text, but much of its effects
can be seen in syntax and grammar (Santos, 1995;
Puurtinen, 2003). An interesting aspect of trans-
lationese is that, while it is somewhat difficult to
detect for the human eye (Tirkkonen-Condit, 2002),
it can be machine learned with high accuracy (Ba-
roni and Bernardini, 2006; Rubino et al., 2016).
Many ways to automatically detect translationese
have been devised, both with respect to textual
translations and simultaneous interpreting (Baroni

and Bernardini, 2006; Ilisei et al., 2010; Popescu,
2011). Simultaneous interpreting has shown spe-
cific forms of translationese distinct from those
of textual translation (He et al., 2016; Shlesinger,
1995), with a tendency of going in the direction
of simplification and explicitation (Gumul, 2006).
Due to the particularly harsh constraints imposed
on human interpreters, such particularities can be
useful to better understand the nature and causes
of translationese in general (Shlesinger and Ordan,
2012).

The features of machine translated text depend
on the nature of both training and test data; and
possibly also on the approach to machine trans-
lation, i.e. statistical, neural or rule-based. The
best translation quality is achieved when the train-
ing parallel corpus is in the same direction as the
test translation, i.e. original-to-translationese when
one wants to translate originals (Lembersky et al.,
2013). In this case, more human translationese fea-
tures are expected, as systems tend to learn to repro-
duce human features. The effects of translationese
in machine translation test sets is also studied in
Zhang and Toral (2019a). In fact, texts displaying
translationese features seems to be much easier to
translate than originals, and recent studies advise
to use only translations from original texts in or-
der to (automatically) evaluate translation quality
(Graham et al., 2019; Zhang and Toral, 2019b). By
contrast, Freitag et al. (2019) show a slight pref-
erence of human evaluators to outputs closer to
originals; in this case the translation is done from
translationese input, because, as noted by Riley
et al. (2019), the best of the two worlds is not possi-
ble: one cannot create original-to-original corpora
to train bias-free systems. Aranberri (2020) ana-
lyzed translationese characteristics on translations
obtained by five state-of-the-art Spanish-to-Basque
translation systems, neural and rule-based. The au-
thor quantifies translationese by measuring lexical
variety, lexical density, length ratio and perplex-
ity with part of speech (PoS) language models and
finds no clear correlation with automatic translation
quality across different test sets. The results are
not conclusive but translation quality seems not to
correlate with translationese. Similar results are ob-
tained by Kunilovskaya and Lapshinova-Koltunski
(2019) when using 45 morpho-syntactic features
to analyze English-to-Russian translations. Van-
massenhove et al. (2019) noted that statistical sys-
tems reproduce human lexical diversity better than
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neural systems, for English–Spanish and English–
French even if transformer models, i.e. neural, are
those with the highest BLEU score. However, their
transformer model did not use subword segmenta-
tion putting a limit on the plausible lexical diversity
it can achieve.

In our study, we focus on English (en) and Ger-
man (de) texts and compare the presence of trans-
lationese in human translations and interpreting,
and in machine translations obtained by in-house
MT engines. Differently to Aranberri (2020), we
develop the MT engines to have control on the train-
ing data, since the aim of this work is not to study
how translationese features correlate with trans-
lation quality, but the presence of translationese
features themselves. To measure them, we use
two metrics: part-of-speech (PoS) perplexity and
dependency parsing distances. We use them as
complementary measures, perplexity to model PoS
sequences of linguistics objects in sentences (lin-
ear dimension), and dependency distance to model
their syntactic depth (hierarchical dimension).

3 Translationese Measures

3.1 Part-of-Speech Perplexity

Our first measure to detect translationese is based
on the assumption that a language model is able to
capture the characteristic PoS sequences of a given
language . Since grammatical structures between
languages differ, a language model trained on Uni-
versal Part of Speech sequences of English will
on average display less perplexity if exposed to an
English text than if exposed to a German text. Fol-
lowing the same logic, if two models, one trained
on English and one on German, were to progress
through the PoS sequences of an English transla-
tion showing strong German interference, we could
expect the English model’s perplexity scores to rise,
while the German model’s perplexity would stay
relatively low (Toral, 2019). On the other hand, if
the English translation were displaying normalisa-
tion, we would expect the English model to display
a lower perplexity than the German one. Perplex-
ity is defined as the exponentiation of the entropy
H(p):

2H(p) = 2−
∑

x
p(x) log2 p(x) (1)

where p(x) is the probability of a token x (possibly
given its context), and − log2 p(x) is the surprisal
of x. While surprisal measures in bits the uncer-
tainty in a random variable taking a certain value

x, entropy measures the weighted average surprisal
of the variable.

