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Abstract

Text style transfer aims to change an input sen-
tence to an output sentence by changing its
text style while preserving the content. Previ-
ous efforts on unsupervised text style transfer
only use the surface features of words and sen-
tences. As a result, the transferred sentences
may either have inaccurate or missing infor-
mation compared to the inputs. We address
this issue by explicitly enriching the inputs via
syntactic and semantic structures, from which
richer features are then extracted to better cap-
ture the original information. Experiments on
two text-style-transfer tasks show that our ap-
proach improves the content preservation of
a strong unsupervised baseline model thereby
demonstrating improved transfer performance.

1 Introduction

Text style transfer aims at rephrasing an input sen-
tence as an output sentence in a target style (e.g.
sentiment change from negative to positive), while
preserving the original content. The utility of text
style transfer has been shown in applications such
as personalized response generation (Zhou et al.,
2017; Niu and Bansal, 2018) and poetry generation
(Yang et al., 2018a). In particular, unsupervised
style transfer has been extensively explored due to
a lack of parallel corpora (Hu et al., 2017; Shen
et al., 2017; Yang et al., 2018b; John et al., 2019).

Most previous efforts on unsupervised text style
transfer have relied on separating the content from
the style of input texts. This was achieved via a
transfer model with multiple decoders (Fu et al.,
2018) or extra auxiliary losses (John et al., 2019)
to learn the disentangled representation vectors for
content and style respectively. The content vector
was later combined with the vector of the desired
style to produce the output.

While these prior studies have successfully
demonstrated the capability to adapt input texts

to the desired style, the proposed approaches suffer
from a significant loss of semantic content. For
instance, when a model takes as input “The lounge
is very outdated” to generate “The food is deli-
cious”, where the key information of the input (The
lounge) is missing in the output, the rendering of
the transfer becomes irrelevant.

To alleviate this problem, some studies sought to
explicitly replace the words related to the stylistic
aspect (e.g., sentiment) and retain other content-
related words (Xu et al., 2018a; Li et al., 2018; Wu
et al., 2019; Madaan et al., 2020). However, their
success was limited to specific situations where the
style words are explicit. When the negative senti-
ment is expressed implicitly, as in “The only thing
I was offered was a free dessert!!!” this approach
cannot have the desired effect.

A second direction to address the semantic loss
has been the use of back-translation (Prabhumoye
et al., 2018; Lample et al., 2019; He et al., 2020)
and/or reinforcement learning to preserve the input
content (Gong et al., 2019; Luo et al., 2019). Gen-
erally, these techniques involve a more complex
model training, adding another layer of difficulty
to obtain a strong style transfer model with robust
performance.

{My  biggest  complaint  ,  however  ,  is    what  happened  with  our  meal   .
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Figure 1: A parsed sentence with dependency arcs (top)
and edges that show semantic roles (bottom).

In this paper, we propose a new idea to preserve
the semantics by highlighting the core information
that should be preserved. This is performed during
the input text encoding stage. As shown in Figure 1,
we propose to include two types of structures—
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Figure 2: Text style transfer model with syntactic-semantic graph.

semantic roles and dependency trees—to represent
the core semantic and syntactic information. Se-
mantic roles directly capture the key information
in a sentence, such as its subject and object. In
the example of Figure 1, “my biggest complaint”
is identified as the subject of “is”. Meanwhile, a
dependency tree captures finer-grained word-level
relations. The relations “poss” and “amod” (posses-
sive pronoun and adjectival modifier respectively)
in this example reveal the syntactic structure within
the phrase “my biggest complaint”.

As a different way of encoding the input, we
consider a sentence, along with its dependency and
semantic role annotations, as a graph. We then use
a Graph Neural Network (GNN) (Marcheggiani
and Titov, 2017) to encode the sentence, noting the
reported success of GNNs in representing syntactic
and semantic structures (Marcheggiani and Titov,
2017; Song et al., 2018; Beck et al., 2018; Xu et al.,
2018b). For the overall architecture, the proposed
GNN layers can be stacked onto (or replace) the
encoder of an existing system. Previous advances
on style transfer were achieved by new designs
of the decoder or the learning framework (Shen
et al., 2017; Fu et al., 2018). Our approach can
be considered to be orthogonal to these previous
designs.

Preliminary experiments with available text style
transfer models on benchmark datasets validate the
utility of our input-encoding approach for preserv-
ing input semantic information when compared
with a strong baseline (Gong et al., 2019) without
such an encoding. We include the details of our
implementation in the supplementary material.

