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Abstract

We study the problem of inducing inter-
pretability in Knowledge Graph (KG) embed-
dings. Learning KG embeddings has been an
active area of research in the past few years,
resulting in many different models. How-
ever, most of these methods do not address
the interpretability (semantics) of individual
dimensions of the learned embeddings. In this
work, we study this problem and propose a
method for inducing interpretability in KG em-
beddings using entity co-occurrence statistics.
The proposed method significantly improves
the interpretability, while maintaining compa-
rable performance in other KG tasks.

1 Introduction

Knowledge Graphs such as Freebase (Bollacker
et al., 2008) and NELL (Mitchell et al., 2015) have
become important resources for supporting many
AI applications like web search, Q&A, etc. They
store a collection of facts in the form of a graph.
The nodes in the graph represent real world entities
such as Roger Federer, Tennis, United States etc
while the edges represent relationships between
them.

These KGs have grown huge, but they are still
not complete (Toutanova et al., 2015). Hence the
task of inferring new facts becomes important. KG
embeddings have been a popular approach for this
task as they can perform the inference task effi-
ciently. This task has achieved significant attention
in the literature and many methods have been pro-
posed, such as, (Bordes et al., 2013; Riedel et al.,
2013; Yang et al., 2014; Toutanova et al., 2015;
Trouillon et al., 2016; Schlichtkrull et al., 2017;
Dettmers et al., 2018; Balazevic et al., 2019), etc.
These methods learn representations for entities
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and relations as vectors in a vector space, capturing
global information about the KG. The task of KG
inference is then defined as operations over these
vectors. Some of these methods like (Riedel et al.,
2013) and (Toutanova et al., 2015) are capable of
exploiting additional text data apart from the KG,
resulting in better representations.

Although these methods have shown good per-
formance in the end task, they do not address the
interpretability, i.e., understanding semantics of in-
dividual dimensions of the KG embedding. Such
representations enable a better understanding of the
model and can be helpful for explaining a model’s
decision on an end application.

In this work, we focus on incorporating inter-
pretability in KG embeddings. Specifically, we aim
to learn interpretable embeddings for KG entities
by incorporating additional entity co-occurrence
statistics from text data. This work is motivated by
(Lau et al., 2014) who presented automated meth-
ods for evaluating topics learned via topic mod-
elling methods. We adapt these methods for KG
embedding models and propose a method to di-
rectly maximize them while learning KG embed-
ding. As demonstrated by the experiments, we
find that such modeling significantly improves in-
terpretability, supporting our choice of using topic
coherence for embedding dimensions. To the best
of our knowledge, this work presents the first reg-
ularization term which induces interpretability in
KG embeddings.

2 Related Work

Several methods have been proposed for learning
KG embeddings. They differ on the modeling of
entities and relations, usage of text data and inter-
pretability of the learned embeddings. We summa-
rize some of these methods in following sections.
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2.1 KG Embedding models

Most of the KG embedding models represent enti-
ties and relations as vectors in Rde and Rdr respec-
tively (usually, de=dr). A score function uses these
vectors to calculate the correctness of a given triple.
Based on the score function, these methods can
be categorized as additive models (Bordes et al.,
2013; Lin et al., 2015; Xiao et al., 2015; Xie et al.,
2017), multiplicative models (Nickel et al., 2011;
Yang et al., 2014; Trouillon et al., 2016; Balaze-
vic et al., 2019) and nueral models (Dong et al.,
2014; Dettmers et al., 2018). There are other meth-
ods which are able to incorporate text data while
learning KG embeddings. For example, the method
proposed in (Riedel et al., 2013) assumes a com-
bined universal schema of relations from KG as
well as text. This method is further improved in
(Toutanova et al., 2015) using textual relation en-
coder allowing parameter sharing among similar
textual relations. However, none of these methods
address the interpretability of the embeddings.

