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Abstract

In recent years, referring expression genera-

tion algorithms were inspired by game theory

and probability theory. In this paper, an al-

gorithm is designed for the generation of re-

ferring expressions (REG) that base on both

models by integrating maximization of utilities

into the content determination process. It im-

plements cognitive models for assessing visual

salience of objects and additional features. In

order to evaluate the algorithm properly and

validate the applicability of existing models

and evaluative information criteria, both, pro-

duction and comprehension studies, are con-

ducted using a complex domain of objects, pro-

viding new directions of approaching the eval-

uation of REG algorithms.

1 Introduction

Probabilistic and game-theoretic approaches to

REG base on the maximization of utilities (Frank

and Goodman, 2012; Goodman and Frank, 2016) or

on corpus frequencies of attributes that are selected

according to random float values (e.g. the PRO

model, Gompel et al., 2019). These models and

their humanlikeness of production were tested on

domains of limited size, mostly three objects, and

a minimal set of 3 to 4 properties. The parameters

of these models are learned using Maximum Like-

lihood Estimation. Due to the non-deterministic

nature of probabilistic models, evaluation metrics

used for deterministic models, especially the Dice

Score, cannot be applied. Therefore, the likelihood

of the predicted distribution, given the observed

data, is computed using the Bayesian Information

Criterion (BIC). With a limited set of possible re-

ferring expressions, the likelihood function, which

bases on the multinomial distribution, produces

reasonable results, but an increasing complexity of

the domain may necessitate a different evaluation

approach.

Empirical data against which the reference

games model (Frank and Goodman, 2012; Franke

and Jäger, 2016) was tested has been collected in

betting games in a forced-choice paradigm. Such

data sets are not only non-reproducible for larger

domains, but also circumvent the integration of un-

derlying cognitive processes of content determina-

tion into the model. Hence, the aim of this paper is

to develop a new probabilistic REG-algorithm that

is able to handle the choice of complex attributes

and spatial relations on the basis of a cognitively

motivated tradeoff between salience, preference

and discriminatory power (DP). An important as-

pect of this tradeoff must be the possibility of gen-

erating minimal and overspecified expressions in

complex domains for overcoming the deficiency

of models rooted in game theory, which typically

produce unary expressions only. Overspecification

is of essential importance for a humanlike model-

ing of reference, since overspecification has been

proved to facilitate the identification task for the

hearer if the redundant information is easily acces-

sible (Paraboni et al., 2017).

In what follows, first the domain underlying

the experimental studies will be presented. Then

the production survey is described. Subsequently,

cognitive models for the approximation of visual

salience are introduced which are used in the

OMEGA algorithm. Section 5 gives a detailed de-

scription of the developed model. Section 6 eval-

uates the algorithm performance in both human-

likeness and comprehension, giving insight into

problems and advantages of deployed evaluation

methods.

2 The reference domain

The domain for the empirical studies consists of

3D geometric primitives with different properties.

Atomic properties are SHAPE and NAME TAG,
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while SIZE is a scalar property whose value is de-

termined in the context, and COLOUR relies on the

calculation of shades for RED, BLUE and GREEN.

The light and dark shades are each prefixed with

the according specifier light- or dark-. Two fur-

ther relational properties are given as coordinates

for x-axis and y-axis. The design of this corpus is

different from other well-renowned corpora (e.g.

TUNA) in several important aspects. Colors pro-

vide different degrees of visual difference. Size is

varying by fixed ratios. The domain on which the

production data from participants is collected must

agree with the domain for the comprehension study.

Last but not least, the type attribute is fixed as gift

box, such that the generation of the SHAPE attribute

does not vary.

ATTRIBUTE VALUES

colour
{(light-, dark-) blue, red, green,

grey, black, brown}
type {ball, cube, torus, cone, cylinder, flower}
size {0.5, 0.75, 1}
tag {circle, square}
x-coord. {1,2,3,4,5}
y-coord. {1,2}

Table 1: object domain: attributes and their values

Each object is rendered with each possible at-

tribute combination in a 3D setting with identical

lighting and orientation, which results in a domain

with 360 different objects.

