
Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 1–5
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

1

MUCS@TechDOfication using FineTuned Vectors and N-grams

F Balouchzahi
Dept. of Computer Science

Mangalore University
Mangalore - 574199

India
frs b@gmail.com

M D Anusha
Dept. of Computer Science

Mangalore University
Mangalore - 574199

India
anugowda251@gmail.com

H L Shashirekha
Dept. of Computer Science

Mangalore University
Mangalore - 574199

India
hlsrekha@gmail.com

Abstract

The increase in domain specific text process-
ing applications are demanding tools and tech-
niques for domain specific Text Classification
(TC) which may be helpful in many down-
stream applications like Machine Translation,
Summarization, Question Answering etc. Fur-
ther, many TC algorithms are applied on glob-
ally recognized languages like English giv-
ing less importance for local languages par-
ticularly Indian languages. To boost the re-
search for technical domains and text process-
ing activities in Indian languages, a shared
task named ”TechDOfication2020” is orga-
nized by ICON’20. The objective of this
shared task is to automatically identify the
technical domain of a given text which pro-
vides information about coarse grained tech-
nical domains and fine grained subdomains
in eight languages. To tackle this challenge
we, team MUCS have proposed three models,
namely, DL-FineTuned model applied for all
subtasks, and VC-FineTuned and VC-ngrams
models applied only for some subtasks. n-
grams and word embedding with a step of fine-
tuning are used as features and machine learn-
ing and deep learning algorithms are used as
classifiers in the proposed models. The pro-
posed models outperformed in most of sub-
tasks and also obtained first rank in subTask1b
(Bangla) and subTask1e (Malayalam) with f1
score of 0.8353 and 0.3851 respectively using
DL-FineTuned model for both the subtasks.

1 Introduction

TC is one of the important areas of research in
Natural Language Processing (NLP). Most of the
TC experiments being conducted are on resource
rich languages such as English, Spanish etc. giving
less importance to resource poor languages particu-
larly Indian languages. Further, with the increase
in domain specific text processing applications, do-
main specific TC is gaining importance demanding

specialized tools and techniques to handle domain
specific text datasets (Sun et al., 2019) for many
downstream applications like Machine Translation,
Summarization, Question Answering etc. In this di-
rection, a shared task named ”TechDOfication2020:
Technical Domain Identification” is organized in
association with 17thInternational Conference on
Natural Language Processing1 (ICON) 2020 to au-
tomatically identify the technical domain of a given
text in eight languages, namely, English, Bangla,
Gujarati, Hindi, Malayalam, Marathi, Tamil, and
Telugu. These text provides information about
specific coarse grained technical domains and fine
grained subdomains. Details of the shared tasks
are provided in the task website2. Technical do-
main identification can be modeled as a domain
specific TC task. In this paper, we describe our
models, namely, VC-ngrams, VC-FineTuned and
DL-FineTuned proposed by our team MUCS for
technical domain identification in eight languages
using n-grams and fine-tuned vectors as features.

n-grams features which are simple and scalable
are utilized in many NLP tasks. With a bigger value
of ‘n’, a model can store more contexts with a well-
understood space-time tradeoff enabling many TC
experiments to scale up efficiently. Word embed-
ding or vector representation of words captures
grammatical and semantic information of a word
which can be an enlightening feature for many NLP
applications. In this study, we investigate the two
popular word vector models namely, GloVe3 for
English (subTask1a and subTask2a) and Bangla
(subTask1b) and fastText4 (we didn’t get Glove
for other languages) for rest of subtasks for learn-
ing word vectors. GloVe model produces a vector
space with meaningful substructure, as evidenced

1http://www.iitp.ac.in/ ai-nlp-ml/icon2020/
2https://ssmt.iiit.ac.in/techdofication.html
3https://nlp.stanford.edu/projects/glove
4https://fasttext.cc



2

by its performance on a recent word analogy task5

and it forces the model to encode the frequency
distribution of words that occur near them in a
more global context. FastText, an extension of the
Word2Vec model is a word embedding method that
helps to achieve the meaning of shorter words. It
allows the embedding’s to understand suffixes and
prefixes and works well with rare words. So even
if a word is not seen during training, it can be bro-
ken down into n-grams to obtain its embedding’s.
Rarely pre-trained word embeddings are available
for domain specific text and even so infrequent for
resource poor languages such as Persian and Indian
languages. Hence, fine-tuning a word embedding
using specific (technical) domain texts can improve
the performance of TC as vectors for words miss-
ing in the pre-trained model will be updated by the
domain specific texts (Liao et al., 2010) given for
training.

Several Machine Learning (ML) and Deep
Learning (DL) models are providing effective and
accurate results for TC by reducing false positives
(Bhargava et al., 2016). Many DL models are using
Bidirectional Long Short Term Memory (BiLSTM)
which contains two LSTMs: one taking the com-
mitment to a forward course, and the other in a
retrogressive way. BiLSTMs are at the core of a
few neural models accomplishing cutting edge ex-
ecution in a wide assortment of undertakings in
NLP (Bhargava et al., 2016). BiLSTM model can
use the pre-trained word embeddings provided by
fastText and GloVe.

