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Abstract

Rapidly growing language and speech-enabled
technologies contribute to the development of
task-oriented dialogue systems. The demand
for better user engagement has been increasing
at an accelerating pace and this brings new re-
markable challenges including the generation
of informative and natural system utterances.
In this work, our ultimate goal is to develop
a Turkish task-oriented dialogue system that
enables users to navigate over a map in or-
der to get informed about dining venues that
best match their preferences and make reser-
vations based on received recommendations.
This paper presents the pipeline architecture
of our dialogue system with a particular fo-
cus on the language generator. We utilize an
open source framework for building the com-
ponents of our system and develop a sequence-
to-sequence (Seq2Seq) neural model for lan-
guage generation. This pioneering work is the
first that proposes the use of a neural gener-
ation model in a Turkish conversational sys-
tem. Our evaluations suggest that Turkish neu-
ral generation from meaning representations
given in the form of dialogue acts is effective,
but still in need of further improvements.

1 Introduction

In the last decades, task-oriented dialogue systems
with human-like communication capabilities (Chen
et al., 2017; Zhao et al., 2019) have been widely de-
ployed in applications with commercial value such
as restaurant reservation (Henderson et al., 2019)
and online shopping (Yan et al., 2017). As opposed
to open-domain dialogue systems without a clear
dialogue goal, these systems present adequate intel-
ligence in understanding user utterances and taking
actions in response to accomplish constrained tasks.
Task-oriented dialogue systems that can converse
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naturally with users through text or auditory con-
versation have received increasing attention of lan-
guage and speech communities. Conventional task-
oriented dialogue systems combine different mod-
ules in a pipeline architecture (Raux et al., 2005):
i) language understanding (Gupta et al., 2019), ii)
dialogue state tracking (Lee and Stent, 2016), iii)
dialogue policy (English and Heeman, 2005), and
iv) natural language generation (Zhu et al., 2019).
These modules are independently trained and opti-
mized with separate objective functions. Pipeline
architectures often suffer from cascaded error prop-
agation and a change in the output representation
of a previous module also affects subsequent mod-
ules. Recent end-to-end task-oriented dialogue
systems (Liu and Lane, 2018; Wen et al., 2017)
mitigate these problems by training a single model
directly from data without distinguishing individual
modules and optimizing a single objective function.
Although end-to-end systems enable multi-domain
adaptation by minimizing laborious feature engi-
neering, they unfortunately might generate generic
utterances or utterances that are repetitive.

End users face utterances generated by dialogue
systems and their satisfaction heavily depends on
the quality and semantic coherence of these produc-
tions. The natural language generation module is
mainly responsible for producing informative and
fluent utterances that engage users and improve
their experiences. The input to this module is often
a dialog act given in a semantic form that either
conveys or requests information as directed by the
dialogue policy (Zhao and Kawahara, 2019). A di-
alogue act is a meaning representation of an action
(i.e., system or user) that can be realized using one
or more sentences. Depending on the action type
(e.g., greeting, inform, or confirm), dialog acts con-
tain one or more slots (attributes) of different types
(e.g., numeric or string) to fulfill the meaning (e.g.,
inform(name=“Green Food”,phone=415986223)).



Early research methods of language genera-
tion for task-oriented dialogue systems include
manually-crafted rules and templates. This kind
of generation is adequate to cover all information
captured in a dialog act, but it lacks preferred flex-
ibility, requires heavy manual effort, and necessi-
tates domain expertise. Although these issues hin-
der scalability across different domains, they can
be addressed by statistical generation approaches
which can learn human writing patterns directly
from annotated data. Recently, neural generation
models have become a common approach for joint
learning of sentence planning to cover all selected
information and surface realization to incorporate
that content in a fluent text. However, it is not
straightforward to find large amounts of domain-
specific labeled data (real conversational data) for
training statistical or neural generation models, and
it is yet infeasible for some languages including the
morphologically rich language Turkish.

