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Abstract

Automatic generation of personalised be-
havioural insight messages is useful in
many applications, for example, health self-
management services based on a wearable and
an app. Insights should be statistically valid,
but also interesting and actionable for the user
of the service. In this paper, we propose a
novel neural network approach for joint mod-
eling of these elements of the relevancy, that
is, statistical validity and user preference, us-
ing synthetic and real test data sets. We
also demonstrate in an online learning scenario
that the system can automatically adapt to the
changing preferences of the user while pre-
serving the statistical validity of the mined in-
sights.

1 Introduction

Recently, many health and fitness apps have
stormed the market claiming to be able to improve
user behaviour by playing the role of an artificial
health or fitness agent (Hingle and Patrick, 2016;
Higgins, 2016). While the customer base for these
apps is in billions, it is still a question if they are ef-
fective in doing what they claim. One goal of these
applications is to help the user understand the own
behaviour by giving actionable insights and advises.
In this work we focus on comparative insights that
can be considered as categorical statements about a
measure in two contexts, for example, stating that
a measure X is larger in context A than in context
B, see Härmä and Helaoui (2016).

For this, the task of determining if two samples
are statistically significantly different is frequently
performed. While parametric and non-parametric
significance tests have been widely used for such
tasks, it remains a challenge to include them into
a neural learning pipeline that is both scalable and
user-centric. A neural network can act as a univer-
sal function approximator and can transfer knowl-

edge from one domain to another. In this work, we
consider three domains, namely, statistical signifi-
cance domain, interestingness domain and validity
domain. The statistical significance domain in-
cludes a non-parametric significance test, namely,
the Kolmogorov-Smirnov (KS) test. The interest-
ingness domain that incorporates how a user is in-
terested in knowing about a particular comparative
insight. The third domain is the validity of the con-
tent for the target application. The system should
not produce insights or advises that are harmful to
the healthcare goals of the service. This can be best
guaranteed by a system where all texts are selected
from a pre-generated and manually curated collec-
tion of validated insight candidates, similarly to
the PSVI method introduced in Härmä and Helaoui
(2016).

In this work, we train a self-supervised neu-
ral network that can be a scalable alternative to
traditional non-parametric tests (with 92% accu-
racy at 5% alpha) and we also show how it can
be used to learn user preference on top of statis-
tical significance using an online learning strat-
egy. As these characteristics are essential for highly
scalable behavior insight mining (BIM) that finds
application is fitness coaching, office behaviour
(O’Malley et al., 2012), behaviour change sup-
port systems (Braun et al., 2018; Sripada and Gao,
2007), and business insight mining systems (Härmä
and Helaoui, 2016), the proposed work is highly
relevant.

2 Background

2.1 Desirable Characteristics of Insights

Based on recent literature, an insight should have
the several, characteristics, namely, statistical sig-
nificance (Agrawal and Shafer, 1996; Härmä and
Helaoui, 2016), interestingness or personal pref-
erences (Freitas, 1999; Fayyad et al., 1996; Su-



Comparison Example
time-specific On Weekdays you

walk less than on
Weekends

parameter-
specific

Your heart rate is
higher on Mondays
than other days

event-
specific

when you bike,
you spend less
calories per minute
than when you run

Table 1: Examples of comparative insights in BIM

darsanam et al., 2019; op den Akker et al., 2015;
Härmä and Helaoui, 2016), Causal confidence (Su-
darsanam et al., 2019), surprisingness (Freitas,
1999), actionability or usefulness (Freitas, 1999;
Fayyad et al., 1996), syntactic constrains (Agrawal
and Shafer, 1996), presentatability (op den Akker
et al., 2015) timely delivery (op den Akker et al.,
2015), and understandability (Fayyad et al., 1996).
Among all of these characteristics the most com-
mon ones are statistical validity and interesting-
ness.

2.2 Types of Insights
1. Generic insight: These are insights that talk

about a rather common or scientific phe-
nomenon. These are not grounded on the
user’s behaviour. For example: Excessive
caffeine consumption can lead to interrupted
sleep as can ingesting caffeine too late in the
day.

2. Personalised (Manual/Automated) insight
(Reiter et al., 2003): These are insights that
are tailored to the user either by a human-in-
loop or by an algorithm.