The rest of the paper is organized as follows.
Section 2 highlights the related work followed by
the proposed methodology in Section 3. Experi-
ments and results are described in Section 4 and
the paper finally concludes in Section 5.

2 Related Work

Researchers round the globe have developed sev-
eral approaches for domain specific TC. Some of
related ones are described below:

A strategy to develop sentence vectors (sent2vec)
by averaging the word embeddings is proposed by
(Liu, 2017) to explore the effect of word2vec on
the performance of sentiments analysis of citations.
The authors trained the ACL-Embeddings (300 and
100 measurements) from ACL collection and also
examined polarity-specific word embeddings (PS-

5https://dzone.com/articles/glove-and-fasttext-two-
popular-word-vector-models

Embeddings) for characterizing positive and neg-
ative references. The generated embedding is fed
to SVM classifier and using 10-fold cross valida-
tion they obtained a macro-f1 score of 0.85 and the
weighted-f1 score of 0.86 and proved the efficiency
of word2vec on classifying positive and negative
citations.

A domain-specific intent classification for Sin-
hala language proposed by (Buddhika et al., 2018)
utilized a feed-forward neural network with back
propagation. They trained their model on a banking
domain-related data set with Mel Frequency Cep-
stral Coefficients extracted from a Sinhala speech
corpus of 10 hours and obtained 74% results on
identification accuracy of speech queries. (Zhou
et al., 2016) proposed a combination of two mod-
els BLSTM-2D Pooling and BLSTM-2D CNN
and tested it on six TC tasks, including sentiment
analysis, question classification, subjectivity clas-
sification, and newsgroups classification to com-
pare their models with the state-of-the-art mod-
els. The authors evaluated the performance of pro-
posed models on different lengths of sentences and
then conducted a sensitivity analysis of 2D filter
and max-pooling size. BLSTM-2DCNN model
achieved excellent performance on 4 out of 6 tasks
and obtained 52.4% and 89.5% test accuracies on
Stanford Sentiment Treebank-1 and Treebank-2
datasets respectively.

(Rabbimov and Kobilov, 2020) explored a multi-
class TC task to classify Uzbek language text. They
collected articles on ten classes taken from the
Uzbek ”Daryo” online news and used six diverse
ML algorithms namely, Multinomial Naıve Bayes
(MNB), Decision Tree Classifier (DTC), SVM,
Random Forest (RF) and LR. Hyper parameters
for the classifiers were obtained by Grid search al-
gorithms with 5-fold cross-validation. The results
obtained illustrates that, in many cases the charac-
ter n-grams gives better results than the word level
n-grams. However, among all,SVM with the Radial
Basis Function kernel (RBF SVM) using TF-IDF
and character level four grams features obtained
best results with an accuracy of 86.88

3 Methodology

Inspired by (Liu, 2017) to use word embeddings
as features for classification, (Zhou et al., 2016)
to use BiLSTMs for classification and (Rabbimov
and Kobilov, 2020) for using ML algorithms for
classification, we proposed three models, namely,



3

Voting Classifiers using n-grams (VC-ngrams), Vot-
ing Classifiers using FineTuned word vectors (VC-
FineTuned) and Deep Learning using FineTuned
word vectors (DL-FineTuned). Each model is built
in two steps namely, i) Feature Extraction and ii)
Model Construction, as explained below:

3.1 Feature Extraction
n-grams and word embeddings features are utilized
in the proposed models. Linguistic models have
proven their efficiency in many studies. Hence, n-
grams features including Char n-grams (1, 2, 3, 4,
5) along with word n-grams (1, 2, 3) are extracted
from input data and CountVectorizer6 library is
used to generate n-grams count vectors which are
used in VC-ngrams model.

The pre-trained word embeddings-GloVe, with
a vector size 300 is used for English and Bangla
subtasks and fastText with a size of 300 for the
subtasks of rest of the languages as features after
fine tuning using the training data. Fine tuning of
vectors in a pre-trained model by training data of a
specific task helps in generating vectors for words
missing in pre-trained models, and it can lead
to higher performance specifically in fine-grained
tasks such as domain specific TC. Fine-tuned vec-
tors are utilized to build embedding matrix to train
VC-FineTuned and DL-FineTuned models.

3.2 Model Construction
Construction of the three models is explained be-
low:

• VC-ngrams model: An ensemble Voting
Classifier with three ML classifiers namely,
Multilayer Perceptron (MLP), Logistic Re-
gression (LR), and Support Vector Machine
(SVM) have been trained on n-grams count
vectors obtained in Feature Extraction step.
Default parameters are used for SVM and LR
classifiers and for MLP, hidden layer sizes are
set to (150, 100, 50) and maximum iteration,
activation, solver, and random state have been
set to 300, Relu, Adam and 1 respectively.
Structure of VC-Ngrams model is shown in
figure-1.

