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Abstract

To assist human review process, we build a
novel ReviewRobot to automatically assign a
review score and write comments for multi-
ple categories such as novelty and meaningful
comparison. A good review needs to be knowl-
edgeable, namely that the comments should be
constructive and informative to help improve
the paper; and explainable by providing de-
tailed evidence. ReviewRobot achieves these
goals via three steps: (1) We perform domain-
specific Information Extraction to construct a
knowledge graph (KG) from the target paper
under review, a related work KG from the
papers cited by the target paper, and a back-
ground KG from a large collection of previ-
ous papers in the domain. (2) By comparing
these three KGs, we predict a review score and
detailed structured knowledge as evidence for
each review category. (3) We carefully select
and generalize human review sentences into
templates, and apply these templates to trans-
form the review scores and evidence into natu-
ral language comments. Experimental results
show that our review score predictor reaches
71.4%-100% accuracy. Human assessment by
domain experts shows that 41.7%-70.5% of
the comments generated by ReviewRobot are
valid and constructive, and better than human-
written ones for 20% of the time. Thus, Re-
viewRobot can serve as an assistant for paper
reviewers, program chairs and authors.1

1 Introduction

As the number of papers in our field increases ex-
ponentially, the reviewing practices today are more
challenging than ever. The quality of peer paper
reviews is well-debated across the academic com-
munity (Bornmann et al., 2010; Mani, 2011; Scul-
ley et al., 2018; Lipton and Steinhardt, 2019). How

1The programs, data and resources are publicly avail-
able for research purpose at: https://github.com/
EagleW/ReviewRobot
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Figure 1: ReviewRobot Architecture Overview

many times do we complain about a bad, random,
dismissive, unfair, biased or inconsistent peer re-
view? Authors even created various social groups
at social media to release their frustrations and
anger, such as the “Reviewer #2 must be stopped”
group at Facebook2. How many times are our pa-
pers rejected by a conference and then accepted
by a better venue with only few changes? As the
number of paper submissions continues to double
or even triple every year, so does the need for high-
quality peer reviews.

The following are two different reviews for the
same paper rejected by ACL2019 and accepted by
EMNLP2019 without any change on content:

• ACL 2019: Idea is too simple and tricky.

• EMNLP 2019: The main strengths of the
paper lie in the interesting, relatively under-
researched problem it covers, the novel and
valid method and the experimental results.

These reviews, including the positive ones, are
too vague and generic to be helpful. We often see
review comments stating a paper is missing refer-
ences without pointing to any specific references,
or criticizing an idea is not novel without showing

2https://www.facebook.com/groups/reviewer2/

https://github.com/EagleW/ReviewRobot
https://github.com/EagleW/ReviewRobot
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similar ideas in previous work. Some bad review-
ers often ask to add citations to their own papers to
inflate their citation record and h-index, and these
papers are often irrelevant or published after the
submission deadline of the target paper under re-
view. Early study (Anderson, 2009) shows that the
acceptance of a computer systems paper is often
random and the dominant factor is the variability
between reviewers. The inter-annotator agreement
between two review scores for the ACL2017 ac-
cepted papers (Kang et al., 2018) are only 71.5%,
68.4%, and 73.1% for substance, clarity and overall
recommendation respectively. (Pier et al., 2018)
found no agreement among reviewers in evaluating
the same NIH grant application. The organizers of
NIPS2014 assigned 10% submissions to two dif-
ferent sets of reviewers and observed that these
two committees disagreed for 25.9% of the pa-
pers (Bornmann et al., 2010), and half of NIPS2016
papers would have been rejected if reviews are done
by a different group (Shah et al., 2017).

