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Abstract

This paper describes the Xiaomi’s submissions
to the IWSLT20 shared open domain transla-
tion task for Chinese↔Japanese language pair.
We explore different model ensembling strate-
gies based on recent Transformer variants. We
also further strengthen our systems via some
first-line techniques, such as data filtering,
data selection, tagged back translation, do-
main adaptation, knowledge distillation, and
re-ranking. Our resulting Chinese→Japanese
primary system ranked second in terms of
character-level BLEU score among all submis-
sions. Our resulting Japanese→Chinese pri-
mary system also achieved a competitive per-
formance.

1 Introduction

In this paper, we describe the Xiaomi’s neu-
ral machine translation (NMT) systems eval-
uated at IWSLT 2020 (Ansari et al., 2020)
shared open domain translation task in two
directions, Chinese→Japanese (Zh→Ja) and
Japanese→Chinese (Ja→Zh).

The accuracy of NMT systems relies on the qual-
ity of training data, we first consider careful pre-
processing and discard the corrupted data from the
existing bilingual sentences according to rule-based
filtering and model-based scoring.

In the aspect of NMT architecture, we exploit
some recent Transformer variants, including dif-
ferent Transformer models with deeper layers
or wider inner dimension of feed-forward layers
than the standard Transformer-Big model, Trans-
former with a dynamic linear combination of layers
(DLCL) (Wang et al., 2019) and neural architecture
search (NAS) based Transformer-Evolved (So et al.,
2019), to increase the diversity of the system. We
further strengthen our systems by diversifying the
training data via some effective methods, includ-
ing back-translation (BT) (Sennrich et al., 2016b),

knowledge distillation (KD) (Hinton et al., 2015)
and right-to-left (R2L) NMT model. Finally, we
also explore re-rank the n-best translation candi-
dates generated by models ensembling with some
effective features, including target-to-source (T2S)
NMT model, left-to-right (L2R) NMT model, R2L
NMT model (Liu et al., 2016), bilingual sentence
BERT and language model (LM).

Through experiments, we evaluate how each sys-
tem feature affects the accuracy of NMT. Our result-
ing Chinese→Japanese primary system ranked sec-
ond in terms of character-level BLEU score among
all submissions. Our resulting Japanese→Chinese
primary system also achieved a competitive perfor-
mance.

2 Data

2.1 Pre-processing

Our pre-processing pipeline begins by removing
non-printable ASCII characters, lowercasing text,
normalizing additional white-space, and control
character and replacing any escaped characters
with the corresponding symbol by our in-house
script. All the data is further normalized so all
full-width Roman characters and digits are normal-
ized to half-width. All the traditional characters of
Chinese data are converted to simplified characters
using OpenCC1. For all corpora, Chinese sentences
are segmented by our in-house Chinese word seg-
menter, and Japanese sentences are first segmented
by the morphological analyzer Mecab (Kudo, 2006)
and then tokenized only for the non-Japanese part
by the Moses script2.

1https://github.com/BYVoid/OpenCC
2https://github.com/moses-smt/

mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

https://github.com/BYVoid/OpenCC
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
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2.2 Parallel Data Filtering
Though the NMT performance is highly correlated
to the huge amounts of training data, a robust body
of studies (Carpuat et al., 2017; Khayrallah and
Koehn, 2018; Wang et al., 2018; Koehn et al., 2018)
has shown the bad impact of noisy data on general
NMT translation accuracy. In addition to a small
amount of Japanese-Chinese parallel data3 from
various public sources, the organizers also provide
a large-scale but noisy parallel data4 extracted from
a non-parallel web-crawled data through some sim-
ilarity measures for parallel data mining. We ap-
ply a two-stage process consisting of rule-based
filtering and model-based scoring to further filter
harmful sentence pairs that are bound to negatively
affect the quality of NMT systems from the original
parallel corpora as follows.

2.2.1 Rule-based Filtering
During the first stage, we remove some illegal paral-
lel sentences by applying several rule-based heuris-
tics. A sentence pair is deleted from the corpus
if its source side or target side fails to obey any
of the following wild rules reflecting what ‘good
data’ should look like. Some of the heuristic filter-
ing methods can deal with aspects that can not be
captured with models.

• The token (i.e. character sequence between
two spaces) length of every sentence is limited
less than 50.

• Sentence pairs with a length ratio greater than
4 are removed.