Figure 1: Six sample objects from the domain

In Figure 1, six sample objects are given. As-

suming that the top left picture is the target, the

referring expression the cone would be insufficient

for identification; a minimal expression would con-

tain expressions for COORDINATES or COLOUR,

SIZE and TYPE. Adding further attributes to these

combinations results in overspecification, e.g. the

small light-blue cone in the top row.

3 Empirical production survey

A web-based empirical survey has been conducted

in order to collect production data from native

speakers of English. This data reveals the attribute

choice and reference habits of the participants.

The production survey is split into two subexper-

iments. In the first part, speakers are rating the

visual salience of attribute values for each attribute

separately, e.g. in the set of COLOUR values, partic-

ipants rate the salience of each value within the set

of colours. Additionally, for SIZE and COLOUR, the

correlation between the gradience and the salience

ratio is assessed by letting the participants rate the

visual difference between values. An example of

this assessment of the visual difference is given in

Figure 2.

Figure 2: surface of the production survey, part I: rating

the visual difference between colour gradients

The intention behind this survey design is to pro-

vide an attribute-specific rating of visual salience

or prominence, respectively. These values serve as

input to the REG models presented in the following

sections. The downside of this is the dependence

of models on corpora for each unseen domain. For

this reason, section 4 proposes cognitive models

that may replace corpus data and make REG mod-

els independent from corpora and collected produc-

tion data. The second part of the study comprises

production sessions. In each session, between 3

and 9 objects are depicted in a grid (see Figure 1).

The speaker’s task is to compose an expression that

uniquely identifies the target object which is high-

lighted by a golden frame. Participants were able

to select and deselect attribute values, candidate

objects for spatial relations and in turn attributes

for the description of the spatially related object.

Attribute selection is restricted to the choice from

domain attributes and their values in order to avoid

the necessity of normalizing free text input after

collecting the corpus data. Participants could also

produce a surface realization from their selected
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attributes. An intriguing fact is that this restric-

tion of attribute selection does not trigger a shift

in preferential usage of attributes in comparison to

e.g. the TUNA corpus and other psycholinguistic

studies (e.g. Tarenskeen et al., 2015). The pro-

duction subdomains of 10 sessions were fixed, 15

subsequent sessions were randomized. The web

application allowed for the integration of identical

objects several times, such that identification may

be possible only via using coordinates. Via Prolific,

100 native speakers of English from the United

Kingdom were acquired. The produced corpus con-

sists of about 2500 production sessions. The pie

chart in figure 3 reveals the amount of overspecified

phrases with 60% of all produced expressions in

the data. The capability of producing overspecified

expressions is consequently of high importance for

humanlikeness in the REG task. The outer circle is

divided into expressions with and without spatial

relations, while the inner circle visualizes the sum

of the respective generation quality.

Figure 3: Generation qualities of the production corpus

4 Cognitive models for approximation of

visual salience

A well justified metric is needed in order to model

the perceptual prominence of each object as a sub-

stitute for salience ratings. If this salience is a joint

effect of the visual salience of the object’s prop-

erties, a utility function for a REG model needs

to integrate a computation of how much the ob-

ject springs to the speaker’s eye. For size, this is

straightforward, since the domain objects were ren-

dered with three different size factors. The prior

production survey reveals a linear relation between

the increase in size factor and the increase in per-

ceptual size difference. Van Deemter and his co-

authors (2016, p.141; van Gompel et al., 2014)

prove that in REG, the ratio of size difference has

essential importance on the production probability

of this property. Therefore, for a REG model, this

ratio models the salience for size in a set of objects.

For COLOUR, comparing values is more complex.