These findings highlight the subjectivity in hu-
man reviews and call for ReviewRobot, an auto-
matic review assistant to help human reviewers gen-
erate knowledgeable and explainable review scores
and comments, along with detailed evidence. We
start by installing a brain for ReviewRobot with a
large-scale background knowledge graph (KG) con-
structed from previous papers in the target domain
using domain-specific Information Extraction (IE)
techniques. For each current paper under review,
we apply the same IE method to construct two KGs,
from its related work section and its other sections.
By comparing the differences among these KGs,
we extract pieces of evidence (e.g., novel knowl-
edge subgraphs which are in the current paper but
not in background KGs) for each review category

and use them to predict review scores. We man-
ually select constructive human review sentences
and generalize them into templates for each cate-
gory. Then we apply these templates to convert
structured evidence to natural language comments
for each category, using the predicted scores as a
controlling factor.

Experimental results show that our review score
predictor reaches 71.4% overall accuracy on over-
all recommendation, which is very close to inter-
human agreement (72.2%). The score predictor
achieves 100% accuracy for both appropriateness
and impact categories. Human assessment by do-
main experts shows that up to 70.5% of the com-
ments generated by ReviewRobot are valid, and
better than human-written ones 20% of the time.

In summary, the major contributions of this pa-
per are as follows:

• We propose a new research problem of gener-
ating paper reviews and present the first com-
plete end-to-end framework to generate scores
and comments for each review category.

• Our framework is knowledge-driven, based
on fine-grained knowledge element compar-
ison among papers, and thus the comments
are highly explainable and constructive, sup-
ported by detailed evidence.

• We create a new benchmark that includes 8K
paper and review pairs, 473 manually selected
pairs of paper sentences and constructive hu-
man review sentences, and a background KG
constructed from 174K papers.
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Category Evidence Example

Summary • GPτ

Compare Used for

Hyponym of
Attention-over-
attention reader

Used for

Document-
level attention

N-best re-ranking
strategy

Large-scale
training data

Cloze-style reading 
comprehension problem

Attention mechanism

Neural architecture

Used for

Part of

State-of-the-
art systems

Method

Task
Material

Appropriateness • The number of entities overlapped between the
target paper and the domain’s background KG:
|{v|v ∈ GPτ ∩GB}|

• Abstract

Large-scale
training data

Cloze-style reading 
comprehension problem

Attention mechanism

Neural architecture

Novelty • New knowledge elements that appear in the target
paper but not in the background KG: |GPτ −GB |

• Paper sentences that contain new knowledge ele-
ments

Compare Used for

Hyponym of
Attention-over-
attention reader

Document-
level attention

N-best re-ranking
strategy

Cloze-style reading 
comprehension problem

Neural architecture

Used for

Part of

State-of-the-
art systems

Soundness • The number of knowledge elements that appear in
the contribution claims in the introduction section
and that are verified in the experiment section

• Abstract

• attention-over-attention reader, n-best re-ranking
strategy is verified in the related work section

Meaningful
Comparison

• The number of papers about relevant knowledge
elements which are missed in the related work
section: (GB ∩GPτ )− ḠPτ

• The number of papers about relevant knowledge
elements which are claimed new in the related
work section: GB ∩GPτ ∩ ḠPτ

• The description sentences about comparison with
related work

• If the related work section is not available, we use
the difference between GPτ and GB instead

Used for
Large-scale
training data

Cloze-style reading 
comprehension problem

Attention mechanism

Neural architecture

Used for

(Bahdanau et al., 2015; Hermann
et al., 2015)

Potential
Impact

• The number of new knowledge elements in the
future work section

• The number of new software, systems, data sets,
and other resources

• 5 new knowledge elements
• 1 new architecture

Overall Recom-
mendations

• All features mentioned in the above categories
• Abstract

Table 1: Evidence Extraction for the example paper Attention-over-Attention Neural Networks for Reading Com-
prehension (Cui et al., 2017)

2 Approach

2.1 Overview

Figure 1 illustrates the overall architecture of Re-
viewRobot. ReviewRobot first constructs knowl-
edge graphs (KGs) for each target paper and a large
collection of background papers, then it extracts
evidence by comparing knowledge elements across
multiple sections and papers, and uses the evidence
to predict scores and generate comments for each
review category.