2 Baseline

The baseline we consider for this study is a recent
model (Gong et al., 2019) based on a generator-
discriminator framework. The generator transfers
sentences from the source style to the target style
and is in a tight feedback loop with a set of dis-

criminators that evaluate the quality of the trans-
ferred sentences. The reported results revealed its
competitive style transfer performance on available
benchmark datasets.
Generator. The generator is a typical seq2seq
model with a sequence encoder and a sequence de-
coder (Bahdanau et al., 2015). The encoder adopts
a Gated Recurrent Unit (GRU) to take in an input
sentence with words {x1, . . . , xN} and produce the
encoder states {h1, ...,hN} sequentially. The se-
quence decoder is another GRU with the attention
mechanism (Luong et al., 2015). At each time step
t, the decoder updates its hidden state st with the
target token generated at time t � 1. It then pre-
dicts the current token yt using the current decoder
state and the weighted sum of the encoder states,
where the weights are produced by the attention
mechanism.
Discriminators. Three discriminators are in-
cluded, each serving to judge one aspect of the qual-
ity of the generated target sentences from among
meaning preservation, transfer strength, and flu-
ency. The meaning preservation is evaluated using
the word mover’s distance (Kusner et al., 2015),
which calculates the similarity score r

sem. The
style discriminator predicts the likelihood r

style of
a generated sentence in the target style as the style
quality. Moreover, a pre-trained neural language
model evaluates the fluency by estimating the log-
probability r

lm of each generated sentence. The
overall evaluation score that served as the feedback
to the generator, r, was a weighted average of the
three evaluation metrics to account for the fact that
they may not be in the same scale.

r = ↵r

sem + �r

style + ⌘r

lm
, (1)

where ↵, � and � are weighting coefficients.
Reinforcement learning (RL). RL trains the gen-
erator with the feedback received from the discrim-
inators (scores given by the discriminators to its
generated sentences) (Gong et al., 2020). Under
the RL framework, generating a target sentence
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Negative-to-Positive Positive-to-Negative
Semantic Style Overall Perplexity Semantic Style Overall Perplexity

CA 0.919 0.842 0.440 119 0.914 0.821 0.433 148
MD 0.831 0.972 0.448 104 0.824 0.864 0.422 92
RL 0.864 0.964 0.456 126 0.842 0.952 0.447 101
GT 0.896 0.943 0.459 126 0.863 0.974 0.458 99

Table 1: Model performance of style transfer on Yelp dataset (GT is RL with the proposed enhancement).

was formulated as making a sequence of actions,
where an action is a token produced at a decoding
step. Taking the decoding step t as an example, the
decoder state st contains the information of the in-
put source sentence and the partial target sentence
already generated by the model. An action at is
the generated token of the target sentence at step t,
and a reward Qt is defined to reflect how good the
action is.

The reward Q(st, at) of taking action at in state
st was estimated by sampling complete target sen-
tences with their first t � 1 tokens fixed. With
r(s⌧ , a⌧ ) as the average score over the sampled
sentences with the first ⌧ tokens fixed, the reward
was defined as

Q(st, at) =
TX

⌧=t

�

⌧�t(r(s⌧ , a⌧ )� r(s⌧�1, a⌧�1)),

(2)

where � was a discounting factor set to 0.9.
The generator was parameterized by ✓ and de-

noted as G✓. The total reward J(G✓) of generating
a target sentence of T tokens was

J(G✓) =
TX

t=1

X

at2V
p✓(at|st)Q(st, at), (3)

where p✓(at|xt) is the probability for producing
the token at in state st. Policy gradient was applied
to update the generator parameters ✓ with J(G✓).

3 Model

We propose to enrich input sentences with syntactic
and semantic structures, and to encode the resulting
graphs using a Graph Neural Network (GNN). For
a fair comparison with the baseline model, we re-
placed the GRU encoder of the baseline generator
with our GNN encoder and kept the other mod-
ules unchanged. Our proposed model is called
the Graph Transfer (GT) model. Figure 2 demon-
strates our style transfer model with the proposed
graph encoder. The input sentence is first parsed
as a syntactic-semantic graph. The graph encoder

encodes rich information of the graph into dense
representations, which are then fed to a sequence
decoder for sentence generation. The transferred
sentences are sent to the discriminators for evalua-
tion, and the scores of these sentences serve as the
training signals for the generator.