• Chinese sentences with Chinese characters ra-
tio less than 0.15 or any character of other
than Chinese and English are removed. And
Japanese sentences with Japanese characters
ratio less than 0.25 or any character of other
than Chinese, Japanese, and English are re-
moved.

• Japanese sentences without any Hiragana or
Katakana character are removed.

• Sentence pairs with mismatched numbers of
length three or more digits or URLs are re-
moved.

3https://iwslt.oss-cn-beijing.aliyuncs.
com/existing_parallel.tgz

4https://iwslt.oss-cn-beijing.aliyuncs.
com/web_crawled_parallel_filtered_1.1.
tgz

• Duplicated sentence pairs are discarded.

2.2.2 Model-based Scoring
In the second stage of our filtering pipeline, we
utilize a variety of models to assign some scores to
each sentence pair of the remaining rule-based fil-
tered parallel corpus (RFPD). Afterward, we select
better sentences according to these scores.

• Translation model: We construct paral-
lel NMT systems based on the standard
Transformer-big model in both directions us-
ing RFPD to obtain the target synthetic trans-
lation as the reference. BEER (Stanojević and
Sima’an, 2014) is used as a sentence-level
metric of sentence similarity. We prune the
sentence pairs with the BEER score of lower
than 0.2.

• SBERT model: Recently, contextualized
word embeddings derived from large-scale
pre-trained language models (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019)
have achieved new state-of-the-arts in vari-
ous monolingual NLP tasks. The success
has also been extended to cross-lingual sce-
narios (Schwenk, 2018; Conneau and Lam-
ple, 2019; Mulcaire et al., 2019; Artetxe and
Schwenk, 2019). Recently, Reimers and
Gurevych (2019) proposed sentence BERT
(SBERT) to derive semantically meaningful
sentence embeddings. According to the train-
ing framework of SBERT, we use the multilin-
gual pre-train BERT model5 and finetune it on
RFPD to yield useful Chinese and Japanese
sentence embeddings in the same space. We
reject sentence pairs with a cosine-similarity
score below 0.2.

• Word alignment model: We perform a
word alignment model on RFPD using
fast align (Dyer et al., 2013) to check whether
the sentence pair has the same meaning. Sen-
tence pairs with the alignment probability of
being each other translation less than 0.1 are
discarded.

• N-gram LM: It is beneficial to use fluent sen-
tences for training NMT models. We train
a 5-gram LM that is estimated with modi-
fied Kneser-Ney smoothing (Kneser and Ney,

5https://storage.googleapis.com/bert_
models/2018_11_23/multi_cased_L-12_
H-768_A-12.zip

https://iwslt.oss-cn-beijing.aliyuncs.com/existing_parallel.tgz
https://iwslt.oss-cn-beijing.aliyuncs.com/existing_parallel.tgz
https://iwslt.oss-cn-beijing.aliyuncs.com/web_crawled_parallel_filtered_1.1.tgz
https://iwslt.oss-cn-beijing.aliyuncs.com/web_crawled_parallel_filtered_1.1.tgz
https://iwslt.oss-cn-beijing.aliyuncs.com/web_crawled_parallel_filtered_1.1.tgz
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip
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1995) using KenLM (Heafield, 2011) on each
side of the parallel sentences to evaluate sen-
tences’ naturalness. We normalize the LM
perplexity (PPL) scores of all the sentences
to be between [0,1]. Sentences whose nor-
malized PPL scores fall below the threshold
(0.45 and 0.53 for Chinese and Japanese data,
respectively) are removed.

It is worth noting that all the above thresholds
are determined experimentally.

2.3 Post-processing
All the outputs are post-processed by merging sub-
words, removing the space between the non-ASCII
characters, and rule-based de-truecasing. All half-
width punctuation marks and digits are also con-
verted back to their original full-width form in a
specific language when translating to Chinese and
Japanese.

3 Overview of System Features

3.1 Translation Models
NMT has gained rapid progress in recent
years (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). In addition to the standard
Transformer-Big (Vaswani et al., 2017) model, we
also apply recent Transformer variants for creating
better model ensembles.

• Wider model: Dimension is an important
factor to enhance the Transformer model
capacity and performance. Based on the
standard Transformer-Big model, we train
a Transformer-Wide model with a inner di-
mension of position-wise feed-forward layers
8,192.