In this study, we describe our efforts towards
building a task-oriented dialogue system for Turk-
ish that enables users to navigate over a map and
reach descriptive information of dining venues
based on their preferences until a venue is booked
for reservation. The system, implemented as a mo-
bile application, interacts with users through an
interface where textual and visual modalities are
employed. In the current version, all venues that
match user preferences are listed on a map and the
user is presented with a single sentence descrip-
tion of any venue selected on that map. Although
our goal is to enhance this work to a venue rec-
ommendation and reservation system where more
sophisticated human-like conversations can take
place, the system currently engages in a limited
dialogue with end users mainly due to the lack of
labeled conversational corpora for Turkish in this
domain. We use the RASA open-source machine-
learning based framework (Bocklisch et al., 2017)
to develop natural language understanding and dia-
logue management components of the system. We
also leverage knowledge obtained from a human-
annotated English conversational data in restaurant
reservation domain to imitate humans while build-
ing our dialogue policies.

In this paper, our focus is on the language gen-
eration component of the system which is imple-
mented as a sequence-to-sequence (Seq2Seq) neu-
ral model. To our best knowledge, this work is
the first that utilizes a neural generation model for

producing task-oriented Turkish utterances. The
literature does not report any study to show how
effective neural models are in generating Turkish
sentences from dialog acts in terms of coverage
and correspondence to human generated texts. In
this study, we report the system performance using
automatic evaluation metrics over our corpus of
4200 pairs of dialog acts and reference sentences
collected via crowdsourcing. In our experiments,
we also assess the impact of delexicalization on
the quality of generated utterances where verbal-
izations of rare words in dialogue acts are targeted.

2 Related Work

Previous research on pipelined dialogue systems
has focused on improving the performance of indi-
vidual components in the architecture. Rule-based
parsing methods (Denis et al., 2006), multiclass
classification algorithms such as SVMs (Sarikaya
et al., 2016), and deep convex networks (Tur et al.,
2012) were shown to be effective in detecting user’s
intent. Promising results were also achieved with
the use of recurrent (Yao et al., 2013) and recently
hierarchical (Zhao and Kawahara, 2019) neural
networks. Mapping textual spans of an utterance
to slots in a dialogue act was often considered as
a sequence tagging problem and quite good re-
sults were achieved with maximum entropy mod-
els such as conditional random fields (CRFs) and
stochastic finite state transducers (Raymond and
Riccardi, 2007). Deep belief networks (Deoras
and Sarikaya, 2013), convex networks (Deng et al.,
2012), and bidirectional long short-term memory
networks (Jaech et al., 2016) were later shown to
outperform CRF-based approaches. A variety of
different approaches have emerged for dialogue
state tracking. A tracker that benefits from domain
independent rules and basic probability (Wang and
Lemon, 2013), and a CRF-based discriminative
approach (Ren et al., 2013) achieved comparable
performances to machine-learning based methods.
The effectiveness of neural models was also ex-
ploited for state tracking task. One pioneering
work combined an RNN model with delexicalized
feature representations in order to generalize it to
unseen slots and values, and with an online unsu-
pervised adaptation approach to exploit unlabeled
data (Henderson et al., 2014). An RNN model was
later used to train a state tracker capable of work-
ing across different domains (Mrkšić et al., 2015).
Recently, dialogue state tracking was tackled as



a reading comprehension problem and addressed
using an attention-based neural network (Gao et al.,
2019). Reinforcement learning was heavily utilized
for learning dialogue policies (Cuayáhuitl, 2017;
Shah et al., 2016; Weisz et al., 2018). Recent exper-
iments suggested that utilizing pre-trained language
models in task-oriented dialogue components is a
promising approach (Wu et al., 2020).

Although many generation methods have been
proposed so far, they can be broadly classified into
three types. Rule or template based approaches
require significant expertise and human effort, and
the number of manually constructed templates
is limited (Jurčı́ček et al., 2014; Mitchell et al.,
2014). On the other hand, stochastic or statistical
approaches enable less monotonic generation by
training a generator from data directly (Mairesse
et al., 2010; Mairesse and Walker, 2011; Oh and
Rudnicky, 2000). Recent developments in neural
networks have enabled generation to be handled as
a transformation from meaning representations to
system responses via a single model. In a work that
simulates the few-shot learning setting with scarce
annotated data, a multilayer transformer model was
trained for generating responses and generaliza-
tion to new domains was achieved by utilizing pre-
trained language models (Peng et al., 2020). The
work of Wen et al. (Wen et al., 2015a) jointly uti-
lized recurrent and convolutional neural networks
for realizing the content of a dialog act, and the
RNN-based generator that encodes one-hot repre-
sentation of the dialog act as its initial state was
trained with semantically unaligned data. Semanti-
cally controlled long short-term memory was also
explored for training a generator from unaligned
data where sentence planning and surface realiza-
tion are jointly optimized (Wen et al., 2015b). A
recent work employed a Seq2Seq generator with
attention using GRU cells to capture the semantic
content of dialog acts and used a language model
to achieve naturalness in generated utterances (Zhu
et al., 2019). Our work is most similar to the work
of Dušek and Jurčı́ček (Dušek and Jurčı́ček, 2016)
but their dialog act representation formed by con-
catenating triples of act type, slot name, and slot
value differs from our input representation.