2.2 Interpretability of Embeddings

While the KG embedding models perform well
in many tasks, the semantics of learned represen-
tations are not directly clear. This problem for
word embeddings has been addressed in (Murphy
et al., 2012; Faruqui et al., 2015; Subramanian et al.,
2018) where they apply a set of constraints induc-
ing interpretability. A similar task of learning se-
mantic features for entities and relations is KG was
addressed in (Xiao et al., 2016). However, their
approach is not applicable for the much popular
KG embedding methods. The model proposed in
(Xie et al., 2017) can generate interpretable em-
beddings for relations, but not entities. Another
approach, as proposed in (Gusmao et al., 2018), is
to generate weighted Horn rules as explanations
for link prediction. We refer the reader to Section 4
of (Bianchi et al., 2020) for further reading in this
direction.

Our method differs from the previous works in
the following aspects. Firstly, we focus on learn-
ing interpretable embeddings for KG entities rather
than relations. Second, we incorporate side infor-
mation about entities instead of constraints for in-
ducing interpretability. Third, we use vector space
modeling rather than probabilistic modelling (as in
(Xiao et al., 2016)) allowing the proposed method
to be applicable to many existing KG embedding
models.

3 Proposed Method

The proposed method is motivated by a measure of
coherence in topic modelling literature (Lau et al.,
2014). This measure allows an automated eval-
uation of the quality of topics learned by topic
modeling methods by using additional Point-wise
Mutual Information (PMI) for word pairs. It was
also shown to have high correlation with human
evaluation of topics.

Based on this measure of coherence, we propose
a regularization term. This term can be used with
existing KG embedding methods for inducing inter-
pretability. It is described in the following sections.

3.1 Coherence
In topic models, coherence of a topic can be deter-
mined by semantic relatedness among top entities
within the topic. This idea can also be used in
vector space models by treating dimensions of the
vector space as topics. With this assumption, we
can use a measure of coherence defined in follow-
ing section for evaluating interpretability of the
embeddings.

3.1.1 Coherence@k

Coherence for top k entities along dimension l is
defined as follows.

Coherence@k(l) =

k∑
i=2

i−1∑
j=1

pij (1)

where pij is PMI score between entities ei and ej
extracted from text data. It is given as follows

pij = log
(

Pr(ei, ej)

Pr(ei)× Pr(ej)

)
. (2)

Here, Pr(ei, ej) represents the joint probability of
co-occurrence of entities ei and ej , while Pr(ei)
and Pr(ej) represent the corresponding marginal
probabilities, pre-computed using an auxiliary cor-
pus.
Coherence@k has been shown to have high

correlation with human interpretability of topics
learned via various topic modeling methods(Lau
et al., 2014). Hence, we can expect interpretable
embeddings by maximizing it.
Coherence@k for the entity embedding matrix

θe is defined as the average over all dimensions.

Coherence@k =
1

d

d∑
l=1

Coherence@k(l). (3)
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3.1.2 Inducing coherence while learning
embeddings

We want to learn an embedding matrix θe
which has high coherence (i.e., which maximizes
Coherence@k). Since θe changes during train-
ing, the set of top k entities along each dimension
varies over iterations. Hence, directly maximizing
Coherence@k may not be feasible.

An alternative approach could be to promote
higher values for entity pairs having high PMI
score pij . This will result in an embedding ma-
trix θe with a high value of Coherence@k since
high PMI entity pairs are more likely to be among
top k entities.

This idea can be captured by following coher-
ence term

C(θe, P ) =
n∑

i=2

i−1∑
j=1

‖v(ei)ᵀv(ej)− pij‖2 (4)

where P is entity-pair PMI matrix and v(e) de-
note vector for entity e. This term can be used in
the objective function defined in (7).