• Deeper model: Building deeper networks
via stacking more encoder and decoder lay-
ers has been a trend in NMT (Bapna et al.,
2018; Wu et al., 2019; Zhang et al., 2019).
We also exploit three deeper Transformer
models by simply increasing the layer size
of Transformer-Big, including Transformer-
Deep-12-12, Transformer-Deep-12-6, and
Transformer-Deep-6-12 in which the first
number represents the layer size of the en-
coder and the second number represents the
layer size of the decoder. In addition to the
standard Transformer in which the residual
connection is applied between two adjacent

layers, we also implement two DLCL (Wang
et al., 2019)-based Transformer models which
can memorize the outputs from all preced-
ing layers, including Transformer-DLCL-
Big based on the Transformer-Big model
and Transformer-DLCL-Deep based on the
Transformer-Deep-12-12 above.

• NAS-based model: Recently, NAS has be-
gun to outperform human-designed mod-
els (Elsken et al., 2018). We use the compu-
tationally efficient Transformer-Evolved (So
et al., 2019) model by NAS. The hyper-
parameters can be seen in Tensor2Tensor im-
plementation6.

3.2 Data Diversification
We employ an effective data augmentation strategy
to boost NMT accuracy by diversifying the training
data. We first use the following backward and for-
ward models to generate a diverse set of synthetic
training data from both lingual sides of the original
training data or external monolingual data. Then,
we concatenate all the synthetic data with the origi-
nal data to train the baseline models from scratch
in L2R, R2L, and T2S ways, respectively. Finally,
we conduct the aforementioned approach based on
ensemble models again to achieve better baseline
systems.

• T2S model: Back-translation has thus far
been the most effective technique effective
for NMT (Sennrich et al., 2016b). Instead of
using the synthetic training data produced by
translating monolingual data in the target lan-
guage into the source language conventionally,
we prepend a special tag to all the source sen-
tences from the synthetic data to distinguish
synthetic data from original data (Caswell
et al., 2019).

• R2L model: Generally, most NMT systems
produce translations in an L2R way, which suf-
fers from the issue of exposure bias and conse-
quent error propagation (Ranzato et al., 2016).
It has been observed that the accuracy of the
right part words in its translation results is
usually worse than the left part words (Zhang
et al., 2018; Zhou et al., 2019). We train all
the baseline systems separately using L2R

6https://github.com/tensorflow/
tensor2tensor/blob/master/tensor2tensor/
models/evolved_transformer.py

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/evolved_transformer.py
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and R2L decoding (Wang et al., 2017; Hassan
et al., 2018).

• L2R model: Knowledge distillation has been
widely applied to NMT (Kim and Rush,
2016; Freitag et al., 2017; Chen et al., 2017;
Gu et al., 2018; Tan et al., 2019). Recent
work (Furlanello et al., 2018) demonstrates
that the student model can surpass the accu-
racy of the teacher model, even if the student
model is identical to their teacher model. Fol-
lowing this work, the teacher and student mod-
els in our experiments keep the same architec-
ture.

3.3 Model Ensembling

Ensemble decoding is an effective approach to
boost the accuracy of NMT systems via averaging
the word distributions output from multiple single
models at each decoding step. We select the top 4
systems with the highest BLEU evaluated on the
development dataset from all the available baseline
systems of each direction for models ensembling.

3.4 Reranking

Reranking technique (Shen et al., 2004) has been
applied in the recent years’ WMT tasks (Sennrich
et al., 2016a; Wang et al., 2017; Ng et al., 2019) and
have provided significant improvements. We first
use the S2T-L2R and S2T-R2L ensemble systems
to generate more diverse translation hypotheses
for a source sentence (Liu et al., 2016). Then we
use ensemble models of S2T-L2R, S2T-R2L and
T2S-L2R to calculate 3 different likelihood scores
for each sentence pair. We obtain the perplexity
score for the translation candidates with a neural
LM based on the Transformer encoder. We also
employ SBERT to calculate the similarity score for
each sentence pair. Each model’s score is treated
as an individual feature. Considering the ranking
problem as a classification problem, we employ the
implementation of pairwise ranking in scikit-learn7

RankSVM (Joachims, 2006) to learn the weights of
all the features on the development data for rerank-
ing. We compute the relative distance between
these two samples in the sentence-level BLEU met-
ric by pairing up two translation candidates. In
the training phase of the reranking model, we are
only interested in whether the relative distance is

7https://scikit-learn.org/stable/
modules/generated/sklearn.svm.LinearSVC.
html

positive or negative. For test data, we rescore the
hypotheses in the list by the reranking model and
select the hypothesis with the highest likelihood
score as the final output.