• Absolute insights: These insights talk
about user behaviour in one context. We
do not focus on such insights in this pa-
per as they are less actionable.

• Comparative insights: These insights
compare the user behaviour between two
contexts (Härmä and Helaoui, 2016) as
shown in Table 1.

2.3 Insight Generation Mechanisms
Thousands of insights can be generated from even
a simple database by slicing and dicing the data

into different views. For example, to generate the
insight ”On Weekdays you sleep less than on Week-
ends”, the database should have logs of user’s sleep
duration and corresponding dates. The rows of the
database corresponding to weekdays are consid-
ered as bin A and those corresponding to weekends
are considered as bin B. Relevant filters are used
to extract these rows. On comparing the average
user’s sleep duration in each bin, we find that bin
A has a lower value than bin B. Subsequently, a
statistical significance test is performed to prove
its statistical validity. Similarly, many comparisons
could be made between two periods such as:

• Mondays and other days

• Workdays and holidays

• February and March

A detailed description of how insights are generated
is explained in Härmä and Helaoui (2016).

2.4 Non Parametric Statistical Significance
Tests

The data extracted from the two periods mentioned
above come from two non-parametric sample dis-
tributions. The two most commonly adapted tech-
niques to determine the statistical significance of
such distributions are KS test and Mann-Whitney
U (MW)test. The former is based on the shape of
the distributions and the latter is based on the ranks
of the samples. In this paper we choose the KS test
arbitrarily. However, the MW test can also be used
instead of that.

2.5 Neural Statistics

Neural networks have been used for wide range
applications in Machine Learning such as signal
de-noising, image classification, stock prediction,
and optical character recognition. The ability of the
neural network to learn basically any complex func-
tion makes a universal function approximator. The
simplicity in the way by which a neural network
generates an inference makes it a suitable choice
for many applications. Additionally, the transfer
learning capability of the network (Tao and Fang,
2020; Long et al., 2015; Mikolov et al., 2013) al-
lows us to transfer the pre-learned knowledge of the
network to solve different and more complex prob-
lems. This inspired us to use the neural network to
approximate the statistical significance test.



2.6 Online Learning of User Preference

By permuting different contexts one may often find
a large number of statistically significant insights
but not all of these insights are useful to the user.
Hence the user’s preference must be considered
before presenting the insights to them. The per-
sonal preferences of end-users change with time.
Filtering the insights based on statistical validity
alone is not sufficient to satisfy their interests. A
method to learn a user’s preference in a convenient
and flexible manner will solve this problem. Online
learning technology can train models in a flexible
manner while still being deployed in product (Set-
tles, 2009, 2011). There is no existing literature on
online learning of user preference nor the learning
of statistical validity. Such learning will be of great
use in BIM applications.

In this work, we present an online learning strat-
egy that learns user preference while simultane-
ously maintaining the ability to realise the statisti-
cal significance. In our technique, we assume that
the user is interested only in one type of insight
at any point in time. However, in reality, the user
might be interested in multiple types of insights
simultaneously. We set this limitation for the sake
of simplicity and demonstration only, and by no
means is it a limitation of our method.

3 Methodology

The entire methodology was performed in two
stages, namely, the self-supervised learning stage
and the online learning stage. Although each stage
has a different data source, model architecture,
training, and validation strategy, they share an im-
portant connection. The second stage model is
transfer learned from the first. In this section, we
describe the above-mentioned stages in detail.

3.1 Self-Supervised Learning Stage

As a first stage, we conceptualised and developed a
neural network model that learned rich feature rep-
resentations to determine the statistical validity of
comparative insights. We achieved this by training
the model with highly diverse synthetic data. The
data generation and model training are described
below.

3.1.1 Problem Formulation
Let us consider an insight i that compares two dis-
tributions d1 and d2. The KS significance test can
be represented as a function f(d1, d2) that deter-

mines the p-value of d1 and d2. If the p-value is
less than the significance level α, then, d1 and d2
are considered significantly different. We formu-
lated a neural network N that approximates f as
shown in Equation 1.

f ∼ N (1)

The neural network learns the function f by min-
imising the mean squared error loss function J1 as
shown in Eq 2.