Turkish, a morphologically rich language with
free-constituent order, has been in focus of lan-
guage processing research for many years (Oflazer
and Saraclar, 2018). However, Turkish language
generation has been relatively less-studied up to

now. Scarcity of available data and lack of annota-
tions are some of the obstacles to developing robust
systems with high performances. Previous gener-
ation literature is restricted to some well-known
problems of surface form generation (Cicekli and
Korkmaz, 1998; Ayan, 2000) and text summariza-
tion (Nuzumlalı and Özgür, 2014; Çagdas Can Bi-
rant et al., 2016). Recently, template-based lan-
guage generation was employed in a venue rec-
ommendation system (Elifoğlu and Güngör, 2018)
where a distinct template for each venue property
is used. To our best knowledge, Turkish text gen-
eration from structured data has not been yet ex-
ploited. Moreover, there is no prior knowledge as
to whether the use of neural models in generating
utterances from dialog acts is effective or not, es-
pecially in domains with a very limited amount of
annotated data. Our work reports first empirical
evaluations that measure the usability and effective-
ness of a neural model in this task.

3 System Architecture

Our task-oriented dialogue system is implemented
as a mobile application and exhibits the traditional
pipeline architecture. A user utterance is processed
by three downstream components before a dialog
act is transferred to the language generation compo-
nent. In the rest of this section, the mobile applica-
tion, and the language understanding and dialogue
management components are described in detail.

3.1 Mobile Application

Users interact with our mobile application through
an interface where they rely on menus that display
listings of choices for different properties of dining
venues. At any time while using the application,
users can search for venues exhibiting different
properties by choosing any of these alternatives. As
shown in Figure 1-a, a user is initially asked to spec-
ify venue properties being sought (i.e., its location,
customer rating, price range, and type of served
food). All venues that exhibit these properties are
listed on a map of the selected region (Figure 1-b)
and the user can navigate between these venues. If
the user selects a listed venue on the map, a sin-
gle sentence description of the venue along with
some of the matching properties are presented to
the user in a separate window at the bottom of the
screen. That description is produced by our neural
generator using the meaning representation passed
from the system. On this map view, the user can



Figure 1: (a) Opening screen view (b) Map listing view (c) Map listing+New search view.

also update venue properties from the menu given
on the upper left corner (the red icon) and start a
completely new search (Figure 1-c). Although it is
not fully implemented yet, the user will engage in a
dialogue with the system over this map view (using
the blue icon on the upper right corner), and get
recommendations/make reservations in the future.

3.2 Natural Language Understanding

This component identifies user’s intent from a given
utterance by classifying it into predefined classes.
Moreover, it extracts information related to that in-
tent and uses them to fill corresponding slots. In the
current implementation, we use the RASA NLU
framework (Bocklisch et al., 2017) for building our
language understanding component. The RASA
NLU combines embeddings of word tokens that
appear in a sentence in order to obtain a represen-
tation of the sentence. An SVM classifier trained
on these sentences then classifies a given utterance
into one or more intents. For entity extraction, the
framework offers different extractors and we train
a CRF extractor using our custom entities. To train
a Turkish intent classifier and an entity extractor,
we use our dataset and some manually translated
examples from an English dataset in the restaurant
domain (Novikova et al., 2017). For each sentence
in our collection, we manually determine the intent
and annotate text spans that correspond to different
entities with appropriate tags. For instance, Fig-

ure 2 shows a sentence and a part of its annotation.

Figure 2: An annotated training data example for NLU.