3.2 Entity Model (Model-E)

We use the Entity Model proposed in (Riedel et al.,
2013) for learning KG embeddings. However, it
should be noted that the proposed regularizer can
be used along with any KG embedding model
which represents entities as vectors. Also, as
pointed in (Kadlec et al., 2017; Ruffinelli et al.,
2020; Jain et al., 2020), various KG embedding
models achieve similar performances when trained
properly. Therefore, we select Model-E which is
simple yet effective. This model assumes a vec-
tor v(e) for each entity and two vectors vs(r) and
vo(r) for each relation of the KG. The score for
the triple (es, r, eo) is given by,

f(es, r, eo) = v(es)
ᵀvs(r) + v(eo)

ᵀvo(r). (5)

Training these vectors requires incorrect triples.
So, we use the closed world assumption. For each
triple t ∈ T , we create two negative triples t−o
and t−s by corrupting the object and subject of the
triples respectively such that the corrupted triples
do not appear in training, test or validation data.
The loss for a triple pair is defined as loss(t, t−) =
− log(σ(f(t)− f(t−))). Then, the aggregate loss

function is defined as

L(θe, θr, T ) =
1

|T |
∑
t∈T

(
loss(t, t−o ) + loss(t, t−s )

)
.

(6)

3.3 Objective

The overall loss function can be written as follows

L(θe, θr, T ) + λcC(θe, P ) + λrR(θe, θr) (7)

where R(θe, θr) = 1
2

(
‖θe‖2 + ‖θr‖2

)
is the

L2 regularization term and λc and λr are hyper-
parameters controlling the trade-off among differ-
ent terms in the objective function.

4 Experiments and Results

4.1 Datasets

We use the FB15k-237 (Toutanova and Chen, 2015)
dataset, a factual KG, for experiments. It contains
14541 entities and 237 relations. The triples are
split into training, validation and test set having
272115, 17535 and 20466 triples respectively. For
extracting entity co-occurrences, we use the textual
relations used in (Toutanova et al., 2015). It con-
tains around 3.7 millions textual triples, which we
use for calculating PMI for entity pairs.

4.2 Experimental Setup

We use the method proposed in (Riedel et al.,
2013) as the baseline. Please refer to Section 3.2
for more details. For evaluating the learned em-
beddings, we test them on different tasks. All
the hyper-parameters are tuned using performance
(MRR) on validation data. We use 100 dimen-
sions after cross validating among 50, 100 and
200 dimensions. For regularization, we use λr =
0.01 (from 10, 1, 0.1, 0.01) and λc = 0.01 (from
10, 1, 0.1, 0.01) for L2 and coherence regulariza-
tion respectively. We use multiple random initial-
izations sampled from a Gaussian distribution. For
optimization, we use gradient descent and stop op-
timization when gradient becomes 0 upto 3 deci-
mal places. The final performance measures are
reported for test data.

4.3 Results

In following sections, we compare the performance
of the proposed method with the baseline method
in different tasks. Please refer to Table 1 for results.
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Method Link Prediction
MRR↑ MR↓ Hits@10(%)↑

Baseline 31.6± 0.08 121.9± 1.80 48.3± 0.39

Proposed 30.4± 0.08 111.9± 1.12 46.8± 0.08

Triple Classification
AUC(%)↑ Accuracy(%)↑

Baseline 72.9± 0.16 63.2± 0.50

Proposed 73.2± 0.28 67.6± 0.17

Interpretability
AutoWI@5(%)↑ Coherence@5↑ Manual WI(%)↑

Baseline 6± 4.14 −47.4± 4.68 12

Proposed 66± 5.89 −12.5± 4.48 84

Table 1: Results of various tasks on FB15k-237 dataset.
Here ↑ indicates higher values are better while ↓ indi-
cates lower values are better. The proposed method sig-
nificantly improves interpretability while maintaining
comparable performance on KG tasks (4.3).

4.3.1 Interpretability
For evaluating the interpretability, we use
Coherence@k (3), automated and manual word
intrusion tests. In word intrusion test (Chang et al.,
2009), top k(= 5) entities along a dimension are
mixed with the bottom most entity (the intruder) in
that dimension and shuffled. Then multiple (3 in
our case) human annotators are asked to find out
the intruder. We use majority voting to finalize one
intruder. Amazon Mechanical Turk was used for
crowdsourcing the annotation task and we used 25
randomly selected dimensions for evaluation. Thus,
each of the three annotators evaluates 25 examples.
For automated word intrusion (Lau et al., 2014),
we calculate following score for all k + 1 entities

AutoWI(ei) =
k+1∑

j=1,j 6=i

pij (8)

where pij are the PMI scores. The entity having
least score is identified as the intruder. We report
the fraction of dimensions for which we were able
to identify the intruder correctly.