3.2 Universal Dependencies
A syntactic analysis examines how the elements of
a linguistic sequence relate to each other; for our
purposes, those elements are words of a sentence.
We employ the framework of Universal Depen-
dencies (UD), which expresses syntactic relations
through dependencies: each element depends on
another element, its head (Nivre et al., 2019). In
UD, in contrast to most other dependency frame-
works, the head is the semantically more salient
element and the dependent modifies the head. The
top-level head is the root of a sequence, which is
typically the main verb of the matrix clause. For
instance, in the sentence The great sailor is waiv-
ing, the and great modify and depend on sailor,
while sailor and is modify and depend on waiving,
which is the root of the sentence. Figure 1 illus-
trates a dependency analysis of this example. The
UD framework aims to be universal, i.e. suitable
for all of the world’s languages, and there are a
large number of resources and tools available.1

An analysis of dependency lengths could help to
identify translation artifacts. If a source language
is shining-through, the translation’s dependency
lengths will be closer to the source language’s aver-
age; and vice versa for normalisation. Explicitation
will lead to longer, and simplification to shorter
distances compared to originals.

Figure 1: Visualizing a simple sequence in the Uni-
versal Dependencies framework, incl. dependency dis-
tances (red numerals below a dependency arch/edge).

We use spaCy’s parser2 to parse our corpora.
An evaluation of 2000 head tags taken from ran-
domly sampled sentences gives an accuracy rate of
91.2% and 93.6% for the German spoken and writ-
ten originals, respectively, and 95.0% and 95.8%
for English, as evaluated by a senior linguist. Sen-
tences shorter than 3 tokens were excluded, as such
sequences typically lack a verb and thus a root.

1See https://universaldependencies.org/
for details.

2https://spacy.io
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We then use those parses for a macro-analysis of
the syntactic structures, viz. an analysis of average
summed distances. This analysis measures for each
word the distance in words to its head. In Figure 1,
the distance from the to its head is 2, from great to
its head, it is 1. The sum of distances for the exam-
ple is 6. In the following, we average the summed
distances per sentence length. The measure can be
interpreted as a proxy of (cumulative) processing
difficulty/complexity of a sequence, where long dis-
tance structures are regarded as more complex than
structures with shorter distances. Particle verbs il-
lustrate this. In Mary picked the guy that we met
the other day up, the particle up has a long distance
to its head and the sequence is relatively hard to
process. This contrasts to Mary picked up the guy
that we met the other day, where the distance be-
tween particle and verb is short, which reduces the
cognitive load. This dependency-based measure is
taken from Gibson et al. (2019) and Futrell et al.
(2015) and builds on work by Liu (2008).

4 Experimental Settings

4.1 Corpora

Originals and Human Translations. We used
human written texts and speech transcriptions to
train and test our language models and to extract
part of our syntactic distance measures. We use
datasets that belong to the same genre and register
but to different modalities: transcriptions of Euro-
pean Parliament speeches by native speakers and
their interpreted renditions (EPIC-UdS, spoken),
the written speeches and their official translations
(Europarl-UdS, written) (Karakanta et al., 2018).
Table 1 summarizes the number of sentences and
words for each of the six categories:

1. Original written English
2. Original written German
3. Original spoken English (transcript)
4. Original spoken German (transcript)
5. English to German translations
6. English to German interpreting (transcript)

For each corpus, we train the PoS models on
3000 random sentences and evaluate on the remain-
ing data. We tokenized our data using NLTK (Bird
and Loper, 2004) and performed universal PoS tag-
ging via spaCy. We train our language models
using a one-layer LSTM with 50 units (Chollet
et al., 2015). Due to the small dimensions of the

vocabulary (17 PoS), 5 iterations over 3000 sen-
tences suffice to converge. In our experiments, we
measure the average perplexity of each model on
unseen human data from of each category, and on
the translations produced by three MT architectures
in two different settings (see Section 4.2).