We adopt the following most common categories
from NeurIPS20193 and PeerRead (Kang et al.,

3https://nips.cc/Conferences/2019/
PaperInformation/ReviewerGuidelines

2018):

• Summary: What is this paper about?
• Appropriateness: Does the paper fit in the

venue?
• Clarity: Is it clear what was done and why?

Is the paper well-written and well-structured?
• Novelty: Does this paper break new ground in

topic, methodology, or content? How exciting
and innovative is the research it describes?
• Soundness: Can one trust the empirical

claims of the paper – are they supported by
proper experiments and are the results of the
experiments correctly interpreted?
• Meaningful Comparison: Do the authors

make clear where the problems and methods

https://nips.cc/Conferences/2019/PaperInformation/ReviewerGuidelines
https://nips.cc/Conferences/2019/PaperInformation/ReviewerGuidelines
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Category # of Pairs Evidence Sentence in Paper Corresponding Review Sentence

Summary 236 In this paper, we present a simple but novel model
called attention-over-attention reader for better
solving cloze-style reading comprehension task.
(Cui et al., 2017)

The paper describes a new method
called attention-over-attention for read-
ing comprehension.

Novelty 33 The paper presents a new framework to solve the
SR problem - amortized MAP inference and adopts
a pre-learned affine projection layer to ensure the
output is consistent with LR. (Sønderby et al., 2017)

It introduces a novel neural network archi-
tecture that performs a projection to the
affine subspace of valid SR solutions ensur-
ing that the high resolution output of the
network is always consistent with the low
resolution input.

Soundness 174 In high dimensions we empirically found that the
GAN based approach, AffGAN produced the most
visually appealing results. (Sønderby et al., 2017)

Combined with GAN, this framework can
obtain plausible and good results.

Meaningful
Compari-
son

16 As a concrete instantiation, we show in this paper
that we can enable recursive neural programs in the
NPI model, and thus enable perfectly generalizable
neural programs for tasks such as sorting where the
original, non-recursive NPI program fails. (Cai
et al., 2017)

This paper improves significantly upon
the original NPI work, showing that the
model generalizes far better when trained
on traces in recursive form.

Potential
Impact

14 Since there may be several rounds of questioning
and reasoning, these requirements bring the prob-
lem closer to task-oriented dialog and represent a
significant increase in the difficulty of the challenge
over the original bAbI (supporting fact) problems.
(Guo et al., 2017)

I am a bit worried that the tasks may be
too easy (as the bAbI tasks have been), but
still, I think locally these will be useful.

Table 2: Annotation Statistics and Examples for Template Generalization

sit with respect to existing literature? Are the
references adequate?
• Potential Impact: How significant is the

work described? If the ideas are novel, will
they also be useful or inspirational? Does the
paper bring any new insights into the nature
of the problem?

2.2 Knowledge Graph Construction
Generating meaningful and explainable reviews
requires ReviewRobot to understand the knowledge
elements of each paper. We apply a state-of-the-
art Information Extraction (IE) system for Natural
Language Processing (NLP) and Machine Learning
(ML) domains (Luan et al., 2018) to construct the
following knowledge graphs (KGs):

• GPτ : A KG constructed from the abstract and
conclusion sections of a target paper under re-
view Pτ , which describes the main techniques.
• ḠPτ : A KG constructed from the related work

section of Pτ , which describes related tech-
niques.
• GB: A background KG constructed from all

of the old NLP/ML papers published before
the publication year of Pτ , in order to teach
ReviewRobot what’s happening in the field.