Cognitive experiments on colour perception led to

the conception of the CIElab colour space (Mokrzy-

cki and Tatol, 2011). Formulas have been construed

that calculate the difference between two colours,

the ∆E value, that humans may still perceive. Mul-

tiple revisions of the CIElab ∆E functions exist

with different terms for compensating hue and sat-

uration, but they all base on the Euclidean distance

of colours which are represented as 3-dimensional

vectors in the CIElab colour space. These ∆E func-

tions allow to compute the difference between two

colours in a cognitively reasonable way and can be

used in a utility function.

A challenge to be faced is that in realistic set-

tings corresponding metrics are required for other

attributes as well, e.g. shapes. Although not im-

plemented in the model presented in this paper,

attempts are made to formalize the similarity mea-

sures between shapes by analysing their vertices

(Mori et al., 2001) and points on the contour (Ling

and Jacobs, 2007). Latecki and Lakaemper (2000)

developed a model for shape comparison that is

close to cognitive processes of noisy shape percep-

tion. Relational attributes may be modeled using an

approach comparable to Kelleher and Genabith’s

(2004) measure of assessing the distance towards

the center of the visual field, but this is subject to

further research. The main advantage of approxi-

mating visual salience with these cognitive models

is that values are calculated in situ on the present

visual field, instead of optimizing parameters such

that they fit a large data set best. In this way, re-

ferring expressions may be generated in a more

individual way and be tailored to the present do-

main, while other methods rather capture the whole

data on average. Finally, these cognitive models

make REG models independent from experimental

studies as given in section 3 under the premise that

they perform equally well.

5 The OMEGA model

The overspecifying, utility maximizing referring

expression generation algorithm, short OMEGA, is

an incremental, non-deterministic and probabilistic

algorithm which uses a utility function in order to

calculate which attributes are the most utile ones

for production. This includes the choice of a can-

didate object for spatial relations and the attribute

selection for the description of this candidate.
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At its core, a utility function as used in refer-

ence games (Frank and Goodman, 2012) computes

production probabilities which guide content de-

termination. The concept of this utility function is

crucial for the performance of the whole model. At

this point, an observation made on the empirical

data from the prior study becomes a decisive factor.

When high DP coincides with high salience, the

usage of the respective attribute increases drasti-

cally, while high DP for non-salient attributes does

not influence attribute selection significantly. Ad-

ditionally, van Deemter (2016) and van Gompel

et al. (2014) show that larger proportional differ-

ences in gradable attributes, e.g. SIZE, trigger a

higher usage in referring expressions than small

differences that are cognitively less easily assess-

able. After all, this is the interference between DP

and salience. The ‘object-distractor contrast’, as

Mast (2016, p.140) terms it, in regard to a specific

attribute is influenced both by the number of dis-

tractors that provide the same attribute value as

well as by the visual distinctiveness of the attribute

value in comparison with other values of the same

attribute that apply to the distractors. Therefore,

salience, preference and DP must be taken balanced

when defining the utility function.

The salience computation which is used in the

utility definition of the OMEGA algorithm inte-

grates the cognitive models of perception presented

in the previous section. The formulae below de-

scribe how the salience values are computed. The

attribute value of the target object is compared to

the values of the distractors in regard to that at-

tribute and the average value is calculated. There-

fore, salience is represented as the average visual

difference between the target and the set of dis-

tractors D. The more different, the higher is the

salience. The factor α projects the ∆E value onto

the interval of numbers between 0 and 1, c is a

colour vector.

SALcolour(c,D) =

∑
i
(α∆E(c, ci))

|D|
(1)

For size, the absolute value of the difference

between s and si is needed in order to prevent

negative values when s < si.

SALsize(s,D) =

∑
i
abs(s− si)

|D|
(2)

The same method is used for discriminatory

power which is a ratio of how many distractors an

attribute value rules out. Considering the fact that

attribute selection is performed across attributes

(and not across attribute values), it is possible to

calculate for each attribute, of which a value applies

to the target, what the average DP is in comparison

with values of the respective attribute that apply to

the distractors.