MT Training Data. In order to adapt our ma-
chine translation engines to the previous modalities
as much as possible, we gather two different cor-
pora from OPUS (Tiedemann, 2012), one of them
text-oriented (Ct) and the other speech-oriented
(Cs). The distribution of their sub-corpora is shown
in Table 2. Note that we do not include Europarl
data here so that there is no overlap between MT
training and our analysis data.

Note also that our speech data (TED talks and
subtitles) is still made up from translations and not
simultaneous interpreting. This is important since
it prevents MT systems from simply mimicking
interpreting’s pronounced translationese.

All datasets are normalised, tokenized and true-
cased using standard Moses scripts (Koehn et al.,
2007) and cleaned for low quality pairs. Dupli-
cates are removed and sentences shorter than 4
tokens or with a length ratio greater than 9 are dis-
carded. We also eliminate sentence pairs which are
not identified as English/German by langdetect3

and apply basic cleaning procedures. With this,
we reduce the corpus size by more than half of
the sentences. In order to build balanced corpora
we limit the number of sentences we used from
ParaCrawl to 5 million and from Open Subtitles
to 10 million. With this, both Ct and Cs contain
around 200 million tokens per language. Finally,
a byte-pair-encoding (BPE) (Sennrich et al., 2016)
with 32 k merge operations trained jointly on en–
de data is applied before training neural systems.
After shuffling, 1,000 sentences are set aside for
tuning/validation.

4.2 Machine Translation Engines

We train three different architectures, one statistical
and two neural, on the corpora above.

Phrase-Based Statistical Machine Translation
(SMT). SMT systems are trained using standard
freely available software. We estimate a 5-gram
language model using interpolated Kneser–Ney dis-
counting with SRILM (Stolcke, 2002). Word align-
ment is done with GIZA++ (Och and Ney, 2003)

3https://pypi.org/project/langdetect/

283



Europarl-UdS EPIC-UdS
lines tokens lines tokens

German Translation 137,813 3,100,647 German Interpreting 4,080 58,371
Written German 427,779 7,869,289 Spoken German 3,408 57,227
Written English 372,547 8,693,135 Spoken English 3,623 68,712

Table 1: Corpus collections used to train our language models: Europarl-UdS (written) and EPIC-UdS (spoken).
German translation and interpreting are both from English.

lines de tokens en tokens Ct Cs

CommonCrawl 2,212,292 49,870,179 54,140,396 3 3

MultiUN 108,387 4,494,608 4,924,596 3 3

NewsCommentary 324,388 8,316,081 46,222,416 3 3

academia career limiting moves Rapid 1,039,918 24,563,476 148,360,866 3 3

ParaCrawl-5M 5,000,000 96,262,081 103,287,049 3 7

TED 198,583 3,833,653 20,141,669 7 3

OpenSubtitles-10M 10,000,000 85,773,795 93,287,837 7 3

Total clean Speech 13,379,441 187,551,444 197,175,542 7 3

Total clean Text 9,121,710 198,340,602 207,434,038 3 7

Table 2: Text-oriented (Ct) and speech-oriented (Cs) corpora used for training the MT systems.

and both phrase extraction and decoding are done
with the Moses package (Koehn et al., 2007). The
optimization of the feature weights of the model is
done with Minimum Error Rate Training (MERT)
(Och, 2003) against the BLEU (Papineni et al.,
2002) evaluation metric. As features, we use the
language model, direct and inverse phrase probabil-
ities, direct and inverse lexical probabilities, phrase
and word penalties, and lexicalized reordering.

The neural systems are trained using the
Marian toolkit (Junczys-Dowmunt et al., 2018)
in a bidirectional setting {en,de}↔{de,en}:

RNN-Based Neural Machine Translation
(RNN). The architecture consists of a 1-layer
bidirectional encoder with complex GRU units (4
layers) and a decoder also with complex GRUs (8
layers). The tied embeddings have a dimension
of 512 and hidden states with a size of 1024,
using the Adam optimizer (Kingma and Ba, 2015)
with β1=0.9, β2=0.98 and ε=1e-09 and a growing
learning rate from 0 to 0.0003. Label (0.1) and
exponential smoothing, dropout of 0.1 and layer
normalisation are also applied.