J1(θ) =
1

n

n∑
i=1

(f(d1i, d2i) −Nθ(d1i, d2i))
2 (2)

3.1.2 Data Generation for Base Model
Selection

A data-set containing 300000 pairs of histograms
of uniform distributions was generated using the
NumPy-python package. The number of samples,
mean and range of each distribution was chosen
randomly. The ground truth labels for each pair of
distribution were generated using the p-values of
the two-sample KS test. The SciPy-python pack-
age was used for this. We compared it with our
less optimised implementation of of KS test and
found it to give the same p-values. The data-set was
subdivided into three equal parts, each for training,
validation, and testing. We also made sure that
each portion had balanced cases of significant and
insignificant pairs.

3.1.3 Finalisation of Base Model Architecture
A domain-induced restriction of comparative in-
sights is that the number of inputs is two and the
number of outputs is one. Here, each input is the
histogram of distribution and the output is the statis-
tical significance. Based on previous works on sim-
ilar input/output constraints (Neculoiu et al., 2016;
Berlemont et al., 2015), we came up with three
neural network architectures, namely, a recurrent
neural network (RNNA), a modified RNN (RNNB)
and a siamese network (SIAM). The schematics of
the RNNA architecture are shown in Figure 1. The
layers Ip1 and Ip2 are input layers, each having a
fixed size of 100 elements. The layers F1 and F2,
are fully connected layers, each with 50 neurons
activated by a Leaky Rectified Linear Unit (ReLU)
function. In fact, all layers in the network except
the Final layer are activated by the Leaky ReLu
function. Another level of Fully connected layers,
namely, F3 and F4 follow F1 and F2 respectively.
We chose the number of neurons in each of these



layers to be 20, which is lesser than the preceding
layer, to have a compressed representation of the
input signal. This type of compression is believed
to help in transforming the input from the spacial
domain to the feature domain. The layers F1 and
F2 are concatenated and fed to a Simple Bidirec-
tional Recurrent Neural Network (RNN) with 100
units. The rationale behind using an RNN is that
the input needs to be considered a sequence rather
than a vector as the inputs belong to two different
contexts. We added another fully connected layer
(F5) having 100 neurons to the output of the RNN.
We believe that this layer generates rich features
learned from the input data. The final layer is also
a fully connected layer with one neuron activated
by a thresholded ReLU activation function.

The RNNB model has every layer similar to the
RNNA layer, except that it has 100 neurons in the
F1 and F2 layers instead of 50. This is to see if
increasing neurons would increase performance for
a fixed purpose and input size. The SIAM network
is also similar to the RNNA architecture, except
that the F3 and F4 layers are subtracted rather than
being concatenated and the RNN layer is replaced
by a fully connected layer with 100 neurons.

3.1.4 Base Model Training and Testing
We trained and validated the three models in a self-
supervised manner using the pairs of uniform distri-
butions (histogram). The histogram was squeezed
to 100 bins and the minimum and maximum range
of histograms are fixed to be the minimum and
maximum range of the dataset. This allows all the
histograms to be comparable. Uniform distribu-
tions were chosen due to their close resemblance to
real data that is commonly encountered in insight
mining tasks. In total, each of the training, valida-
tion and testing phases consisted of 100000 data
samples. The training was governed by Adam opti-
miser with a mean-squared-error loss function. The
model that gave the best performance on the test
set was considered as the base model. However, in
real life, the data could also arise from complex or
mixed distributions. Hence we proceeded further
with another level of fine training.

3.1.5 Improving the Base Model
To enhance the base model we trained it with more
diverse pairs of distributions (histogram) such as
Gamma, Gumbel, Laplace, Normal, Uniform and
Wald. On the whole, a total of 360000 pairs of
distributions were generated and were equally split

Figure 1: self-supervised neural network architecture
for significance testing

into training, validation and testing sets. Each of
these sets consists of 120000 pairs of distributions
(20000 pairs of each distribution). Both inputs of
the network are always fed the same type of distri-
bution, but with different parameters. For example,
if one input of the network is a normal distribution,
the other input is also a normal distribution but with
different mean, range, and cardinality. The train-
ing labels are generated earlier. The training was
governed by Adam optimiser with a mean squared
error loss function. Once trained, the model can
be used as a smart alternative to statistical signifi-
cance testing to filter significant insights among all
insights.