AV GDP (e,D) =

∑
e
max(0, DP (e,D)−DP (ei, D))

|D|
(3)

In order to prevent negative utilities, the function

only adds the difference of e to some ei ∈ D to

the sum if the result is > 0. In other words, if the

DP of the target attribute is smaller than the DP

of a competitive attribute, the negative distance is

not added, but the average DP nevertheless is de-

creased since it is normalized against the number

of all competitive attributes, i.e. including those

with higher DP. For the OMEGA model, the utility

function u is defined as the product of the average

DP and the salience of the value vA of attribute A

that is true of the target object in domain D. To

this product, the preference degree estimated by

the frequency of attributes in the production data

can be added under the assumption that preference

is not independent from the joint effect of salience

and DP. The decision to integrate preference is also

motivated by the findings of Ferreira and Paraboni

(2014), who prove that the integration of speaker

preferences enhances the quality of their SVM clas-

sifiers for REG.

U(vA, A,D) = AV GDP (vA, D)

∗SALA(vA, D) + Pref(A)
(4)

In RSA and other log-linear models a logarithm

is used in order to map large utility values to a

smaller interval of results (Qing and Franke, 2015;

Franke and Degen, 2016). This has the positive ef-

fect of assigning the lowest possible utility, namely

negative infinity, to attributes with a literal interpre-

tation of 0, or, as in OMEGA, irrelevant information.

In combination with softmaximizing utilities, the

model conforms with Grice’s Maxim of Quantity.

Softmaximization which is deployed in OMEGA

means turning the utilities into weighted produc-

tion probabilities, as shown in the formula (5).

P (e|r,D) =
exp(λUtility(e; r,D))

∑
ei∈D

exp(λUtility(ei; r,D))
(5)

By means of the chain rule we are able to calcu-

late the probabilities of all candidate referring ex-

pressions e which are sequences of attribute values
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a that are true of the referent. After attribute value

a1 is selected, the set of distractors D of domain M

is updated, as well as the attribute a1 belongs to is

removed from the set of selectable properties. This

probability is multiplied with the result of calcu-

lating the probability of a2 given the updated data

structures and the already selected attributes, and

so on until an has been achieved. This mechanism

permits the OMEGA model to produce a probability

distribution over all possible expressions that are

true of the target.

A closer analysis of the pseudo code in algorithm

1 will show how OMEGA implements the selection

of reference objects and production of spatial re-

lations, as well as the enrichment with redundant

attributes for overspecification.

Line 4 initializes two empty data structures e

and erel for attributes that are selected during the

production process. In line 5, relc is a container

for storing possible candidates from the set of dis-

tractors that may be used for a spatial relation. The

subsequent while-loop (lines 6 to 14) calculates

for each attribute a in the set of attributes A what

production probability it provides in the given vi-

sual field. In line 9, the production probability is

calculated, which integrates the utility function de-

scribed earlier as well as the cognitive models for

salience approximation. If the probability is higher

than the one of the previous attribute, the maxi-

mally probable attribute is replaced with a. Then,

data structures are updated. If some distractor is

found for which the production probability for the

present attribute a is larger then for the target, it is

stored as a candidate for spatial relations (line 10).

The while-loop terminates when either the set of

distractors M or the set of attributes A is empty. In

line 15, if some candidate for spatial relations has

been found, OMEGA is recursively called on that

object. Otherwise, the overspecification process

starts (line 18). While overspecification is selected

and A is not empty, maximal probable attributes are

added to the expression using the same mechanism

as in the first while loop.

A possible point of criticism is that the usage of

the formula for production probability may not be

suitable for overspecification, since the utility tries

to calculate the average salience and DP values on

an empty set of distractors. In full awareness of

this circumstance the functions for salience and DP

are intended to integrate default values. For DP,

the default value is 1, while for salience, the prior

Algorithm 1 Overspecifying Utility-Maximizing Referring
Expression Generation Algorithm (OMEGA)

1: Input: reference domain D with target object r and a
non-empty set of distractors M, a set of attributes A at
least one of whose values is true of r.