Transformer Base Neural Machine Translation
(TRF). We use a base transformer architecture
as defined in Vaswani et al. (2017), that is, a 6-

layer encoder–decoder with 8-head self-attention, a
2048-dim hidden feed-forward, and 512-dim word
vectors. Optimization algorithm, dropout, smooth-
ings and learning rate (with warmup till update
16,000) are the same as for RNN.

5 Experimental Results

Below we present the translationese characteristics
in the different modalities found in our study.

5.1 Human Translationese

5.1.1 Perplexity
The PoS perplexity scores of our language mod-
els on human data shows that, as expected, each
model’s perplexity is at its lowest when confronted
with data from the same category. Since the amount
of data differs among modalities, we checked that
10 independent partitions of the data lead to the
same results. Translation and interpreting models
are least perplexed by unseen instances of their own
categories, and are not confused by original written
or spoken data: translation and interpreting display
indeed detectable and idiosyncratic patterns.

Figure 2 shows perplexity scores in a matrix
where the x-axis reflects the data on which the lan-
guage models have been trained, and the y-axis
reflects the partition of data on which the PoS mod-
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Figure 2: Perplexity of each universal PoS language
model (x-axis) on unseen data from each category (y-
axis).

els are tested. The diagonal corresponds to train-
ing and testing in the same modality and language
and, consequently, shows the lowest perplexities
as said before. Leaving the diagonal of the matrix
aside, we see that German translations are least per-
plexing for the model trained on written German,
and vice-versa, written German sequences are least
perplexing for the model trained on German trans-
lation. The German translation model displays its
highest perplexity on English, and the written En-
glish model is more perplexed by German transla-
tions than by German originals. These observations
seem to point away from shining-through, and to
point instead towards the presence of normalization
in German translation and interpreting.

Interpreting differs from translation. While Ger-
man translation sequences are of low-perplexity for
the written German model, German interpreting
sequences are quite perplexing for the spoken Ger-
man model, and in general present higher levels of
perplexity than translation for all German models.
Unlike German translation, the interpreting model
returns high perplexity on all datasets except its
own. This particularity of interpreting data was pre-
viously noted (Bizzoni et al., 2019) and ascribed to
structural over-simplification, as a possible effect
of the cognitive pressure on interpreters.

5.1.2 Syntax: Dependency Length

The corresponding analysis for our syntax measure
is presented in Figure 3, the top left and top cen-
ter plots. For written spoken data in both German
and English, the summed dependency distances in-
crease as sentence lengths increase, as one would

expect. Translations from English into German
are slightly less complex than German originals.
The same applies to English–German interpreting.
This is in contrast with translations from German
into English, that are somewhat more complex than
the English originals. For German–English inter-
preting, there is no difference to the originals. Ar-
guably, the fact that English-to-German transla-
tions are less complex than German originals and
that German-to-English translations are more com-
plex than English originals is an artifact of source
language shining-through. Notice that discrepan-
cies between curves are more evident for long sen-
tences, and that sentences in spoken texts are sys-
tematically shorter than in written text.

5.2 Human vs. Machine Translationese

Effects of translationese are expected in MT out-
puts as long as the systems are trained with human
data which is rich in translationese artifacts. In
this section, we compare the translationese effects
present in human translations with those present
in TRF translations, the state-of-the-art MT archi-
tecture. For comparison, our bidirectional TRF
trained with text-oriented data achieves a BLEU
score of 35.5 into English and 38.1 into German
on Newstest 2018, and 33.0 and 36.2 respectively
when trained with speech-oriented data. MT sys-
tems have been trained using the corpora described
in Table 2. Data has not been classified according
to translationese, but one can assume4 that most of
the corpora will be original English. This would
create a bias towards human-like translationese in
German translations.

