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Abstract

We describe the DiDi Labs system submitted
for the IWSLT 2020 Offline Speech Transla-
tion Task (Ansari et al., 2020). We trained an
end-to-end system that translates audio from
English TED talks to German text, without
producing intermediate English text. Our base
system used the S-Transformer architecture
(Di Gangi et al., 2019b), trained using the
MuST-C dataset (Di Gangi et al., 2019a). We
extended the system via decoder pre-training,
pre-trained speech features, and text transla-
tion, but these extensions did not yield im-
proved results.

1 Introduction

The performance of end-to-end speech translation
systems at IWSLT has been approaching that of
cascaded systems, with the gap shrinking to 1.5
BLEU points in 2019 (Niehues et al., 2019). With
additional effort, end-to-end systems could finally
surpass cascaded systems. The 2020 task required
participants to translate audio from English TED
talks to German text.

We trained several different end-to-end speech
translation systems. We used the MuST-C dataset
to train models for speech translation and speech
recognition, the Europarl-ST dataset for speech
recognition (Iranzo-Sánchez et al., 2019), and the
WMT-19 news commentary dataset for text trans-
lation (Tiedemann, 2012). Our best performing
model used an encoder that was first pre-trained
for English speech recognition, and then fine-
tuned for speech translation. This system scored
17.1 BLEU on the MuST-C test set.

2 Experimental Framework

Our models used the S-Transformer architecture
of Di Gangi et al.. This is an adaptation of the
Transformer architecture (Vaswani et al., 2017)

for speech inputs. The encoder performs a 2-
D convolution on the audio input before apply-
ing self-attention as in the Transformer. An-
other distinction is that the decoder operates at
the character level, instead on the byte-pair encod-
ing (BPE) tokenization that is typically used with
transformer models for text. The system uses a
512-dimensional embedding in the self-attention
layers. Each of the encoder and decoder have 8-
headed attention and 6 self-attention layers. The
models have 32,132,040 parameters.

Each of our models were run on a single Nvidia
Tesla P-100 GPU. We used a batch size of 8, and
the Adam optimizer with a learning rate of 0.005
and an inverse square root warm-up schedule start-
ing from 0.0003 for the first 4000 training steps.
Each model was trained for up to 50 epochs, stop-
ping early when validation loss had not decreased
for 10 consecutive epochs.

We trained 6 models using different methods.
We used the German transcripts and German audio
from Europarl-ST for decoder pre-training. We
used the WMT News Commentary parallel corpus
for text translation. All other experiments used the
MuST-C dataset. Table 1 contains the statistics for
the corpora we used.

3 Extending S-Transformer

3.1 Naı̈ve Model

Our simplest model was the S-Transformer,
trained end-to-end on the MuST-C corpus using
English audio inputs and German text outputs.
This model was not able to successfully learn the
task, achieving a score of 0 BLEU on the MuST-
C test set. This is not surprising, as the relation-
ship between the English audio and German text
is not obvious without prior knowledge, even to
most humans. This model effectively learned to
memorize the most common output sentence from
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Dataset Segments Input Output
MuST-C training 229,703 EN Audio EN, DE Text
MuST-C dev 1,423 EN Audio EN, DE Text
MuST-C test 2,641 EN Audio EN, DE Text
WMT news commentary 338,285 EN Text DE Text
Europarl-ST training 12,904 DE Audio DE Text
Europarl-ST dev 2,603 DE Audio DE Text

Table 1: Details of the datasets we use in our experiments

the training set (“Vielen Dank”), and produced this
as output every time.

3.2 Encoder Pre-Training

The task was too difficult for a naı̈ve system to
learn from scratch, so we tried training it in two
stages. First, the system was trained to predict En-
glish text given the English audio inputs from the
MuST-C dataset. This model successfully learned
to transcribe English audio, achieving a BLEU

score on the MuST-C validation set of 60.45. 1

We then discarded the decoder from this En-
glish ASR system. The rest of the model was then
fine-tuned to predict German text from English au-
dio. We were thus able to train an end-to-end sys-
tem in stages without having the intermediate in-
puts and outputs inherent to a cascaded system.

By first learning the simpler task of speech
recognition, the system was able to make sense
of the audio input before attempting to learn to
translate it. This system was the strongest that
we trained, achieving a BLEU score of 17.1 on the
MuST-C test set.

3.3 Decoder Pre-Training

Pre-training the encoder using the simpler speech
recognition task was successful, so we attempted
to similarly pre-train just the decoder, except for
German speech recognition instead.

We started by training a German ASR system
using the same initial S-Transformer architecture
as in Section 3.2. Here we trained the ASR sys-
tem on German audio inputs and German text out-
puts from the Europarl-ST dataset. This system
successfully learned to transcribe German audio,
achieving a score on the Europarl-ST validation
set of 36.9 BLEU.