Each node v ∈ V in a KG represents an entity,
namely a cluster of co-referential entity mentions,

assigned one of six types: Task, Method, Evalua-
tion Metric, Material, Other Scientific Terms, and
Generic Terms. Following the previous work on
entity coreference for scientific domains (Koncel-
Kedziorski et al., 2019), we choose the longest
informative entity mention in each cluster to rep-
resent the entity. We consider two entity clusters
from different papers as coreferential if one’s rep-
resentative mention appears in the other. Each
edge represents a relation between two entities.
There are seven relation types: Used-for, Feature-
of, Evaluate-for, Hyponym-of, Part-of, Compare,
and Conjunction. Figure 2 shows an example KG
constructed from (Bahdanau et al., 2015).

2.3 Evidence Extraction

We compare the differences among the constructed
KGs to extract evidence for each review category.
Table 1 shows the methods to extract evidence and
some examples for each category.

2.4 Score Prediction

Following (Kang et al., 2018), we consider review
score prediction as a multi-label classification task.
For a target paper, we first encode its category re-
lated sentences with an attentional Gated Recurrent
Unit (GRU) (Cho et al., 2014; Bahdanau et al.,
2015) to obtain attentional contextual sentence em-
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bedding. We also encode the extracted evidence
for each review category with an embedding layer.
Then we concatenate the context embedding and
evidence embedding to predict the quality score
r in the range of 1 to 5 with a linear output layer.
We use the prediction probability as the confidence
score.

2.5 Comment Generation

Given the evidence graphs and predicted scores as
input, we perform template-based comment gen-
eration for each category. We aim to learn good
templates from human reviews. Unfortunately as
we have discussed earlier, not all human written
review sentences are of high quality, even for those
accepted papers. Therefore in order to generalize
templates, we need to carefully select those con-
structive and informative human review sentences
that are supported by certain evidence in the pa-
pers. To avoid expensive manual selection, we
design a semi-automatic bootstrapping approach.
We manually annotate 200 paper-review pairs from
ACL2017 and ICIR2017 datasets, and then use
them as seed annotations to train an attentional
GRU (Cho et al., 2014) based binary (select/not
select) classifier to process the remaining human re-
view sentences and keep high-quality reviews with
high confidence. Our attentional GRU achieves bi-
nary classification accuracy 85.25%. Table 2 shows
the annotation statistics and some examples.

For appropriateness, soundness, and potential
impact categories, we generate generic positive or
negative comments based on the predicted scores.
For summary, novelty, and meaningful compar-
ison categories, we consider review generation
as a template-based graph-to-text generation task.
Specifically, for summary and novelty, we gener-
ate reviews by describing the Used-for, Feature-of,
Compare and Evaluate-for relations in evidence
graphs. We choose positive or negative templates
depending on whether the predicted scores are
above 3. We use the predicted overall recommen-
dation score to control summary generation. For
related work, we keep the knowledge elements in
the evidence graph with a TF-IDF score (Jones,
1972) higher than 0.5. For each knowledge ele-
ment, we recommend the most recent 5 papers that
are not cited as related papers.

3 Experiments

3.1 Data

We choose papers in NLP and ML domains in our
experiments because it’s easy for us to analyze re-
sults, and we are not the most harsh community
in Computer Science: the average review score in
our corpus is 3.3 out of 5 while it is 2.5/5 in the
computer system area (Anderson, 2009). In ad-
dition to the review corpus constructed by (Kang
et al., 2018), we have collected additional paper-
review pairs from openreview4 and NeurIPS5. In
total, we have collected 8,110 paper and review
pairs as shown in Table 3. We construct the back-
ground KG from 174,165 papers from the open
research corpus (Ammar et al., 2018). Table 4
shows the data statistics of background KGs.
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Figure 3: The average number of new knowledge el-
ements in ACL2017 test papers given the background
KG constructed from (1965∼cutoff year)