3.1 Syntactic-Semantic Graph

To jointly leverage information from both syntac-
tic and semantic structures that were automatically
produced by off-the-shelf toolkits, We include both
into a syntactic-semantic graph,. In particular, the
graph nodes are the words in the sentence and the
relation tags (e.g. “ARG1”) between word pairs.
Directed edges are assigned to node pairs, and the
direction is determined by the parsers. Using the
parse in Figure 1 as an example, we see the relation
tag “ARG1” connects the phrase “my biggest com-
plaint” and the verb “is”. In the syntactic-semantic
graph shown in Figure 2, we add an edge from “is”
to “ARG1” , and also add edges from “ARG1” to
“my”, “biggest” and “complaint” respectively.

3.2 Graph Encoding with GNN

We use a GNN to encode our syntactic-semantic
graphs. It adopts an iterative message-passing
mechanism, where directly connected graph nodes
pass information to each other for their state up-
dates. As a result, these graph nodes absorb rich
contextual information. Taking node i in iteration
k as an example, the node first collects informa-
tion along incoming edges, and obtains its forward
neighbor representation mfwd

k,i

mfwd
k,i =

1

|N fwd
i |

X

j2N fwd
i

Wfwd
k hk�1,j + bfwd

k , (4)

where N

fwd
i is the set of incoming neighbors

for node i, and Wfwd
k and bfwd

k are model param-
eters. Next, the forward hidden state of node i is
generated using its neighbor representations:

hfwd
k,i = ReLU[W̃fwd

k hfwd
k�1,i + b̃fwd

k ,mfwd
k,i ], (5)
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Negative-to-Positive Positive-to-Negative
Orig unfortunately , our experience did not live up to others’ experiences . but still love this place every time regardless !
CA unfortunately , our food has nothing to be some great restaurants . but avoid this place is just every time time time !
MD pizza is always good , and the staff is great . staff is bad , we have all the food back .
RL unfortunately , their experience is always to be coming back but i would not get this every time time !
GT however , our experience did such an incredible job . this place has gone down hill .

Table 2: Examples of transferred sentences by different models.

where matrix W̃fwd
k and bias b̃fwd

k are model pa-
rameters. Similarly, its backward hidden state hbwd

k,i
is calculated from all outgoing neighbors, and the
overall hidden state hk,i = [hfwd

k,i ,h
bwd
k,i ] is their

concatenation. After a total number of K itera-
tions, each node collects the information of all its
neighbors within a distance of K, and they are used
as the final encoder states (i.e. hi).

In the encoding stage, a sequence encoder such
as a GRU network only allows information to be
propagated sequentially within a sentence. Because
of this, the encoding process could result in an
information loss when long-range dependencies
are present. Conversely, a GNN encoder allows a
direct interaction between distant words that are
semantically or syntactically related (Zhang et al.,
2018), thereby serving the style transfer process.

4 Experiments

Dataset. We focus on the task of sentiment transfer,
retaining the setting of the Yelp dataset as (Shen
et al., 2017). The dataset contains 176, 878 neg-
ative and 267, 314 positive sentences for training,
25, 278 negative and 38, 205 positive sentences for
development, and 50, 278 negative and 76, 392 pos-
itive sentences for testing. We construct syntactic-
semantic graphs with the Stanford dependency
parser (Manning et al., 2014) and the semantic role
labeler of the AllenNLP (Gardner et al., 2018).

Baselines. We compared our model (GT) with
three state-of-the-art models for text style transfer:
(1) Reinforcement learning based model (RL). RL
is the baseline summarized in Section 2.
(2) Cross alignment model (CA). CA transfers the
text style by combining content representation with
style information (Shen et al., 2017).
(3) Multi-decoder model (MD). MD disentangles
content from style, and adopts multiple decoders to
produce outputs of various styles (Fu et al., 2018).

Implementation. We include the implementation
details of our model in Appendix A.1.