3.2 Online Learning Stage

In this stage, we transformed the base model to de-
tect interesting insights while preserving its ability
to detect significant insights.

3.2.1 Problem Formulation

In this stage, apart from two distributions d1 and
d2, we are also interested in the user model φ. The
user’s preference can be represented by a function
pu(k) that generates an interestingness value for
a given insight k. This function can also be con-
sidered as a user interestingness/preference model.
We formulated a transfer learning approach that
uses a portion of network N i.e, N

′
and augments

it with features representations generated from an-
other neural network ∆ that uses the state vector
s of the insight k. Finally, the augmented network
drives the overall network O that approximates
pu(k) shown in Equation 3.



Insight Are you interested
to see more of
these type of in-
sights?

On Weekdays you walk
less than on Weekends

©

Your heart rate is high on
Mondays than other days

©

when you bike, you spend
less calories per minute
than when you run

©

Table 2: A Sample insight feedback form

pu(k) ∼ O(N
′
(d1, d2),∆(s)) (3)

The neural network learns the function pu by
minimising the mean squared error loss function
J2 as shown in Eq 4.

J2(θ) =
1

n

n∑
i=1

(pu(k) −Oφ(N
′
(d1i, d2i),∆(si))

2

(4)
In this work, we show that any improvement in

approximating pu does not have an impact on the
approximation of f in Equation 1.

3.2.2 User Model Acquisition
The online learning strategy detects more interest-
ing insights without being instructed by the user
explicitly. It uses a feedback form in a mobile appli-
cation that displays a few insights that were scored
high by the base model. The users may choose the
insights that they are interested in and the system
learns from it. A sample feedback form is shown
in Table 2. In this work, we simulated the user
preferences to change every month as its tracking
is a problem by itself.

This feedback is equivalent to ”labeling” in tra-
ditional online learning theory. To generate the
insights so that our online learning system can be
validated, we obtained sleep and environmental sen-
sor data collected from a bedroom of a volunteer
over a period of 4 months from May 2019 to Au-
gust 2019. We logged various parameters such as
the timestamp of the start of sleep, sleep duration,
sleep latency, ambient light, ambient temperature,
ambient sound and timestamp of waking-up. We
generated insights for each day of the user using the
procedure explained in (Härmä and Helaoui, 2016).
The insight texts talk about the two contexts that

it compares and an expression of the comparison.
The number of insights per day varied between a
few hundred to few thousand. We simulated the
user preference given below by automatically fill-
ing the feedback form for each day.

1. May: The user is interested in Insights related
to Weekdays.

2. June: Weekend insights are interesting to the
user.

3. July: The user prefers to know more about his
sleep duration.

4. August: The user is again interested to know
if he/she is doing well on weekends.

All statistically significant insights per day on
a given month that satisfy the corresponding pref-
erence criteria were labeled with interestingness
score 1 and otherwise labeled 0. Since neural net-
works understand only numbers, we encoded each
comparison insights into a single dimension bi-
nary vector s containing 220 elements where each
element correspond to one parameter of compar-
ison. For example, one element corresponds to
each day of the week. Hence, if the comparison
is related to Mondays and weekends, the elements
corresponding to Mondays, Saturdays, and Sun-
days are assigned a binary one and the rest are
assigned zero. We inject this vector to the model
while transfer learning for interestingness recogni-
tion. In the following subsection, we explain how
the model is transfer learned and how the online
learning pipeline is implemented and evaluated.

3.2.3 Transfer Learning
Transfer learning was performed to enable the
model to learn insight interestingness in addition
to significance. The self-learned model was frozen
from the input layers up to and including the F5
layer. The vector s is passed as input to another
fully connected layer F6 with 100 neurons. This
layer is concatenated with the F5 layer as shown
in Figure 2. The concatenated layers are fed to
another fully connected layer F7 having 100 neu-
rons. While the layer F6 is linearly activated, the
F7 layer is activated by the ReLu function. Finally,
the output layer is a single neuron fully connected
layer activated by a sigmoid activation function.
Notice that the final layer is activated by a sigmoid
function as this is a binary classification problem
trained on user preferences instead of significance.