The rest of the training was analogous to the
pre-trained encoder system: the encoder of this

1We used the BLEU score instead of standard ASR met-
rics to simplify our implementation. This metric was mainly
used to determine whether or not the model was useful as a
starting point for fine-tuning; the value of the score was less
significant.

model was discarded, then the model was trained
on the speech translation task. However, this
model performed similarly to the naı̈ve system.

This suggests that just learning the input audio
without a corresponding text in the same language
remains a key challenge. This is perhaps not sur-
prising, as audio input and a text transcript operate
at different timescales: text inputs have atomic el-
ements, but audio inputs are not only subdivisible
via faster sampling, but also overlapping in time if
the stride distance is short.

3.4 Combining Pre-Trained Encoder and
Pre-Trained Decoder

Although we were not able to fine-tune the pre-
trained decoder system of Section 3.3 to produce
a strong speech translation model, we wondered if
it could still could be a useful addition to a system
with a pre-trained encoder. We fine-tuned an end-
to-end model that started with the encoder trained
for English ASR, and the decoder trained for Ger-
man ASR. However, this model was only about as
good as using only the pre-trained encoder. Per-
haps this approach could produce stronger results
if the encoded representations of the encoder and
decoder were aligned to one another, as occurs
when learning seq2seq models from scratch.

4 Using wav2vec Inputs

The MuST-C corpus represents the input au-
dio using 40-dimensional Mel-Filterbank features.
Schneider et al. (2019) presented wav2vec: un-
supervised pre-training to learn speech represen-
tations, with improved speech recognition results.
We attempted to apply this same approach to
speech translation, replacing the Mel-Filterbank
features with wav2vec features as input to the
system.

We use the pre-trained model released in the
fairseq library2 to compute features for the

2https://github.com/pytorch/fairseq/
tree/master/examples/wav2vec

https://github.com/pytorch/fairseq/tree/master/examples/wav2vec
https://github.com/pytorch/fairseq/tree/master/examples/wav2vec


71

MuST-C dataset. wav2vec features are 512-
dimensional vectors, but the Mel-Filterbank fea-
tures are 40-element vectors. We applied prin-
cipal component analysis (PCA) to reduce the
wav2vec vectors to 40 dimensions to match the
existing architecture. To reduce the computational
load, we simply computed the PCA transforma-
tion on the first segment of the training set, and
then applied the same transformation matrix to
each subsequent sample.

We then attempted to pre-train the encoder for
English ASR using the same S-Transformer archi-
tecture as before, in Section 3.2. However, this
model does not successfully learn to transcribe En-
glish audio during pre-training. After fine-tuning,
it cannot translate English audio and also gets a
score of 0 BLEU.

We suspected our dimensionality reduction
from 512 to 40 was too crude, losing too much in-
formation. To see if this was the case, we also at-
tempted to use the full 512-dimensional wav2vec
features as input, and increased the system layer
widths accordingly. However, computational con-
straints limited us to only training on 20,000 seg-
ments of the MuST-C training set. However, this
model also does not successfully learn to tran-
scribe English audio during pre-training. After
fine-tuning, it still cannot translate English audio
and also gets a score of 0 BLEU.

5 Text translation multi-task training

Strong text translation systems are often trained
on many millions of sentences, if they are avail-
able. Transcribing audio and translating is more
expensive than finding parallel sentences, so the
MuST-C corpus is considerably smaller than text
translation corpora. We hypothesized that addi-
tional training on translation data would improve
performance.

We pre-trained an English to German MT
system that shared the decoder with our S-
Transformer system in Section 3.2, in order to
improve the decoder’s translation ability. This
model used a standard transformer encoder, not
the S-Transformer. Unfortunately after training,
this model was not able to successfully learn to
translate text, though this same corpus has been
successfully used in previous work (Barrault et al.,
2019). We did not conduct further experiments
trying to use the shared decoder in this model for
speech translation.

Model BLEU
1. Baseline S-Transformer model 0.00
2. #1 + encoder pre-trained on English ASR 17.1
3. #1 + decoder pre-trained on German ASR 0.00
4. #1 + #2 + #3 16.8
5. #2 + wav2vec preprocessing 0.00
6. #1 + text translation multi-task training 0.00

Table 2: BLEU scores of our experiments, evaluated on
the MuST-C test set

6 Results and Conclusion

Table 2 contains our experimental results. The
model using an encoder pre-trained for English
speech recognition performed best. Combining
this model with a decoder pre-trained for German
speech recognition performed roughly similarly.

We have presented several different experi-
ments in training end-to-end speech translation
system based on the S-Transformer architecture.
Unfortunately, none of the experiments we pre-
sented were able to improve performance on the
MuST-C test set relative to the models of Di Gangi
et al. (2019c). With more work, the ideas we at-
tempted could produce stronger systems in the fu-
ture.
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Javier Jorge, Nahuel Roselló, Adrià Giménez, Al-
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