As we can see in Table 1, the proposed method
achieves better values for Coherence@5 as a
direct consequence of the regularization term,
thereby maximizing coherence between appropri-
ate entities. Performance on the word intrusion task
also improves drastically as the intruder along each
dimension is a lot easier to identify owing to the
fact that the top entities for each dimension group
together more conspicuously.

4.3.2 Link Prediction
In this experiment, we test the model’s ability to
predict the best object entity for a given subject

Top 5
Baseline

-Jurist, Pipe organ, USA, Lions Gate Entertainment, UK
-Guitar, 71st Academy Awards, Jurist, Piano, Bass guitar
-Actor, Official Website, Screenwriter, Film Producer, USA
-Jurist, USA, Marriage, Male, UK
-Pipe organ, Official Website, Actor, Film Producer, Screenwriter

Proposed Method
-Juris Doctor, Business Administration, Biology, Psychology, BS
-Bachelor of Arts, PhD, Bachelor’s degree, BS, MS
-European Union, Europe, Netherlands, Portugal, Government
-UK, Hollywood, DVD, London, Europe
-Hollywood, Academy Awards, USA, DVD, Los Angeles

Table 2: Top 5 entities for randomly selected dimen-
sions. As we see, the proposed method produces more
coherent entities compared to the baseline. Incoherent
entities are marked in bold face. 1

entity and relation. For each of the triples, we fix
the subject and the relation and rank all entities
(within same category as true object entity) based
on their score according to (5). We report Mean
Rank (MR) and Mean Reciprocal rank (MRR) of
the true object entity and Hits@10 (the number of
times true object entity is ranked in top 10) as per-
centage. A good model should have higher values
for MRR and Hits@10, and lower value for MR.

The coherence regularization term’s objective,
being tangential to that of the original loss function,
is not expected to affect the link prediction task’s
performance. However, the results show a trivial
drop of 1.2 in MRR. Upon further inspection, we
found that the coherence term gives credibility to
certain triples otherwise deemed incorrect by the
closed world assumption. These triples appear in
the text corpus and contain entity pairs with high
PMI values.

4.3.3 Triple Classification
In this experiment, we test the model on classifying
correct and incorrect triples. For finding incorrect
triples, we corrupt the object entity with a randomly
selected entity within the same category. For clas-
sification, we use validation data to find the best
threshold for each relation by training an SVM clas-
sifier and later use this threshold for classifying test
triples. We report the mean accuracy and mean
AUC over all relations.

We observe that the proposed method achieves
slightly better performance for triple classification

1We have used abbreviations for BS (Bachelor of Science),
MS (Master of Science), UK (United Kingdom) and USA
(United States of America). They appear as full form in the
data.
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improving the accuracy by 4.4. The PMI informa-
tion adds more evidence to the correct triples which
are related in text data, generating a better thresh-
old that more accurately distinguishes correct and
incorrect triples.

4.4 Qualitative Analysis of Results
Since our aim is to induce interpretability in rep-
resentations, in this section, we evaluate the em-
beddings learned by the baseline as well as the pro-
posed method. For both methods, we select some
dimensions randomly and present top 5 entities
along those dimensions. As we can see from the
results in Table 2, the proposed method produces
more coherent entities than the baseline method.

5 Conclusion and Future Works

In this work, we proposed a method for inducing in-
terpretability in KG embeddings using a coherence
regularization term. We evaluated the proposed
and the baseline method on the interpretability of
the learned embeddings. We also evaluated the
methods on different KG tasks and compared their
performance. We found that the proposed method
achieves better interpretability while maintaining
comparable performance on KG tasks. As next
steps, we plan to evaluate and compare the general-
izability of the proposed method across various KG
embedding models. Understanding the mapping
between dimensions and latent categories could be
another direction for future works.
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