3.2 Score Prediction Performance

We use the ACL2017 dataset in the score prediction
task because it has complete score annotations for
each review category. We follow the data split of
PeerRead (Kang et al., 2018)6. Unlike PeerRead
which uses multiple review scores for the same in-
put paper, we use the rounded average score of each
category as the target score. Table 5 shows that our
model trained from carefully selected constructed
reviews has already reached a prediction accuracy
of 71.43% for overall recommendation, which is
very close to the human inter-annotator agreement

4We collect ICLR paper using open review API https:
//openreview-py.readthedocs.io/

5https://papers.nips.cc/
6We exclude the training pairs that we fail to run IE system

on. The test set remains the same as (Kang et al., 2018).

https://openreview-py.readthedocs.io/
https://openreview-py.readthedocs.io/
https://papers.nips.cc/
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Conference Year
2013 2014 2015 2016 2017 2018 2019 2020

ICLR - - - - 404 874 1,342 2,067
NeurIPS 342 399 389 545 655 963 - -

ACL - - - - 130 - - -

Table 3: Data Statistics for Paper Review Corpus (# of papers)

Years (1965∼) 2011 2012 2013 2014 2015 2016 2017 2018 2019

# of Entities 535,075 585,321 628,713 683,686 737,878 801,740 870,992 950,457 1,008,955
# of Relations 160,123 175,780 188,876 205,898 222,592 242,312 263,827 288,805 307,636

Table 4: Data Statistics for Background Knowledge Graphs since 1965

Category Human
Kappa
Score

Human Average
Inter Annotator

Agreement

CNN (Kang et al., 2018) GRU with Abstract GRU with Evidence
Score
Acc.

Decision
Acc. MSE Score

Acc.
Decision

Acc. MSE Score
Acc.

Decision
Acc. MSE

Recommendation 33.63 72.2 71.43 57.14 0.714 71.43 57.14 0.714 85.71 71.43 0.571
Appropriateness 100 100 85.71 100 0.143 85.71 100 0.143 85.71 100 0.143
Meaningful
Comparison 100 100 57.14 57.14 0.857 57.14 71.42 0.857 71.43 71.43 0.714

Soundness 100 100 42.86 42.86 1.86 14.28 85.71 0.857 71.43 85.71 0.714
Novelty 100 100 42.86 42.86 2.29 28.57 28.57 2.43 71.43 71.43 0.714
Clarity 70.20 86.11 42.86 71.43 1.00 42.86 71.43 1.00 42.86 71.43 1.00
Potential
Impact 100 100 85.71 100 0.143 85.71 100 0.571 85.71 100 0.143

Table 5: Score Prediction Accuracy (%) and Mean Square Error (MSE) on ACL2017 Data Set

(72.2%) and dramatically advances state-of-the-art
approaches in most categories. Our model also
produces the lowest mean square errors for all cat-
egories.

Our knowledge graph synthesis based approach
is particularly effective at predicting Novelty score
and achieves the accuracy of 71.43%, which is
much higher than the accuracy (28.57%) of all
other automatic prediction methods using paper
abstracts only as input. In Figure 3 we show the
average number of new knowledge elements of our
test set consisting of ACL2017 papers, when it’s
reviewed during different years. When the back-
ground KG includes newer work, the novelty of
these papers decreases, especially after 2017. This
indicates that our approach provides a reliable mea-
sure for computing novelty.

As a fun experiment, we also run ReviewRobot
on this paper submission itself. The predicted re-
view scores are 5, 3, 4, 3, 4, 4, and 4 for Appro-
priateness, Meaningful Comparison, Soundness,
Novelty, Clarity, Potential Impact and Overall Rec-
ommendation, respectively, which means this paper
is likely to be accepted.