By performing this transfer learning, the model
retains the features that correspond to the signifi-
cance and simultaneously recognise interestingness
of insights based on user preference.

Figure 2: Augmenting the base network for online
learning

3.2.4 Learning Modes
The architecture of the online learning scheme is
presented in Figure 3. The scheme is executed in
two modes, namely, accelerated learning mode and
normal learning mode. These modes determine
how much the models are trained (iterations). The
accelerated learning mode, by default, starts from
the first usage of the insight generator for the first
ten days. Then, the normal mode begins. During
the accelerated learning mode, the model learns
more rigorously and during the normal mode, it
learns at a normal phase. This is achieved by vary-
ing the number of iterations of training for each
day. This the accelerated training mode has more
iterations of training.

3.2.5 Training and Validation Switch Logic
Every day, the insights are assigned an iteresting-
ness value based on user feedback and are scored
by the model. Based on the learning modes, two
scenarios can happen that impacts whether the in-
sights are used to train or validate the model.

1. If the system is in accelerated training mode
and the insight has a prediction error of less
than 0.3. The training and validation switch
pushes a copy of the insight to both training
and validation pools. Therefore, the model
trains and validates these insights.

2. If the mode is the normal training mode

• If the prediction error is less than a preset
threshold (0.10) and 50% random chance
is satisfied and the fraction of interest-
ing insights in the validation pool (if up-
dated) will be between 0.42 to 0.6, the
switch pushes the insight into the valida-
tion pool.

• Else, if the percentage of interesting in-
sights in the training pool (if updated)
will be between 42% to 60% (arbitrarily
chosen), the switch pushes the insight
into the training pool.

If the user does not give any feedback, the insights
continue to get pooled and trained based on the
older feedback. This implicitly assumes that the
user’s preference is unchanged. However, we allow
a small error to occur so that the system also has
the ability to pick other insights at times instead of
strictly catering to the user preference.

3.2.6 Pool Maintenance Logic
Both the pools are maintained to hold only a maxi-
mum limit of days of data. We fixed this arbitrarily
to be 14 days. Here we assume a user’s interesting-
ness remains fairly unchanged for a period of two
weeks. Every 20 days, the model forcefully pops 7
days of data in a FIFO fashion. This helps to avoid
overloading the training and validation pools and
forgetting older preferences. Additionally, the vali-
dation pool is completely emptied at the beginning
of the first day of the normal learning phase.

3.2.7 Update Logic and Metrics
At the end of every day, a copy of the model is
trained on the training pool and validated on the
validation pool. If the validation accuracy exceeds
a set limit (here 70%), the old model is replaced
by the recently trained model. However, as an
exception in the accelerated learning mode, the
model is updated every day irrespective of its per-
formance. This purposefully over-fits the model to
the insights during accelerating learning mode. The
performance of online learning is monitored using
statistical measures, namely, sensitivity, specificity,
and accuracy in predicting the interestingness of in-
sights. Additionally, we introduce the significance
preservation score, which is calculated as shown in
Equation 5.

Ps = Na/Np (5)



Figure 3: Online learning through user feedback

where, Na and Np are the number of actual in-
teresting insights in the validation pool and the
number of predicted interesting insights during val-
idation, respectively. The Ps is not defined when
Np is zero. This is a limitation of the metric.

4 Experimental Results ad Discussions

In this section, we present the results that we ob-
tained at each stage.

4.1 Choosing The Base Model Architecture

An example of histograms of significant and in-
significant pairs of normal distributions is shown in
Figure 4. It also demonstrates the variation of mag-
nitude, range and cardinality (more samples have a
smoother curve) of the synthetic data. Each of the
base model architecture, namely, RNNA, RNNB,
and SIAM were Trained, validated and tested using
the dataset containing only normal distributions.
The performance of each model is presented in Ta-
ble 3. We observed that the RNNA model exhibits
a test accuracy of 92% in predicting whether an
insight is interesting or not. The performance of
RNNA is thereby comparatively better than that of
RNNB. This shows that more neurons do not al-
ways lead to improved performance. Also, RNNA
exhibits slightly better performance than the SIAM
network. This could be due to the sequential treat-
ment of the data by the RNN which is part of the
network. Additionally, since the SIAM network
has fewer neurons, it also provides evidence that
lesser neurons might not help either. In our view,
the neural model should have an adequate num-
ber of neurons and parameters and an explainable
architecture, which is, unfortunately, missing in

Table 3: Performance of different models while train-
ing and testing with normal distribution

MODEL DESCRIPTION ACCURACY
α = 0.05
RNNA BIDIRECTIONAL RNN LAYER 0.92
RNNB MORE NEURONS 0.86
SIAM SIAMAESE NETWORK 0.87

recent works in this field. Hence, the RNNA archi-
tecture is chosen as the base model and considered
for further analysis.