3.3 Dialogue Management
This component maintains the current dialogue
state by keeping user’s intents and a dialogue his-
tory (dialogue state tracker). Its main responsibility
is to estimate the user’s goal at each turn of the
dialogue. The dialogue history is treated as an ab-
straction of previous dialogue turns. Moreover, it
behaves as the decision maker of the whole system
and takes appropriate actions according to a policy
by considering the current dialogue state. Due to
lack of available Turkish dialogue conversations
that we can use for training a dialogue manage-
ment component, we first analyze the E2E dialogue
challenge dataset that consists of English conversa-
tions in the restaurant reservation domain (Li et al.,



2018). By processing the provided dialogues and
manually filtering intents and entities that are out
of our scope, we then compile training data for our
dialogue manager. Since our focus here is to mimic
natural conversations rather than modeling the lan-
guage, this data collection approach enables us to
train our language-independent dialogue manager
with 2800 different representations of actual con-
versations of varying length. Using an RNN-based
approach, the RASA Core dialogue engine learns
policies from our training data.

4 Neural Turkish Generation
Component

We develop a sequence to sequence (Seq2Seq)
model (Liu et al., 2017; Sha et al., 2018) as our
generation component. The model utilizes a dialog
act as input and produces a single Turkish sentence
to preferably convey all the information expressed
in that act. Since there is no available data that
we can use to train the model, we first conduct
human subject experiments in order to collect a
small-sized corpus as our starting point.

4.1 Corpus Collection
A dialog act is a logical representation of meaning
that might be expressed using single or multiple
sentences. Each dialog act contains an action type
(i.e., what is intended to be conveyed by the system
or user) and a set of slot-value pairs associated with
that action (e.g., the properties of a venue in focus).
Since our goal is to engage in dialogue with end
users, restricting the system to only describe prop-
erties of a venue is not adequate. Moreover, the
number of slots that might be associated with an
action type is too large to be listed in a single sen-
tence with a moderate complexity. In order to deter-
mine action types and slots that would be utilized,
we explore similar well-studied datasets compiled
for other languages (SFRest (Wen et al., 2015b),
E2E (Novikova et al., 2017), Bagel (Mairesse et al.,
2010)). Nine different action types are incorpo-
rated into the current version but these action types
and slots will be populated in the future:

• greeting: Greet the user
• goodbye: Farewell the user
• inform: Present all properties of a venue
• inform only: State the uniqueness of a venue

with specified properties
• inform not: State the non-existence of a

venue with specified properties

• inform all: Present all venues with specified
properties
• request: Query existence of venues with spec-

ified properties
• compare: Compare two venues with respect

to a property
• compare only: Compare a venue with a num-

ber of other venues with respect to a property

One or more slots are defined for each action
type as shown in Table 1. For instance, the action
type inform might contain up to six slots. The
values of some slots are verbatim strings whereas
the remaining values are selected from a catalog.

Actions Slots Types
greeting, goodbye Message String
inform,
inform only,
inform not,
inform all,
request, compare,
compare only

Name, String
Region, String
Near, String
Customer Satisf., Catalog
Price Range, Catalog
Cuisine Catalog

compare,
compare only

Other Venues’ Names, String
Other Venues’ Cust. Satisf., Catalog
Other Venues’ Price Range Catalog

Table 1: Action types and slots.

We conduct a data collection study with 90 par-
ticipants where each participant is presented with
45-50 dialog acts of different action types. The
participants are asked to express a given dialog act
in a single sentence and to use all slots given in
the act. Moreover, they are told to not rely on their
commonsense knowledge or use any information
that might be inferred from the given ones. In the
study, greeting and goodbye actions are not used.
Each dialog act contains two to four randomly cho-
sen slots in addition to the name of the venue in
focus. It is guaranteed that a participant receives
different sets of slots for the same action type even
if the number of slots are the same. We use both
real and artificial data in order to fill in slot values.
Information about a small set of dining venues is
obtained from an online restaurant search service
and that information is augmented with artificial
information in order to expand the collection. For
instance, new dialog acts are produced by adding
new neighbour restaurants to existing dialog acts
without any neighbourhood information. Each di-
alog act is presented to four different participants.
At the end, 4200 dialog act and reference sentence
pairs are collected. Figure 3 shows two dialog acts
with three reference sentences from our collection.



(type='inform', name='Lezzet Mekan ', customer_satisfaction='Yüksek', cuisines='Tatl , Dünya Mutfa  Yemekleri', price_range='Pahal ', region='Caddebostan, stanbul')

   i)  Lezzet Mekan , stanbul Caddebostan'da, tatl  ve dünya mutfa  yemekleri servis eden pahal  fakat lezzetli yemekleriyle mü teri memnuniyetini üst seviyede tutan bir mekand r. 