2: Output: the referring expression with maximal probabil-
ity

3: function OMEGA(r, D, M, A, Ω)
4: e, erel← [ ]
5: relc← [ ]
6: while A 6= ∅ ∧M 6= ∅ do
7: amax← NONE

8: for a ∈ A do
9: p← P(a|r, D)

10: relc← relc ∪ {r
′|r′ ∈M ∧ P(a|r′,D) > p}

11: if p > amax then
12: amax← a

13: e.insert(a)
14: update M , A

15: if relc 6= ∅ then
16: rrel← ARGMAX(relc)
17: erel← OMEGA(rrel, D, M , Arel, Ω)

18: while RANDOMBOOLEAN(Ω) is True ∧ A 6= ∅ do
19: a′

max← NONE

20: for a′ ∈ A′ do
21: p′← P(a′|r, D)
22: if p′ > a′

max then
23: a′

max← a′

24: e.insert(a′)
25: update A′

26: return e, erel

ratings are used. In summary this means, that the

overspecification process is guided exceptionally

by salience and preference, which is comparable

to PRO and IA (Dale and Reiter, 1995; Reiter and

Dale, 1992), while also being in perfect agreement

with psycholinguistic studies on overspecification

in REG (Tarenskeen et al., 2015). A legitimate

criticism is indeed, that OMEGA does not cover

the cases correctly where both target description

and relational description are underspecified, but

producing a minimal expression in joint effect. A

modification to OMEGA that allows to cover this

small number of expressions found in the empir-

ical data remains open for further research. An

intriguing point is that both selection steps share

the same set of attributes, meaning that for over-

specification the residual attributes are used that

have not been selected beforehand. As a result, at-

tributes that were not produced in the first step, for

reasons of an average DP value close or equal to

zero, are reconsidered in the overspecification step.

Nonetheless OMEGA makes a giant leap towards

independence from corpus data by implementing

the cognitive models of salience approximation as

a substitute for corpus statistics. The evaluation

in the next section gives insight in which way the
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cognitive models influence the performance of the

model in comparison to its competitors. Table 2

lists the technical differences between the competi-

tor models and OMEGA.

feature OMEGA PRO IA

parameters 1

|A|+1 where
A is the set of

attributes
0

decision model prob. prob. determ.

spatial
descriptions

yes no no

training
corpus

statistics
optimization

& MLE
corpus

statistics

cognitive
measures

yes no no

DP yes no no

Salience yes no no

Preference yes yes yes

Table 2: Comparison of the competitor models

On the domain displayed in figure 1, these al-

gorithms may generate different expressions. IA

generates deterministically according to the prefer-

ence order until all distractors are ruled out. This

may also trigger overspecification. For the top left

object as target, IA will add attributes according

to preference degree, namely first COLOUR and

TYPE, then SIZE. Since this is not discriminating

yet, it further adds NAME TAG, resulting in a min-

imal expression the small light-blue cone with a

circular name tag’. Since IA is deterministic, this

expression is generated at every instance. PRO and

OMEGA produce a probability distribution over

all possible expressions. PRO offers optimized

parameters for each attribute plus the overspecifi-

cation parameter, which are fine-tuned to match

a full data set. In this case, the visual difference

between the light-blue and light-green objects is

rather unsalient, except for the red sphere the vi-

sual field is rather unichrome. While PRO uses the

preference degree optimized for the full data set

in order to probabilistically choose to (or not to)

add colour, OMEGA recognizes the small visual

salience on the domain in situ and assigns to colour

a low production probability accordingly. Since

DP influences the selection as well, highly discrim-

inating attributes, e.g. coordinates, are considered.

COLOUR and TYPE are being reconsidered only

for the overspecification process. Additionally, the

visual prominence of the NAME TAG attribute with

the value circular for the target object is diminish-

ingly small, although it has highest DP. PRO may

consider this attribute as well, while OMEGA iden-

tifies the low perceptive recognizability, resulting

in a tiny salience value, which decreases the pro-

duction probability. Since OMEGA recognizes the

comparably far more salient object, “the red sphere”

with both unique and highly salient attribute values

for COLOUR and TYPE, OMEGA will add a spatial

description to the expression, resulting in, e.g., the

leftmost light-blue cone to the left of the red sphere.