4 Experiments and Results

In this section, we introduce the experimental and
data setup used in our experiments and then evalu-
ate each of the systems introduced in Section 3.

4.1 Experimental and Data Setup

Due to a large number of training parameters, our
deeper Transformer models require larger GPU
memory resources and more time to train. To
avoid the out-of-memory issue when training mod-
els with adequate batch size, all models are opti-
mized by the memory-efficient Adafactor (Shazeer
and Stern, 2018) which has three times smaller
models than Adam (Kingma and Ba, 2015). Fur-
thermore, we also apply the mixed-precision train-
ing (Narang et al., 2018) without losing model ac-
curacy to speed up the training significantly.

In the training stage, we batch sentence pairs
by approximate length and limit the number of
source and target tokens per batch to 2,048 for two
deeper models and 4,096 for others per GPU. All
models are trained on one machine with 8 NVIDIA
V100 GPUs each of which has 16GB memory for
a total of 200K steps. We optimize all models
against BLEU using the development set provided
by the organizer, stopping early if BLEU does not
improve for 16 checkpoints of 2,000 updates each.
We set dropout 0.1 for Chinese→Japanese and 0.2
is for Japanese→Chinese. We average the top 10
checkpoints evaluated against the development set
as the final model for decoding. During decoding,
the beam size is set to 4 for the single model and
10 for ensemble models. We report the 4-gram
character BLEU (Papineni et al., 2002) evaluated
by the provided automatic evaluation script8.

The approach of two-stage parallel data filtering
in Section 2.2 enables us to drastically reduce the
training data from 19M to 12M. In order to enlarge
the size of bilingual data, we also exploit to extract
more high-quality sentence pairs from the provided
pre-filtered parallel data9. We first pre-process the
data and use the rules in Section 2.2 to remove

8https://github.com/didi/iwslt2020_
open_domain_translation/blob/master/
scripts/multi-bleu-detok.perl

9https://iwslt.oss-cn-beijing.aliyuncs.
com/web_crawled_parallel_1.1.tgz

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
https://github.com/didi/iwslt2020_open_domain_translation/blob/master/scripts/multi-bleu-detok.perl
https://github.com/didi/iwslt2020_open_domain_translation/blob/master/scripts/multi-bleu-detok.perl
https://github.com/didi/iwslt2020_open_domain_translation/blob/master/scripts/multi-bleu-detok.perl
https://iwslt.oss-cn-beijing.aliyuncs.com/web_crawled_parallel_1.1.tgz
https://iwslt.oss-cn-beijing.aliyuncs.com/web_crawled_parallel_1.1.tgz
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Corpus #Sentences Zh→Ja Ja→Zh
Original 21M 32.24 26.03
Filtered 12M 36.94 31.27
+augment(D1) 16M 37.08 31.44

Table 1: Results for L2R Transformer-Big based
Chinese↔Japanese systems on the development
dataset with different training data.

illegal data. We then rank the remaining data ac-
cording to the sum of S2T and T2S BEER scores
of each sentence pair and select 4M sentence pairs
with the highest score into the filtered training data.
Finally, we obtain the augmented training data with
16M sentence pairs to train all models.

We learn BPE segmentation models (Sennrich
et al., 2016c) with 30K merge operations and fil-
ter out sentence pairs consisting of rare subword
units with a frequency threshold of less than 6 to
speed up the training, in which 38.5K and 40K sub-
word tokens are adopted as Chinese and Japanese
vocabularies separately for each experiment.

We submit two systems per direction in con-
strained and unconstrained training data settings.
In a constrained condition, we only use the train-
ing data provided by the organizer. And for
unconstrained submission, we choose the large-
scale amounts of Commoncrawl Chinese10 and
Japanese11 dataset as additional monolingual data
for training LMs and executing BT to enhance our
NMT systems. We process these monolingual data
as follows: (1)pre-process according to the pipeline
described in Section 2.1; (2)sentence segmentation;
(3) only keep sentences with token length between
5 and 100; (4) draw a random sample with 160M
sentences as the final clean monolingual data for
each language.