• DL-FineTuned model: This model is created
based on DL architecture using pre-trained
word embeddings. A pre-trained word em-
bedding of size 300 is fine-tuned using the

6https://scikit-learn.org/stable/modules/generated/
sklearn.featureextraction.text.CountV ectorizer.html

Figure 1: Structure of VC-ngrams model

specific language training set and the obtained
vectors are used to build embedding matrix.
This embedding matrix is used as input for
Sequential model from Keras7 library to build
a BiLSTM network of size 100 with activation
and optimizer parameters set to “softmax” and
“adam” respectively. The output dimensions
are configured based on the corresponding
subTask’s labels (e.g. seven labels for sub-
Task2a) as given by the organizers. The con-
structed model has been trained for dynamic
epochs till loss value got stabilized (not more
than 20 epochs). Structure of DL-FineTuned
model is shown in Figure 2.

• VC-FineTuned model: The architecture of
VC-FineTuned model is driven from merging
the features extraction part of DL-FineTuned
model and model construction part of VC-
Ngrams model. In this model, a pre-trained
word embedding of size 300 is fine-tuned us-
ing the specific language training set and the
resulting vectors are used to build an ensem-
ble Voting Classifier with similar estimators
as the VC-ngrams model, namely, MLP, SVM,
and LR.

The DL-FineTuned model is applied for all the sub-
tasks whereas due to lack of pre-trained models
and the long time taken for training the models,
VC-ngrams model is applied for English and Gu-
jarathi subTask1 and English subTask2 and VC-
FineTuned model is applied for English, Gujarathi
and Malayam subtasks1.

7https://keras.io/guides/sequentialmodel



4

Figure 2: Structure of DL-FineTuned model

4 Experimental Results

4.1 Datasets
Datasets provided by TechDOfication 2020 con-
sists of train, development, and test sets for
nine subtasks of eight languages namely, En-
glish, Bangla, Gujarati, Hindi, Malayalam, Marathi,
Tamil, and Telugu and the details of the datasets
are given in Table 1. Only the training datasets
for English subtasks are balanced and the subtasks
of all other languages are not balanced. Further,
subTask1e (Malayalam) has only three classes and
subTask1d (Hindi) and subTask2a (English) have
seven classes each. More details about the datasets
are available in task website8 and also in Github
repository9.

4.2 Results
The number of participated teams and submitted
runs given in Table 2 illustrates that more teams
have registered for English subtasks and number of
runs submitted for English subtasks are also more
compared to other subtasks. Performance of the
models for the subtasks on the development set in
terms of F1 score are shown in Table 3.

While DL-FineTuned model is applied for all the
subtasks VC-ngrams and VC-FineTuned models
are applied only for some subtasks. It can be ob-
served that DL-FineTuned models perform better
for some subtasks and VC-ngrams models perform
better for some other subtasks. Also the proposed
DL-FineTuned model obtained first position in sub-
Task 1b (Bangla) and subTask1e (Malayalam) with

8https://ssmt.iiit.ac.in/techdofication.html
9https://github.com/fazlfrs/TechDofication2020

f1 score of 0.8353 and 0.3851 respectively. The
results illustrate that fine-tuning the vectors by
specific domain text for the subtasks using DL-
FineTuned model have performed better compared
to other two models. However, VC-ngrams applied
on the three subtasks have also performed well.

Conclusion and future works

We, team MUCS proposed three models namely
DL-FineTuned model applied for all subtasks, and
VC-FineTuned and VC-ngrams models applied for
only few subtasks to identify technical domain of
a given text in Indian languages. The results re-
ported by TechDOfication 2020 task organizers
illustrate that the proposed DL-FineTuned model
outperformed in most of the subtasks and also ob-
tained first rank in subTask 1b (Bangla) and sub-
Task 1e (Malayalam) with f1 score of 0.8353 and
0.3851 respectively. We would like to improve our
proposed models by applying other features and
also learning models such as Transfer Learning.

References
Rupal Bhargava, Yashvardhan Sharma, and Shubham

Sharma. 2016. Sentiment analysis for mixed script
indic sentences. In 2016 International conference
on advances in computing, communications and in-
formatics (ICACCI), pages 524–529. IEEE.

Darshana Buddhika, Ranula Liyadipita, Sudeepa
Nadeeshan, Hasini Witharana, Sanath Javasena, and



5

Uthayasanker Thayasivam. 2018. Domain specific
intent classification of sinhala speech data. In 2018
International Conference on Asian Language Pro-
cessing (IALP), pages 197–202. IEEE.

Chunyuan Liao, Hao Tang, Qiong Liu, Patrick Chiu,
and Francine Chen. 2010. Fact: fine-grained cross-
media interaction with documents via a portable hy-
brid paper-laptop interface. In Proceedings of the
18th ACM international conference on Multimedia,
pages 361–370.

Haixia Liu. 2017. Sentiment analysis of citations using
word2vec. arXiv preprint arXiv:1704.00177.

IM Rabbimov and SS Kobilov. 2020. Multi-class text
classification of uzbek news articles using machine
learning. In Journal of Physics: Conference Series,
volume 1546, page 012097.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194–206. Springer.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classifi-
cation improved by integrating bidirectional lstm
with two-dimensional max pooling. arXiv preprint
arXiv:1611.06639.