6 Evaluation

For evaluation, the OMEGA model has been tested

competitively against the PRO model and the stan-

dard IA algorithm. Both, humanlikeness in pro-

duction and performance in a comprehension task,

have been evaluated.

6.1 Humanlikeness

For the production side, the Dice Score is not appli-

cable due to the non-deterministic nature of both

OMEGA and PRO. For this reason, often BIC is

used to evaluate the performance of the models

given the production corpus that is collected in the

empirical production survey (van Deemter, 2016).

For toy domains with only two or three attributes,

the number of possible referring expressions is lim-

ited to 3 and 9, respectively. A probability distribu-

tion over those categories is therefore less noisy

than in a domain with 6 attributes, which give

26 = 64 combinations of attributes. Due to the

number of categories, of which many did not occur

in the corpus while being generated by both algo-

rithms and vice versa, the Maximum-Likelihood-

Method (MLE) failed for both models. The reason

might be that the optimizer mainly modeled noise

due to data sparseness of the empirical data. There-

fore, the likelihood of the predicted distributions,

given the corpus data, could not be assessed. In-

stead of training model parameters, corpus frequen-

cies were used as model parameters for PRO, but

still the likelihood was 0. A fact that may explain

this conversion towards 0 is that even the proba-

bilities that are calculated from the data, given the

same data, have a likelihood of only 19.245e−51.

Gompel et al. (2019) list their values for experi-

ments in a scenario that equals the reference games

by Franke and Jäger (2016). In this simple domain,

the smallest likelihood listed is about 4.9 * 10−69,

which indicates that the likelihood on large do-

mains with far more categories might be too small

to be represented by a float value. Dice Score is

inapplicable but may serve as a blueprint for an

evaluation method that is at least capable of ap-
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proximating the performance of the models.

PRO and OMEGA are both models that predict a

probability distribution over a discrete number of

possible expressions. The empirical data provides

about 2500 data points. A referring expression

of participant qi in session si is predicted by both

models on session si with a specific probability.

For each data point, it is possible to determine with

what chance it is produced by the models given

the domain and the referent. Instead of calculating

how likely the distribution predicted by a model

is, given the empirical data, which also entails the

interpretation of the empirical data as the ‘truth’

(Lewandowsky and Farrell, 2011, p.181), one can

at least calculate the average probability with which

the models would generate the referring expres-

sions produced by the participants.

PDice =

n∑

i=1

PM (ei|ri, Di)

N
(6)

Formula (6) captures the intuition behind this

criterion, which could be circumscribed as a prob-

abilistic Dice Score. The Model PM assigns a

probability to the expression ei that is contained

in data point i, given the corresponding referent ri
and the domain Di. By dividing the sum of these

probabilities by the number of data points N , the

formula calculates the average probability model

M assigns to the referring expressions that were

produced by the participants of the study.

Figure 4: Probabilistic Dice Score

The according graph (figure 4) not only reveals

that OMEGA performs better regarding this data set,

but also that some probabilities that PRO assigns to

expressions are negative, which means that some

calculations in the PRO model cause some of the

probabilities to get a negative polarity.

The reason for this is the optimization of param-

eters as probabilities for attributes, as well as the

mathematical operations including overspecifica-

tion eagerness. In figure (5), the probability of

producing a unary expression COLOUR is (c− e),
where c is the probability that is proportional to

the preference degree of COLOUR, whereas e is

the parameter of overspecification eagerness. After

optimization, the parameter for a rather unsalient

attribute may be optimized in such a way that c < e,

which causes c− e to be negative. Effectively, the

choice of subtraction or addition of a value e, that

is not a probability by definition, from or to a prob-

ability, is not only theoretically questionable, but

also leads to values that cannot be interpreted as

probabilities. Indeed, data sparseness may have

caused the optimizer to produce parameters that

provided this configuration of c < e, but the prob-

lem is definitely rooted in the subtraction and ad-

dition of the probabilities that are assigned to the

nodes of the decision tree. A possible remedy is

using multiplication instead, such that the model

is sound in the context of probability theory. Un-

fortunately, this has the downside of loosing both

the elegant difference in mathematically combining

overspecification eagerness with probabilities for

continued overspecification and termination of the

selection process.