4.2 Results of Data Filtering and
Augmentation

We first evaluate the effect of data filtering on the
performance of the NMT system. We train the
Transformer-Big model on (i) the original train-
ing data only, (ii) filtered training data, (iii) con-
catenating selected 4M training data from the pro-
vided pre-filtered parallel data (+augment). Table 1

10http://web-language-models.
s3-website-us-east-1.amazonaws.com/
ngrams/zh/deduped/zh.deduped.xz

11http://web-language-models.
s3-website-us-east-1.amazonaws.com/
ngrams/ja/deduped/ja.deduped.xz

shows that data filtering gives a significant improve-
ment for NMT accuracy, up to 4.70 BLEU score
for Zh→Ja and 5.24 BLEU score for Ja→Zh, and
adding more high-quality data can further boost
the performance for Zh↔Ja. The results shed light
on the importance of effective data filtering for
training a strong NMT system, particularly for the
training data with much noise mined from the web.
Finally, D1 with 16M sentence pairs is chosen as
the starting training data for the task.

4.3 Results of Baseline Models

For each translation task, we compare the perfor-
mance of all the baseline systems trained on D1

from L2R and R2L decoding directions on the offi-
cial validation set.

For Zh→Ja task, Table 2a shows that the stan-
dard Transformer-Big model outperforms all the
Transformer models with deeper layers or wider
dimension by a small margin and achieves the best
BLEU score for L2R direction. For R2L direction,
however, the deeper Transformer model with 12
layers in both the encoder and the decoder pro-
vides a significant improvement as compared to the
Transformer-Big model and obtains the best BLEU
score.

For Ja→Zh task, Table 2b indicates that all deep
Transformer models are superior to the shallow
Transformer-Big model for both the L2R and R2L
directions. For L2R direction, the Transformer-
Deep-12-6 model obtains the best BLEU score.
For R2L direction, the Transformer-DLCL-Deep
outperforms other models, particularly up to 0.44
BLEU score as compared to the Transformer-Deep-
12-12. The result also demonstrates that DLCL is
useful for training deep models.

For both translation tasks, although with far
fewer parameters than the Transformer-Big model,
the Transformer-Evolved model still obtains a com-
petitive performance among all the baseline sys-
tems. Table 2b shows that the performance of
the R2L Transformer-Evolved model ranks second
among all the models for Ja→Zh. It is interesting
to note that L2R decoding behaves better than that
of R2L decoding, and Ja→Zh has an opposite phe-
nomenon. We suspect that the main reason is that
Chinese is a subject–verb–object (SVO) language,
while Japanese is a subject–object–verb (SOV) lan-
guage.

http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/zh/deduped/zh.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/zh/deduped/zh.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/zh/deduped/zh.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/ja/deduped/ja.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/ja/deduped/ja.deduped.xz
http://web-language-models.s3-website-us-east-1.amazonaws.com/ngrams/ja/deduped/ja.deduped.xz
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System
Constrained Unconstrained

D1 D2 D3 D4

L2R R2L L2R R2L L2R R2L L2R R2L
Transformer-Big 37.08 36.28 37.98 37.59 37.88 37.88 39.08 39.35
Transformer-Wide 36.98 36.57 38.20 37.46 38.35 38.14 39.50 39.23
Transformer-Deep-6-12 36.84 36.71 37.73 37.60 37.77 38.04 38.98 39.28
Transformer-Deep-12-6 36.96 36.50 37.58 37.07 37.70 38.32 38.92 39.11
Transformer-Deep-12-12 37.00 36.97 38.06 37.74 38.39 38.17 39.42 39.27
Transformer-DLCL-Big 36.46 36.10 37.65 37.11 38.18 37.52 39.27 39.49
Transformer-DLCL-Deep 36.61 36.27 37.34 37.53 37.57 37.85 39.59 39.17
Transformer-Evolved 36.47 35.87 37.42 36.85 37.71 37.19 38.78 38.65
Ensemble 38.37 37.96 39.22 38.82 39.32 39.20 40.1 40.13
+Reranking - - 39.37# 41.54∗