Figure 4: Pair of normal distributions without signifi-
cant difference

4.2 Improving Base Model Training
We trained the base model using diverse pairs of
distributions (histogram) such as Gamma, Gumbel,
Laplace, Normal, Uniform and Wald. We observe
that when we tested each distribution as shown in



Figure 5, we find out that the performance of the
model to normal distribution remained at 0.92, but
the uniform was even higher at 0.97. The worst
performance was observed on Wald distribution.
We have additional evidence that this is a limita-
tion of the actual KS test that is being reflected in
the neural model. It is also found that few distri-
butions exhibit improved performances as alpha
increases and few showed weaker performance as
alpha increases.

Figure 5: Gaussian trained model on mixed distribu-
tions

4.3 Online Learning
We initiated the online learning scheme and the
performance metrics are presented in Figure 6. We
stated the system in the accelerated learning mode
for the first 10 days. It is observed that the ac-
curacy, sensitivity, and specificity were unstable
during the first 4 days of the accelerated learning
phase. From the fifth day onwards, the three mea-
sures show improvement and are in the range of 0.9
to 1. The Ps measure is not defined when there are
no significantly valid insights that are interesting.
This is observed till day 3 and on Day 4, 100% Ps
is observed. This implies that the model exhibits
significance preservation starting at least from day
4 onwards. The performance is rather stable all the
while during the remaining days of May and the en-
tire June. Even though there is a transition between
weekday insights and weekend insights, the model
seems to adapt very well. In the months of July and
August, there are visible drops in the performance
around the 10th day of the month even though the
preference changed on the 1st of both months. This
could be an instability caused due to the sudden
rise in the training pool and reduction of validation
pool data as shown in Figure 7. In General, the pool
maintenance logic is able to control the number of
training and test data points. Although the first
half of July saw a huge influx of training data, the

maintenance logic prevented the training pool from
overloading. Otherwise, there would have been a
huge chance of exposing the model to noise in the
data. The mean squared error (MSE) curve shows
that the error between predictions and ground truth
is not very high. The MSE decreased more steeply
during the accelerated learning mode compared to
the normal mode. There are periodic valleys in the
training pool count and validation pool count de-
noting the reach of the 20-day window for cleanup
of the pool. Also, additional cleanups are done ev-
ery day when the number of days of insights in the
pool exceeds 14. All cleanups on the training and
validation pool are indicated by fain red vertical
lines in Figure 7.

5 Conclusions and Future Scope

In this work, we propose a neural model capable of
learning the Kolmogorov-Smirnov statistical sig-
nificance test and we augment architecture to learn
user preference with an online-learning scheme. To
model statistical validity tests, we chose a base neu-
ral model, for which three architectures, namely,
a simple neural network with recurrent neural net-
work layers with fewer neurons, similar networks
with more neurons and a slightly different siamese
network were investigated. The neural network
with the recurrent neural network layers having
lesser neurons exhibited the best performance. We
continued to develop a smarter network that can
not only identify an insight but also learn its inter-
estingness in an online setting. For this, we used
transfer learning and online learning approaches.
We froze a part of the base model and augmented
it with an additional input layer that reads a binary
filter vector that describes an insight. We trained it
on a real dataset while simulating user preference.
The model was generally stable with few transients
when the user preference changed. We were able
to show that the model preserved its knowledge
about statistical significance while learning inter-
estingness. This made the network unique in an
intelligent way as this is the first attempt, that a
single neuron could perform more than one func-
tionality. In the future, we would like to test the
capability of the online learning module in a sce-
nario where user preference can take multiple states
at the same time.



Figure 6: Timeline of Online Learning with Performance Indicators

Figure 7: Size of Training and Validation Pool
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