Figure 5: PRO paths for a small domain with colour

(C), size (S) and border (B), where colour is discrimi-

nating

Nevertheless, the modification did not signif-

icantly change the performance of PRO for hu-

manlikeness. As described above, the evaluation

methods for REG algorithms on the basis of em-

pirical production data cannot be straightforwardly

applied to probabilistic, non-deterministic models

and larger domains. For BIC, data sparseness is

the main reason for failure, since MLE cannot pro-

duce reasonable parameter estimates if the likeli-

hood function provides no gradient. Dice Score

cannot be applied to non-deterministic algorithms,

since the score varies as much as the output does.

Nonetheless, instead of calculating the sequential

identity of expressions (Dice), the average proba-

bility can be determined which the models assign

to the referring expressions in the empirical data.
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6.2 Comprehension

Humanlikeness alone does not help to fully eval-

uate the performance of REG models. Human

speakers are not always optimal, e.g. due to error-

prone speaking. Evaluating humanlikeness only

would mean modeling humanlike reference without

knowledge of how well the referring expressions

are understood and serve the purpose of identifying

the target.

Another empirical study is necessary in order

to assess how well human speakers comprehend

the REs the models produce. Objective measures,

e.g. identification time and error rate, give insight

which model produces more optimal expressions

in regard to comprehension.

The setting of the comprehension study in which

the OMEGA model and its competitors are evalu-

ated is a sales dialogue in a store for custom gift

packages. A sales agent, which is simulated by

the REG models, guides the participant through

the survey and instructs him or her to find storage

units and gift packages contained in these stores.

The listener’s task is to find the storage and identify

the target object. The participant can freely move

around in the virtual environment and perceives

the rooms from the first person view. After iden-

tification of ten storage units and ten objects, the

survey ends. Throughout the sessions, the system

chooses randomly from the set of REG models, but

the ten object domains are identical to the 10 fixed

sessions in the production session in section 3.

For production of referring expressions, the sales

agent (the generation system respectively) has ac-

cess to the participant’s position in the room and his

direction of view. In this way, the model can give

precise directional expressions that are tailored to

the configuration of the virtual room and the partic-

ipant’s movements. Figure 7 depicts a screenshot

from the participant’s perspective on domain S1,

for which OMEGA generates the following expres-

sions:

1. “Please got to the storage to the right of the

antique column at the wall in front of you.”

2. “Yes, here it is. Now, please find the red cylinder-

shaped gift box.”

The sales agent gives feedback for each identifica-

tion. For storage units, the system recognizes the

participant’s proximity to the storage as well as the

direction of view. Participants identify gift boxes

in these storage units by clicking when the cursor

hovers above the object of their choice. Then, the

sales agent gives feedback and either directs to the

next storage on success or repeats the expression

on false identification.

In this implementation, the referring expressions

and instructions that are generated by the REG

models are given as audio input. This reduces iden-

tification onset due to different reading speed and

prevents distraction from the visual stimuli that

may occur if the REs are presented as text. Par-

ticipants can ask for repetition of the expression.

The simulated sales agent then utters the expres-

sion again, but updates the RE according to the new

player’s position and direction of view.

The virtual environment (see layout in Figure

6) is less complex than the setting used for the

GIVE challenges in regard to the room config-

uration (Koller et al., 2009,2010; Byron et al.,

2007,2009; Striegnitz et al., 2011), since the num-

ber of rooms is smaller and there are no separate

floors the participants need to be guided through.

This was intentional, because the focus is shifted

to referring expressions and not to instructions as

used in navigation systems.