        (Lezzet Mekan  is a place in Caddebostan, Istanbul that serves sweet and world cuisine and keeps customer satisfaction at the highest level with its expensive but delicious dishes.)

  ii)  Dünya mutfa na ait yemekler ve tatl lar bulabilece iniz, mü teri memnuniyeti konusunda çok ba ar l  olmas  ra men fiyatlar  pahal  olan Lezzet Mekan , stanbul Caddebostan'da bulunmaktad r.

        (Lezzet Mekan , where you can find desserts and dishes from the world cuisine, is very successful in customer satisfaction though it is expensive, and is located in Caddebostan, Istanbul.)

  iii) stanbul Caddebostan'da tatl lar ile dünya mutfa na ait yemekler yenebilecek Lezzet Mekan , pahal  fiyata yemekler sunan ve mü terilerin çok memnun oldu u bir restorand r.

        (Lezzet Mekan  in Istanbul Caddebostan, where you can eat desserts and dishes from the world cuisine, is a restaurant that offers expensive dishes and where customers are very satisfied.)

(type = 'compare', name = 'Cafe Botanica', price_range = 'Ortalama', other_venues_names = 'Mayday Cafe Bar, Mevlana Lokantas , Cafe de Kedi', other_venues_price_range = 'Ucuz')

   i)  Cafe Botanica; ucuz fiyatl  Mayday Cafe Bar, Mevlana Lokantas , Cafe de Kedi'ye k yasla ortalama fiyatl  bir mekand r.

        (Cafe Botanica is an average-priced venue compared to the cheaply priced Mayday Cafe Bar, Mevlana Lokantas  and Cafe de Kedi.)

  ii)  Cafe Botanica ortalama fiyatlardayken Mayday Cafe Bar, Mevlana Lokantas  ve Cafe de Kedi ucuz mekanlard r 

        (While Cafe Botanica is at average prices, Mayday Cafe Bar, Mevlana Restaurant and Cafe are cheap venues.)

  iii) Ortalama fiyatlar yla bilinen Cafe Botanica, Mayday Cafe Bar, Mevlana Lokantas  ve Cafe de Kedi gibi mekanlar n ucuz menülerine k yasla pahal  kalmaktad r

        (Cafe Botanica which is known with its average prices is expensive compared to the venues with cheap menus Mayday Cafe Bar, Mevlana Lokantas  and Cafe de Kedi.)

Figure 3: Examples of dialog acts and reference sentences.

4.2 Input Representation

A dialog act is represented as a sequence of field
value pairs (e.g., field1= value1) where the first pair
corresponds to the action type and the rest are slot
value pairs. The value of a field might contain a
single word or a sequence of words. The field name
(fx) and its position in the value sequence (px) are
used to represent each word (wx). To represent the
position of a word in a sequence, its position from
the beginning of the sequence (px+) and from the
end of the sequence (px−) are used. Therefore, a
word that appears in a field value is represented as
Rx = (fx , px+ , px−). All punctuation characters
in field values are represented similarly. Table 2
shows the representations of all words in the dia-
log act (type = ‘inform only’, name = ‘Denizaltı
Restaurant’, cuisine = ‘Kafeterya Ürünleri, Türk
Yemekleri’, region = ‘Urla, İzmir’, near = ‘VVa-
piano’). In this example, the value of the name
field consists of two words, namely Denizaltı and
Restaurant. The word Denizaltı is the first word
starting from the beginning of value sequence and
the second word from the end of the sequence.
Therefore, its representation is (name,1,2).

Each word in a field value (wx) and its represen-
tation (Rx) are encoded into four embeddings and
then concatenated to form the final input embed-
ding of the encoder (ie = we⊕fe⊕pe+⊕pe−). A
reference sentence already has a sequence of word
tokens and thus each token is encoded into a word
embedding only:

• Word embedding: Vector representation of the
word (we)

• Field embedding: Vector representation of the

Field Value Word Represent.
type inform only inform only (type,1,1)

name Denizaltı Restaurant Denizaltı (name,1,2)
Restaurant (name,2,1)

cuisine Kafeterya Ürünleri,
Türk Yemekleri

Kafeterya (cuisine,1,5)
Ürünleri (cuisine,2,4)
, (cuisine,3,3)
Türk (cuisine,4,2)
Yemekleri (cuisine,5,1)

region Urla, İzmir
Urla (region,1,3)
, (region,2,2)
İzmir (region,3,1)

near VVapiano VVapiano (near,1,1)