3.3 Comment Generation Performance
For the system generated review comments for
50 ACL2017 papers, we ask domain experts to
check whether each comment is constructive and
valid. Two researchers independently annotate the
reviews and reach the inter-annotator agreement of
92%, 92%, and 82% for Novelty, Summary and
Related Work, respectively. One expert annotator
performs data adjudication. The percentages of
constructive and valid comments are 70.5%, 44.6%
and 41.7% for Summary, Novelty and Meaningful
Comparison, respectively. Human assessors also
find that for 20% of these papers, human reviewers
do not suggest missing related work for Meaning-
ful Comparison, while ReviewRobot generates con-
structive and informative comments. For example,
the human reviewer states “The paper would be
stronger with the inclusion of more baselines based
on related work7”, but fails to provide any useful
references. In the following we compare the hu-
man and system generated reviews for an example
paper (Niu et al., 2017):
Summary

7Review for (Niu et al., 2017) https://github.
com/allenai/PeerRead/blob/master/data/
acl_2017/train/reviews/318.json

https://github.com/allenai/PeerRead/blob/master/data/acl_2017/train/reviews/318.json
https://github.com/allenai/PeerRead/blob/master/data/acl_2017/train/reviews/318.json
https://github.com/allenai/PeerRead/blob/master/data/acl_2017/train/reviews/318.json
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* [SYSTEM] The paper proposes novel skip-
gram, attention scheme, sememe-encoded models
and word representation learning for NLP tasks.
The authors uses linguistic common-sense knowl-
edge bases.

* [HUMAN] This paper proposes the use of
HowNet to enrich embeddings.
Novelty

* [SYSTEM] The paper proposes novel attention
scheme and sememe-encoded models.

* [HUMAN] I see the main contribution of the
work to be the results which show that we can
learn better word representations (unsure about
wsi) by modeling sememe information than other
competitive baselines.
Meaningful Comparison

* [SYSTEM] The following related papers are
missing:

1. About low-dimensional semantic space:

(a) Unsupervised approximate-semantic vo-
cabulary learning for human action and
video classification (Zhao and Ip, 2013)
Qiong Zhao and Horace HS Ip. 2013.
Unsupervised Approximate-semantic Vo-
cabulary Learning for Human Action
and Video Classification. Pattern Recog-
nition Letters, 34(15):1870–1878.

2. About sememes:

(a) Chinese Word Sense Disambiguation
with PageRank and HowNet (Wang et al.,
2008): Jinghua Wang, Jianyi Liu, and
Ping Zhang. 2008. Chinese Word
Sense Disambiguation with PageRank
and HowNet. In Proceedings of the
Sixth SIGHAN Workshop on Chinese
Language Processing.

(b) A maximum entropy approach to
HowNet-based Chinese word sense
disambiguation (Wong and Yang, 2002):
Ping Wai Wong and Yongsheng Yang.
2002. A Maximum Entropy Approach
to HowNet-based Chinese Word Sense
Disambiguation. In COLING-02: SE-
MANET: Building and Using Semantic
Networks.

3. About word similarity and word analogy:

(a) Open IE as an Intermediate Structure for
Semantic Tasks (Stanovsky et al., 2015):

Gabriel Stanovsky, Ido Dagan, et al.
2015. Open IE as an Intermediate Struc-
ture for Semantic Tasks. In Proceedings
of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and
the 7th International Joint Conference on
Natural Language Processing (Volume 2:
Short Papers), pages 303–308.

* [HUMAN] The paper would be stronger with
the inclusion of more baselines based on related
work.

3.4 Remaining Challenges and Limitations

The quality of ReviewRobot is mainly limited
by state-of-the-art Information Extraction perfor-
mance for the scientific literature domain. In the
future we plan to annotate more data to cover more
dimensions for paper profiling (such as goal and
main contribution), and more fine-grained knowl-
edge types to improve the extraction quality. For
example, for the NLP domain we can extract finer-
grained subtypes: a model can include parameters,
components and features. The goal of an NLP pa-
per could belong to: “New methods for specific
NLP problems”, “End-user applications”, “Cor-
pora and evaluations”, “New machine learning
methods for NLP”, “Linguistic theories ”, “Cog-
nitive modeling and psycholinguistic research” or
“Applications to social sciences and humanities”.
Our current evidence extraction framework also
lacks of a salience measure to assign different
weights to different types of knowledge elements.