The single translationese feature that seems to
be most characteristic of the output of our MT
model is structural shining-through, a character-
istic present in human translations, but that appears
to become particularly relevant in various MT out-
puts, specially the ones translating German written
modality into English. Figure 4 shows low per-
plexities when the written German language model
is used on the translated text into English (5.9 vs.
7.3 for the English model on the English transla-
tion). According to the MT training data distribu-
tion, this feature cannot be due to data biases but
to the MT architecture itself. At the same time,

4Riley et al. (2019) quantified the amount of original Ger-
man texts in the WMT18 data with a 22%. Their corpora
only differ from ours by lacking Europarl and by including in
addition TED talks and OpenSubtitles. The authors report an
F1=0.85 for their classification.
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Figure 3: Averaged summed dependency distances, y-axis, per sentence length, x-axis, for German HTs (top left)
and for English HTs (top center). The same incl. HTs and MTs for translations of written English to German
(top right), spoken English to German (bottom left), written German to English (bottom center), and for spoken
German to English (bottom right).

target language normalisation, which is a promi-
nent translationese feature in human translations,
appears less evident in our MT output. In this case,
normalisation is only slightly more prominent in
translations into German with a perplexity of 6.9 in
translated text and 7.0 in translated speech, where
translations into English score 7.3 and 6.9 respec-
tively. We also checked if the content of the MT
training data is relevant for the conclusions and
might bias the comparison with interpretings and
translations for instance. To this end, we use the
text-oriented MT engine to translate speech, and
the speech-oriented MT engine to translate text.
In our experiments, we reach equivalent perplexi-
ties for written text data whichever engine we use
but, for speech, perplexities are in general higher
when the text-oriented MT is used. This could
be expected, but we attribute the noticeable effect
only on spoken data due to its completely different
nature.5

5Whereas clean transcriptions as TED talks are used to
train our speech-oriented engines, Europarl data include many
speech-distinctive elements such as hesitations, broken sen-
tences and repetitions: but / is / euh what/ what’s most difficulty

Possibly due to the larger presence of shining-
through, machine translations from English to Ger-
man appear to behave quite differently from ma-
chine translations from German to English. While
differences due to the source and target language
naturally exist in human translations, the MT
output appears more sensitive to such variations.
Summed parse tree distance Figure 3 show how
TRF outputs are more complex than English origi-
nals and translations/interpretings but have a simi-
lar degree in the German counterparts. We found
that machine translation seems to over-correct
translationese effects, again not following the char-
acteristics of training data.

5.3 Translationese across MT Architectures

The previous section summarizes the differences
between a state-of-the-art MT system and human
translations/interpretings, but one could expect dif-
ferent behaviors for other architectures. In the fol-
lowing, we present a detailed analysis of each ar-

bringing in prisoners from Guantánamo because we see them
to be a security euh risk.
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Figure 4: Perplexity per language and mode. Language: German to English and English to German. Mode: written
and spoken.

chitecture for our two measures independently.

5.3.1 Perplexity
The results for PoS perplexities are illustrated in
Figure 4.

Results on SMT. German language models re-
turn on average higher perplexities on SMT than
English models, and translations into English are
on average less perplexing than translations into
German, which hints at English to German shining-
through. The observed absence of shining-through
in the human data confirms this hypothesis, since
our German translation and interpreting models are
highly perplexed by SMT data, indicating that this
kind of translation presents structural patterns that
differ from human translationese. It also differs
from neural systems in the sense that SMT seems
to better reproduce the structure of the MT training
corpus. SMT is acknowledged to translate more
literally, while NMT tends to be more inspirational,
and this trend is observed in our setting too.

Results on RNN. English models show higher
perplexities when tested on any translated Ger-
man than when tested on translated English, and
German models show more perplexity for German
translations than for English ones. German trans-
lation and interpreting models reverse the pattern,
showing lower perplexity on German translations
than on English translations. This seems to point
to a more complex phenomenon, possibly a mix
of shining-through and normalization, but it seems
to be less perplexing for the models trained on
translation and interpreting. RNN’s translation pat-
terns are clearly closer to human translationese than
SMTs.

Results on TRF. While RNN data attains the
lowest average perplexity, our Transformer man-

ages to attain the lowest single scores —reaching in
some cases lower perplexities than the ones elicited
by human equivalents. Consistently, the highest
TRF perplexities are lower than the highest perplex-
ities of the other systems. The single model display-
ing the lowest perplexity on this data is German
Translation, followed by written German, while
spoken German shows the highest perplexity, fol-
lowed by German Interpreting. Written German
shows low-level perplexities on German transla-
tions, in accordance with the German translation
model; but also lower perplexities on English trans-
lations, which instead spark significant perplexities
in the German translation model. This behavior
seems to point to a “stronger than human” shining-
through of German into English, which makes En-
glish translations less surprising for German than
for English but perplexes a model trained on the
patterns of human translations. Models trained on
spoken data also appear more perplexed than mod-
els trained on written data, hinting at a presence
of “written patterns” in speech translation that does
not appear in human data.