Table 2: Word representations.

field name (fe)

• Beginning position embedding: Vector repre-
sentation of the position from the beginning
of the field value (pe+)

• End position embedding: Vector representa-
tion of the position from the end of the field
value (pe−)

4.3 Sequence-to-Sequence Generation Model

To capture temporal processing and feedback re-
quirements of sequences in learning, we approach
to the generation problem using a recurrent neu-
ral network (RNN) based solution. RNN mod-
els are of great utility in computing current out-
put with respect to previous computations kept in
hidden states and their processing power makes
them widely applicable to speech recognition (Hsu
et al., 2016; Prabhavalkar et al., 2017) and lan-
guage processing studies (Socher et al., 2011;
Daza and Frank, 2018). In our work, dialog
acts and reference sentences are sequences of



variable-length. Thus, we formulate our genera-
tion task as sequence-to-sequence (Seq2Seq) learn-
ing (Sutskever et al., 2014), a type of an RNN with
encoder-decoder. Our model uses a long short-
term memory (LSTM) based RNN to encode the
input sequence into hidden states. A second LSTM-
based RNN is used to decode hidden states and gen-
erate the output sequence. Given that xt and ht are
the input and hidden state at time step t; i, f , and
o are input, forget and output gates; and C and C̃
are cell and candidate cell states, the computations
used with LSTM units are as follows:

it = σ(Wi.[ht−1,xt] + bi)

ft = σ(Wf .[ht−1,xt] + bf )

ot = σ(W0.[ht−1,xt] + b0)

C̃t = tanh(WC .[ht−1,xt] + bC)

Ct = ft ∗Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)

(1)

5 Evaluation

Neural models often suffer from rare words while
generating text from data since their verbalization
cannot be predicted properly. Delexicalization is
one of the mostly studied solutions to this issue
where words are replaced with placeholders in data
before being used for training. Texts produced by
the generation model are then processed to replace
these placeholders with actual words that appear
in the original data. For this study, we delexicalize
our input collection (-Del) and obtain a second
version of our dataset (+Del). We only replace
content words of slots with verbatim strings (e.g.,
name and region in Table 1) and leave those with
categorical values (e.g., cuisine and price range)
untouched. We have different dialog acts that differ
only in slot values that are not replaced during
delexicalization. Therefore, these dialog acts are
counted as different acts in the second dataset. The
number of placeholders in our delexicalized dataset
corresponds to 17.71% of all words in reference
sentences. Table 3 presents token-based statistics
for both datasets.

We train two models on both original and
delexicalized datasets. The first model is the
sequence-to-sequence model described in Sec-
tion 4.3 (Model Att-) and the same model aug-
mented with an attention mechanism (Model Att+).
We perform experiments to finetune model parame-
ters by optimizing BLEU score on the development

Property Input Delexicalized
Data Data

Input Dictionary Size 2966 1247
Output Dictionary Size 2827 1177
Avg. DA Length 8.23 5.85
Avg. Ref. Text Length 15.13 11.96

Table 3: Properties of input datasets.

Act Type Training Validation Test
inform 1690 220 200
inform only 448 57 45
inform not 662 81 93
inform all 109 14 20
request 217 24 34
compare 120 11 12
compare only 114 13 16

Table 4: Distribution of action types in datasets.

set. The models reported here use a single hidden
layer and 700 LSTM units in encoder and decoder.
Word embeddings of length 400, field embedding
of length 50, and position embedding of length 5
are used. The epoch number is set to 10 and Adam
optimizer with a learning rate of 0.003 is utilized.
We compare our models with a prior Seq2Seq gen-
eration model (Liu et al., 2017) (Model SA) whose
primary focus is to generate one sentence biogra-
phies from Wikipedia infoboxes where the struc-
ture and content of infobox tables are modeled sep-
arately. In addition to learning what to convey in
the output, the model also learns how to order the
selected content. To train this structure-aware gen-
eration model with dual attention, we process all
dialog acts in our dataset as infobox tables where
the action type is considered as infobox table type
and remaining slot value pairs as field value pairs
of infobox tables. The same model parameters are
used in learning.