Paper review generation requires background
knowledge acquisition and comparison with the
target paper content. Our novel approach on con-
structing background KG has helped improve the
quality of review comments on novelty but the KG
is still too flat to generate comments on soundness.
For example, from the following two sentences in
a paper: “Third, at least 93% of time expressions
contain at least one time token.”, and “For the re-
laxed match on all three datasets , SynTime-I and
SynTime-E achieve recalls above 92%.”, a knowl-
edgeable human reviewer can infer 93% as the
upper bound of performance and write a comment:
“Section 5.2 : given this approach is close to the
ceiling of performance since 93 % expressions con-
tain time token , and the system has achieved 92 %
recall , how do you plan to improve further?”. Sim-
ilarly, ReviewRobot cannot generalize knowledge
elements into high-level comments such as “deter-
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ministic” as in “The tasks 1-5 are also completely
deterministic”.

ReviewRobot still lacks of deep knowledge rea-
soning ability to judge the soundness of algorithm
design details, such as whether the split of data set
makes sense, whether a model is able to generalize.
ReviewRobot is not able to comment on missing
hypotheses, the problems on experimental setting
and future work. ReviewRobot currently focuses
on text only and cannot comment on mathematical
formulas, tables and figures.

Good machine learning models rely on good
data. We need massive amounts of good human re-
views to fuel ReviewRobot. In our current approach,
we manually select a subset of good human review
sentences that are also supported by corresponding
sentences in the target papers. This process is very
time-consuming and expensive. We need to build a
better review infrastructure in our community, e.g.,
asking authors to provide feedback and rating to
select constructive reviews as in NAACL20188.

4 Related Work

Paper Acceptance Prediction. Kang et al. (2018)
has constructed a paper review corpus, PeerRead,
and trained paper acceptance classifiers. Huang
(2018) applies an interesting visual feature to com-
pare the pdf layouts and proves its effectiveness
to make paper acceptance decision. Ghosal et al.
(2019) applies sentiment analysis features to im-
prove acceptance prediction. The KDD2014 PC
chairs exploit author status and review comments
for predicting paper acceptance (Leskovec and
Wang, 2014). We extend these methods to score
prediction and comment generation with detailed
knowledge element level evidence for each specific
review category.
Paper Review Generation. Bartoli et al. (2016)
proposes the first deep neural network framework
to generate paper review comments. The genera-
tor is trained with 48 papers from their own lab.
In comparison, we perform more concrete and ex-
plainable review generation by predicting scores
and generating comments for each review category
following a rich set of evidence, and use a much
larger data set. Nagata (2019) generates comment
sentences to explain grammatical errors as feed-
back to improve paper writing. (Xing et al., 2020;
Luu et al., 2020) extract paper-paper relations and

8https://naacl2018.wordpress.com/2018/02/26/acceptance-
and-author-feedback/

use them to guide citation text generation.

Review Generation in other Domains. Auto-
matic review generation techniques have been ap-
plied to many other domains including music (Tata
and Di Eugenio, 2010), restaurants (Oraby et al.,
2017; Juuti et al., 2018; Li et al., 2019a; Bražinskas
et al., 2020), and products (Catherine and Cohen,
2018; Li et al., 2019a; Li and Tuzhilin, 2019; Dong
et al., 2017; Ni and McAuley, 2018; Bražinskas
et al., 2020). These methods generally apply a
sequence-to-sequence model with attention to as-
pects and attributes (e.g. food type). Compared to
these domains, paper review generation is much
more challenging because it requires the model to
perform deep understanding on paper content, con-
struct knowledge graphs to compare knowledge
elements across sections and papers, and synthe-
size information as input evidence for comment
generation.