5.3.2 Syntax: Dependency Length
The results for the syntactic macro-analysis of de-
pendency lengths are illustrated in Figure 3 (top
right and all bottom plots).

Results on SMT. Similarly to the trends ob-
served with perplexities, the SMT translations di-
verge the most of all models. Translations into Ger-
man of English speech and text lack the complexity
of the German originals and are even considerably
less complex than human interpreting/translation.
Translations into English of German speech are
also less complex than the HTs, in contrast to other
models. The model is only in line with human
translations and other models when it comes to

287



translations of German text.

Results on RNN. Overall, RNN translations
come out really well for this measure, meaning
that they are able to mimic human outputs. Transla-
tions of English texts into German are in line with
German originals, translation of English speech is
slightly more complex than the HTs. Translations
of German speech and texts into English are very
close to the HTs.

Results on TRF. The TRF translations of En-
glish texts into German come out really well, i.e.
close to the HTs – the TRF comes closest of all
models here. Translations of English speech also
comes close to the HTs. However, TRF translations
of German speech into English is overly complex
in comparison to the HTs. Translations of German
texts are slightly more complex than the HTs.

6 Conclusions

Crossing PoS perplexity scores and syntactic de-
pendency lengths, we draw some conclusions about
the difference between human and machine struc-
tural translationese in text and speech. We sum-
marize our findings as preliminary answers to the
questions posed in the Introduction.

Q1. The structural particularity displayed by
human interpreting is not replicated by MT mod-
els: machine translation of spoken language is not
as marked as human interpreting. Human writ-
ten translations are similar to comparable originals,
while interpreting transcripts appear different from
all other datasets, at least based on our measures.
This feature fails to appear in any of the machine
translations. If we look at MT models’ outputs
going from SMT to TRF, we see that written lan-
guage perplexity for the target decreases, without
getting smaller than the human “lower bound”. For
spoken language, perplexity in MT seems to outdo
human levels with ease: for example, TRF reaches
7.2 where human perplexity is 12 (English to Ger-
man Interpreting). This apparent improvement on
speech-based data could confirm the idea that the
special features of interpreting depend on the cog-
nitive overload of human translators rather than to
a systematic difficulty of translating speech.

Q2. Overall, we see a decrease of perplexity and
an increase in syntactic complexity when moving
from SMT to RNN to TRF, hinting at a tendency for
SMT to produce over-simplified structures, while

neural systems seem able to deal better with the
complexity of their source. Figures 3 and 4 show
these trends. With respect to the syntactic measures,
we see clear tendencies in the human translations.
The MTs, however, are more heterogeneous: trans-
lations by the SMT often over-simplify in contrast
to the HTs, translations by the neural systems come
out reasonably close to the HTs, i.e. close to orig-
inals, but they are sometimes more complex. In
general the statistical engines show more evident
signs of syntactic simplification than both human
and neural translations. This can be the result of
having a phrase-based translation (SMT) in con-
trast to sentence-based translations (humans and
neural systems). The difference between architec-
tures is less strong for the grammatical perplexi-
ties, where machine translation displays in general
higher levels of structural shining-through than hu-
man translation, and lower levels of normalization,
presenting more sensibility to the source language
than human translation.

In general, while we find evident differences in
translationese between human and machine trans-
lations of text and speech, our results are com-
plex to analyze and it would be wise not to over-
interpret our findings. In future work, the impact of
the difference in the amount of available data and
languages involved for written and spoken texts
should also be analysed. Machine translations do
present symptoms of structural translationese, but
such symptoms only in part resemble those dis-
played by human translators and interpreters, and
often follow independent patterns that we still have
to understand in depth. This understanding can
help in improving machine translation itself with
simple techniques such as reranking of translation
options, or more complex ones such as guiding the
decoder to follow the desired patterns or rewarding
their presence. For this, a complementary study
on the correlation of translation quality with our
translationese measures is needed.
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