The study was conducted on 36 participants with

sufficient knowledge of English. The participants

completed the study on a local computer with a

mouse, headset or loudspeaker. Two participants

were excluded. The resulting corpus consists of

680 completed identification tasks and the respec-

tive measures of identification time, error rate and

repetition counts.

Figure 6: Layout of the virtual environment for the

comprehension study

Average identification times are evaluated across

participants for object identification and storage

locating separately. The differences between PRO

and OMEGA as well as IA and OMEGA are signif-

icant, with OMEGA having the highest average in

identification times. The reason for this may be,
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that OMEGA is the only algorithm that is capable

of producing spatial relations. In case that partici-

pants await the speaker to finish, this may increase

the onset of the identification process. When spa-

tial relations are excluded, the identification times

for OMEGA with an average of 8.32 seconds are

significantly lower than for PRO with an average

of 10.62 seconds (F=4.006, p=0.04), while the dif-

ference between IA (average of 10.01 seconds) and

OMEGA is close to significance (F=3.39, p=0.06).

A straightforward conclusion to be drawn from this

is that spatial relations prolong the identification

process, while they may also increase proportion-

ally with the length of the referring expression.

Figure 7: example domain from the virtual environ-

ment from the participant’s perspective

For storage locating, there is no significant dif-

ference between PRO and OMEGA, but OMEGA

is significantly faster than IA (F=3.89, p=0.049).

An important observation to be made is that for

IA on storage locating, the lowest times are more

frequent than for PRO and OMEGA, but the dis-

tribution of times for IA is also much wider and

outliers above 50 seconds are more frequent than

for the competitors. A reason for this may be the

generation quality, since IA tends far more often

to produce minimal expressions, while PRO and

OMEGA frequently overspecify.

In each comprehension session, during object

identification, the application counted how often

the participant selected a wrong object. This error

rate is the second objective evaluation criterion to

be used for comparing which of the three models

performs better. Significance tests between data

sets reveal that no difference between models is

significant. Nonetheless, independent from the in-

clusion of spatial relations, OMEGA provides the

smallest averages of errors with 0.87 and 0.85 re-

spectively for expressions with and without spatial

relations. IA is close to OMEGA with an average

of 0.88 errors per session, while PRO is decently

higher with 1.017 errors on average. Exclusion of

spatial relations truncates the error rate at a maxi-

mum of three errors per session, but it also triggers

a higher average. Since the difference is once more

insignificant, no valid conclusion can be made, but

the difference between the distributions indicates

that spatial relations may prolong the identification

process, but also show a tendency to reduce the

error rate.

As one of the most important observations, a

comprehension study for REG models in a virtual

environment is subject to variance between partici-

pants as much as other empirical studies that collect

language data from human speakers and listeners.

Nevertheless, the comprehension study elicited a

significant difference between OMEGA and its com-

petitors in relation to the time that participants need

to identify the target object. The data set indicates

that OMEGA produces referring expressions that

are more optimized to listener comprehension than

PRO and IA, with a lower average error when spa-

tial relations are given.

7 Conclusion

The OMEGA model succeeds in integrating the

tradeoff between the most important parameters

of REG, namely discriminatory power, salience

and preference. The maximization of their joint

effect, which defines the utility, allows to incre-

mentally and probabilistically build referring ex-

pressions that may also contain spatial relations.

The OMEGA model outperforms both IA and PRO

in a comprehension task in a virtual environment.

Nonetheless, more research is needed to further

optimize the cognitive models that compute the

salience values for different attributes which are

needed for the OMEGA model. These measures

provide the advantage of calculating salience in

situ on the preset visual field, resulting in more

independence from empirical input and parameter

tuning at an improved performance level. One of

the most important findings is the inapplicability

of information criteria like BIC and optimization

methods like MLE to models, given complex do-

mains with numerous, realistically infinite, possible

referring expressions. This is a reasonable indica-

tor for the shift to comprehension as the standard

evaluative method for REG models.
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