Controlled Knowledge-Driven Generation.
There have been some other studies on text
generation controlled by sentiment (Hu et al.,
2017), topic (Krishna and Srinivasan, 2018),
text style (Shen et al., 2017; Liu et al., 2019a;
Tikhonov et al., 2019), and facts (Wang et al.,
2020). The usage of external supportive knowledge
in text generation can be roughly divided into the
following three levels: (1) Knowledge Description,
which transforms structured data into unstructured
text, such as Table-to-Text Generation (Mei et al.,
2016; Lebret et al., 2016; Chisholm et al., 2017;
Sha et al., 2018; Liu et al., 2018b; Nema et al.,
2018; Wang et al., 2018a; Moryossef et al., 2019;
Nie et al., 2019; Castro Ferreira et al., 2019; Wang
et al., 2020; Shahidi et al., 2020) and its variants in
low-resource (Ma et al., 2019) and multi-lingual
setting (Kaffee et al., 2018a,b), Data-to-Document
(Wiseman et al., 2017; Puduppully et al., 2019;
Gong et al., 2019; Iso et al., 2019), Graph-to-
Text (Flanigan et al., 2016; Song et al., 2018; Zhu
et al., 2019; Koncel-Kedziorski et al., 2019), and
Topic-to-text (Tang et al., 2019), and Knowledge
Base Description (Kiddon et al., 2016; Gardent
et al., 2017; Koncel-Kedziorski et al., 2019); (2)
Knowledge Synthesis, which retrieves knowledge
base and organizes text answers, such as Video
Caption Generation (Whitehead et al., 2018),
KB-supported Dialogue Generation (Han et al.,
2015; Zhou et al., 2018; Parthasarathi and Pineau,
2018; Liu et al., 2018a; Young et al., 2018; Wen
et al., 2018; Chen et al., 2019; Liu et al., 2019b),
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Knowledge-guided comment Generation (Li et al.,
2019b), paper generation (Wang et al., 2018b,
2019; Cachola et al., 2020) , and abstractive
summarization (Gu et al., 2016; Sharma et al.,
2019; Huang et al., 2020).

5 Application Limitations and Ethical
Statement

The types of evidence we have designed in this
paper are limited to NLP, ML or related areas, and
thus they are not applicable to other scientific do-
mains such as biomedical science and chemistry.
Whether ReviewRobot is essentially beneficial to
the scientific community also depends on who uses
it. Here are some example scenarios where Re-
viewRobot should and should not be used:

• Should-Do: Reviewers use ReviewRobot
merely as an assistant to write more construc-
tive comments and compare notes.

• Should-Do: Editors use ReviewRobot to as-
sist filtering very bad papers during screening.

• Should-Do: Authors use ReviewRobot to get
initial feedback to improve paper writing such
as adding missing references and highlighting
the recommended novel points.

• Should-Do: Researchers use ReviewRobot to
perform literature survey, find more good pa-
pers and validate the novelty of their papers.

• Should-Not-Do: Reviewers submit Re-
viewRobot’s output without reading the paper
carefully.

• Should-Not-Do: Editors send ReviewRobot’s
output and make decisions based on it.

• Should-Not-Do: Authors revise their papers
to fit into ReviewRobot’s features to boost re-
view scores. For example, authors should not
deliberately cite all related papers or add irrel-
evant new terms to boost their review scores.

6 Conclusions and Future Work

We build a ReviewRobot for predicting review
scores and generating detailed comments for each
review category, which can serve as an effective as-
sistant for human reviewers and authors who want
to polish their papers. The key innovation of our
approach is to construct knowledge graphs from
the target paper and a large collection of in-domain

background papers, and summarize the pros and
cons of each paper on knowledge element level
with detailed evidence. We plan to enhance Re-
viewRobot’s knowledge reasoning capability by
building a taxonomy on top of the background KG,
and incorporating multi-modal analysis of formu-
las, tables, figures, and citation networks.
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