4.1 Automatic Evaluation

Evaluation metrics. We use the same automatic
evaluation metrics from prior studies to evaluate
the outputs in terms of semantic preservation, style
transfer strength and fluency. Semantic preserva-
tion ssem is measured by a sentence-similarity met-
ric based on pre-trained GloVe embeddings (Fu
et al., 2018). Transfer strength sstyle is measured
by the percentage of generated sentences that can
be correctly classified into the target style by a
pre-trained style classifier (Fu et al., 2018). Consid-
ering the trade-off between semantic preservation
and transfer strength, Fu et al. (2018) proposed
an overall score soverall =

ssem⇤sstyle
ssem+sstyle

, with higher
scores indicating better generation quality. Similar
to Gong et al. (2019), we use the perplexity esti-
mated by a pre-trained RNN-based language model
to quantify fluency, and lower perplexity indicates
higher fluency.
Results. Table 1 shows the metric scores of each
model for the transfer in two directions. Looking
at the overall score, our model (GT) outperforms
all the models for positive-to-negative transfer. It
achieves a comparable performance with the RL
baseline for negative-to-positive transfer, while still
outperforming the other models. In particular, GT
shows a largely improved semantic score compared
to RL on both tasks. In terms of perplexity, GT is
comparable to RL.

model Semantic Style Overall Perplexity
Both 0.863 0.974 0.458 99

w. Dep 0.847 0.957 0.449 91
w. SRL 0.891 0.81 0.424 124

Table 3: Ablation study of style transfer with graph en-
coder.

Table 2 gives examples of transferred sentences.
The row Orig shows the original sentences. For
both tasks, we notice that MD generates irrelevant
words, such as “pizza” and “staff”, that were not
mentioned in the input. This behavior is reflected
in its low semantic score. CA fails to transfer the
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Negative-to-Positve Positive-to-Negative
Semantic Style Fluency Semantic Style Fluency

CA wins 0.20 0.20 0.20 0.18 0.12 0.20
MD wins 0.08 0.18 0.18 0.10 0.24 0.12
RL wins 0.16 0.14 0.20 0.14 0.20 0.18
GT wins 0.42 0.26 0.24 0.34 0.26 0.22

Tie 0.14 0.22 0.18 0.24 0.18 0.28

Table 4: Percentage of model wins and ties in human evaluation.

sentiment for both cases, which is consistent with
its low style score. RL is successful in changing the
sentiment for both cases, but it largely misses input
content, such as “this place”. We note that the ad-
dition of syntactic and semantic information helps
to preserve most of the original content, reflected
in GT outperforming MD in content preservation
by a large margin. Both our model (GT) and CA
have high semantic scores, but our model does bet-
ter than CA in style changing. More transferred
examples are shown in Appendix A.2.
Ablation analysis. We incorporate syntactic and
semantic information into style transfer by both
dependency parsing and semantic role labeling. To
explore the benefits of each part, we performed an
ablation study in the task of positive-to-negative
transfer. Table 3 compares the performance of mod-
els with only dependency parsing (Dep) and with
only semantic role labeling (SRL).

The graph encoder with only syntactic informa-
tion from dependency parser does well in changing
text style while falling behind in content preser-
vation. It achieves lower perplexity (i.e., higher
fluency) than the encoder with both dependency
parsing and semantic role labeling. A possible ex-
planation is that the syntactic information provided
by the dependency parser plays an important role
in style and grammaticality.

The encoder with only semantic role labeling
trades off its style transfer strength for content
preservation. This is consistent with our linguis-
tic intuition that semantic roles centrally capture
sentence meaning.

4.2 Human Evaluation

Human evaluation of the output complements the
evaluation using automatic metrics for transfer
quality. Accordingly, we sampled 50 positive and
50 negative sentences from the Yelp corpus, and
corresponding outputs from all models. Two raters
with native-like English proficiency selected the
best sentence(s) among all candidates for the di-

mensions of content preservation, transfer strength
and fluency separately. The best sentence(s) re-
ceived a score of 1, and the others received a 0.
Ties were allowed, i.e., multiple transferred outputs
could receive a 1 for the same input. Each output
was scored along each dimension by averaging its
scores from the two raters.

Table 4 reports the percentage of times when
each model won and when multiple models tied for
positive-to-negative and negative-to-positive trans-
fer respectively. We note that GT outperforms all
baselines in all evaluation aspects. Further discus-
sions of the human evaluation results are available
in Appendix A.3.

5 Conclusion

We empirically demonstrated how including rich
syntactic and semantic information can help to pre-
serve content during text style transfer. Toward
this, we compared competitive style transfer mod-
els with and without enriching inputs via syntactic
and semantic structures on a benchmark dataset.
We found that instead to an input text of a se-
quence of words alone, encoding the input sen-
tence’s syntactic-semantic graph via a graph neural
network serves to explicitly highlight the sentence’s
core meaning.

In this work, we have focused on the generator
to improve the performance of text style transfer.
One of our future directions is to incorporate better
semantic metrics into the discriminators so that
the training loss could measure the preservation of
semantic information more accurately.
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