(a) Chinese→Japanese

System
Constrained Unconstrained

D1 D2 D3 D4

L2R R2L L2R R2L L2R R2L L2R R2L
Transformer-Big 31.44 31.81 32.27 32.62 33.88 33.80 34.23 34.21
Transformer-Wide 31.25 31.98 32.11 32.84 33.58 34.07 34.02 34.25
Transformer-Deep-6-12 31.55 31.98 32.26 32.67 34.07 34.11 34.29 34.20
Transformer-Deep-12-6 31.96 32.22 32.15 32.94 33.59 34.07 33.98 34.35
Transformer-Deep-12-12 31.95 32.22 32.49 32.75 34.22 34.15 34.31 34.30
Transformer-DLCL-Big 31.82 32.07 32.31 32.64 34.09 34.03 34.29 34.18
Transformer-DLCL-Deep 31.64 32.66 32.46 33.18 34.11 34.12 34.17 34.21
Transformer-Evolved 31.44 32.46 31.99 33.45 32.95 33.91 33.97 33.99
Ensemble 32.57 33.17 33.30 33.79 34.73 34.52 34.82 34.85
+Reranking - - 34.78# 34.91∗

(b) Japanese→Chinese

Table 2: Results of various system trained on different training data evaluated on the Chinese↔Japanese validation
sets. D1 (16M sentence pairs) is the starting training data. D2 (32M sentence pairs) is D1 concatenated with
the pseudo-parallel data back-translated from the target side of D1 by the ensemble models based on the T2S
single models trained on D1. D3 (64M sentence pairs) is D2 concatenated with two KD synthetic data, including
translating the source side of D1 by the ensemble models from the S2T-L2R single models and the ensemble models
from the S2T-R2L single models that are both trained on D2. Finally, for one S2T language pair, the external target
monolingual data is translated by the T2S-L2R Transformer-Big model trained on D3. The generated synthetic
corpus is splitted into eight parts equally. Each part (20M sentence pairs) is concatenated with D3 to generate
the training data D4 (84M sentence pairs) that is applied to train one of all the eight baseline systems. For the
given decoding direction and training data, result of the best single system is bold-faced. ∗ denotes the submitted
primary system in the unconstrained condition where only the provided training data is used. # denotes the
submitted contrastive system in the constrained condition where external public monolingual data is applied.
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4.4 Results of Systems Features

In constrained condition, Table 2 shows that BT
based on the target of bilingual data also brings
large improvement to all baseline systems for both
the Zh→Ja and Ja→Zh tasks. We observe a solid
improvement of an average BLEU score of 0.95
for Zh→Ja and an average BLEU score of 0.67 for
Ja→Zh. It is worth noting that the Transformer-
Evolved model achieves the best BLEU score
among all the R2L systems for Ja→Zh. The re-
sult suggests that the human-designed architectures
may not be optimal. Therefore, it seems promis-
ing to replace the manual process of architecture
design with NAS.

Table 2a shows that the improvement of KD is
relatively slight for Zh→Ja. However, the transla-
tion quality of Ja→Zh strong models after BT is
further largely improved using KD, up to an aver-
age BLEU score of 0.89. We attribute this finding
to the quality gap between the provided Chinese
and Japanese data.

Table 2a shows that adding large-scale synthetic
parallel data back-translated from external monolin-
gual data further boost the performance in different
degree. Both the best baseline systems obtain a
significant improvement by 1.32 1.32 BLEU score
for Zh→Ja. However, it is currently not clear to
us how to interpret on the marginal improvement
for Ja→Zh. There is a reason to conjecture that
we might be suffering from reference bias towards
translationese and non-native data (Toral et al.,
2018).

Unsurprisingly, utilizing diverse models with ho-
mogeneous architectures to the ensemble improves
translation quality across both the tasks in differ-
ent degrees. In constrained condition, the Zh→Ja
ensemble models gain a substantial improvement
compared to the baseline

From the Table 2a, our reranking model finally
achieves a significant improvement of about 1.4
BLEU score for Zh→Ja, even when applied on
top of an ensemble of very strong KD+BT mod-
els. However, the improvement of reranking is
relatively inconsiderable for Ja→Zh, and we also
attribute this to the issue of translationese reference
above.

5 Conclusions

We present the Xiaomi’s NMT systems for IWSLT
2020 Chinese↔Japanese open domain translation
tasks. For both translation tasks, our final systems

achieved substantial improvements up by about
9 BLEU score over baseline systems by integrat-
ing careful data filtering, data augmentation, and
other effective NMT techniques. As a result, our
submitted Chinese→Japanese system rank second
to the official evaluation set in terms of character-
level BLEU and Japanese→Chinese system also
achieves a competitive performance.
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