Our input collection of dialog act and reference
sentence pairs is splitted into training set of 3360,
validation set of 420, and test set of 420 pairs. Ta-
ble 4 presents the distribution of action types in
these sets. In our experiments, we evaluate the effi-
ciency of models in producing utterances from dia-
log acts and leave an evaluation of fluency and nat-
uralness of these productions to future work. Here,
we report performances using three evaluation met-
rics, BLEU (Papineni et al., 2002), ROUGE-n and
ROUGE-L fmeasures (Lin, 2004), and Slot error
rate (SER) (Riou et al., 2019). The slot error rate is
computed as (M+R)/N where M and R correspond
to the number of missing and redundant slots in the
generated utterance, and N is the total number of



BLEU ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 ROUGE-L SER%

Model Att- -Del 0.017 0.161 0.033 0.010 0.002 0.129 70.2
+Del 0.056 0.373 0.142 0.065 0.030 0.280 57.5

Model SA -Del 0.125 0.417 0.216 0.122 0.063 0.337 53.5
+Del 0.323 0.849 0.632 0.459 0.328 0.543 35.6

Model Att+ -Del 0.144 0.677 0.490 0.335 0.220 0.439 40.6
+Del 0.302 0.857 0.634 0.452 0.314 0.524 35.5

Table 5: Performance scores of different models.

slots in the corresponding dialogue act.
For each model, we perform 5 runs with differ-

ent random initializations on both datasets. Table 5
presents computed average scores. The model with-
out attention (Model Att-), not surprisingly, fails
to learn the generation effectively and receives the
lowest performance scores in all metrics. In addi-
tion, repetitive slot values and very similar sentence
productions for different dialog acts are highly ob-
served in the productions. On the other hand, we
observe that our model with attention (Model Att+)
achieves highest BLEU and ROUGE scores on the
original dataset (-Del). However, our model is
behind the structure-aware model (Model SA) on
the delexicalized dataset (+Del) with respect to the
BLEU score and over high order n-grams (ROUGE-
3 and ROUGE-4). This less significant difference
might be attributed to the fact that structure-aware
model performs better in producing longer match-
ing sequences than our model, which is also vali-
dated by ROUGE-L scores. Both models exhibit
large performance improvements on the delexical-
ized dataset where BLEU scores are more than
doubled. The measured positive impact of delexi-
calization on structure-aware model is more than
what we observe with our model. The contribu-
tion of delexicalized dataset to model Model SA is
mainly observed on longer word sequences (e.g.,
from 0.063 to 0.328 in ROUGE-3).

Although BLEU and ROUGE evaluations val-
idate word-based performances of these models,
they do not provide any insights into the content
quality, particularly the accuracy of selected con-
tent and the slot coverage of these models. On both
datasets, our model with attention achieves the best
slot error rates where delexicalization improves the
performance by approximately 5%. The structure-
aware model performs similarly only on delexical-
ized dataset, but the achieved improvement is more
substantial than that seen in our model. These re-
sults demonstrate that both models need further
improvements to better cover slot values resulting
in fewer repeated or omitted information in pro-

duced utterances.
There are two major drawbacks of our model.

First, it is learning from a corpus which is relatively
small in comparison with many available datasets
compiled for other languages. Second, it suffers
from semantically similar entities in the dataset
(e.g., cuisine or region) and entities that appear
more frequently than others in the training data
are selected by the model regardless of what is
provided in the dialogue act. We argue that with a
larger training corpus and more effective attention
mechanism, our generation performance would be
improved in the future.

6 Conclusion

This work presents our efforts towards develop-
ing a Turkish task-oriented dialogue system for
venue recommendation and reservation. The cur-
rent system is implemented using a pipeline ap-
proach, and natural language understanding and
dialogue management components are built using
the RASA open-source framework. In order to
generate utterances from dialogue act representa-
tions, we develop a sequence-to-sequence neural
model with attention. The model is trained with
a small-sized Turkish corpus consisting of pairs
of dialogue acts and reference sentences. To the
best of our knowledge, this work is the first that
investigates the use of Turkish neural generation in
dialogue systems and measures the effectiveness
of conversational generation from structured input
on a morphologically rich language. In the future,
we plan to collect a larger corpus and improve the
performance of our generator. Moreover, enhanc-
ing the dialogue capabilities of our overall system
and qualitatively evaluating the performance of the
generation model are some of our future plans.
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