
Proceedings of the 17th International Conference on Natural Language Processing, pages 272–280
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

272

Does a Hybrid Neural Network based Feature Selection Model Improve
Text Classification?

Suman Dowlagar
LTRC

IIIT-Hyderabad
suman.dowlagar@

research.iiit.ac.in

Radhika Mamidi
LTRC

IIIT-Hyderabad
radhika.mamidi@

iiit.ac.in

Abstract

Text classification is a fundamental problem in
the field of natural language processing. Text
classification mainly focuses on giving more
importance to all the relevant features that help
classify the textual data. Apart from these, the
text can have redundant or highly correlated
features. These features increase the complex-
ity of the classification algorithm. Thus, many
dimensionality reduction methods were pro-
posed with the traditional machine learning
classifiers. The use of dimensionality reduc-
tion methods with machine learning classifiers
has achieved good results. In this paper, we
propose a hybrid feature selection method for
obtaining relevant features by combining vari-
ous filter-based feature selection methods and
fastText classifier. We then present three ways
of implementing a feature selection and neural
network pipeline. We observed a reduction in
training time when feature selection methods
are used along with neural networks. We also
observed a slight increase in accuracy on some
datasets.

1 Introduction

Text classification assigns one or more class labels
from a predefined set to a document based on its
content. Text classification has broad applications
in real-world scenarios such as document catego-
rization, news filtering, spam detection, Optical
character recognition (OCR), and intent recogni-
tion. Giving high weights to relevant features is the
objective of text classification.

The field of text classification has gained more
interest during the machine learning (ML) era.
Many discriminative and generative machine learn-
ing classifiers have achieved excellent results in the
field of text classification (Deng et al., 2019). Fea-
ture selection and feature extraction methods are
often used to reduce high dimensionality (Bharti

and Singh, 2015). Feature extraction generates fea-
tures from text (Agarwal and Mittal, 2014). Feature
selection (FS) selects the most prominent features
(Saleh and El-Sonbaty, 2007).

These feature selection and extraction methods
are used along with traditional classification algo-
rithms. These methods reduced the curse of dimen-
sionality and increased the classification accuracy
(Deng et al., 2019).

Recently, deep learning models are used to learn
better text representations and to classify the text
(Minaee et al., 2020). Such models include con-
volutional neural networks (CNN) (Kim, 2014),
recurrent neural networks (RNN) (Hochreiter and
Schmidhuber, 1997), Transformer models (Ad-
hikari et al., 2019), and graph convolutional net-
works (GCN) (Yao et al., 2019). These NN models
capture semantic and syntactic information in local
and global word sequences.

Even though the neural networks capture a com-
plex and dense representation of data, the set of
words introducing noise in the classifier is still
present. Such words add the burden of increased
vocabulary, which results in increased textual rep-
resentation and an increase in the training time of
the classifiers (Song et al., 2011).

Similar to the traditional approaches, we want
to understand the effects of using statistical feature
selection algorithms beforehand to calculate the
features’ relevance and then train a fastText text-
classification algorithm on those relevant features.
Using this feature selection and neural network
pipeline, we assume that the complexity of deal-
ing with larger vocabulary decreases. Including
feature selection with fastText text-classification
helps reduce the classifier’s training time and helps
the classifier reach better local optima, showing a
significant increase in classification accuracy.

In this work, we analyzed a feature selection
and neural network pipeline for text classification.



273

We used a hybrid feature selection method to get
a score on relevant features. Using this score, we
formulated three methods. The first and second
methods deal with modifying the original text by
extracting the relevant features. The third method
deals with using the feature selection scores and
pass it along with the word embeddings. We then
observed the effect of feature selection on various
neural networks.

The rest of the paper is organized as follows.
Section 2 gives a brief review of previous works in
the field of feature selection and text classification.
Section 3 presents a detailed procedure of the pro-
posed pipeline and presents the experiments and
datasets used for our study. Section 4 reports the
performance of text classifiers with and without
feature selection methods. Section 5 concludes the
paper.

2 Literature Survey

This section presents a brief description of the neu-
ral network (NN) classification algorithms and var-
ious feature selection methods.

2.1 Deep Learning for Text Classification

Nowadays, various NNs such as CNN, RNN,
BERT, and Text GCN achieve state-of-the-art re-
sults on text classification. CNN uses 1d convo-
lutions (Zhang et al., 2015) and character level
convolutions (Conneau et al., 2016) to learn the
semantic similarity of words or characters, which
helps in classifying the text. RNN models such
as GRU, LSTM, and BiLSTM (Liu et al., 2016)
take word to word sequences to learn a better tex-
tual representation of a document that helps in text
classification. Attention mechanisms have been in-
troduced in these LSTM models, which increased
the representativeness of the text for better classi-
fication (Yang et al., 2016). Transformer models
such as BERT (Devlin et al., 2018) uses the at-
tention mechanism that learns contextual relations
between words or sub-words in a text (Adhikari
et al., 2019). Text GCN (Yao et al., 2019) uses a
graph-convolutional network to learn a heteroge-
neous word document graph on the whole corpus.
Text GCN can capture global word co-occurrence
information and use graph convolutions to learn
a global representation, which helps classify the
documents.

2.2 Feature Selection on Text Data

The text classification often involves extensive data
with thousands of features. Although tens of thou-
sands of words are in a typical text collection, most
of them contain little or no information to predict
the text label. These features introduce complexity
and increase the training time of an ML classifier.
Feature selection is one method for giving high
scores to relevant features (Deng et al., 2019). The
goal of feature selection is to select highly-relevant
features with minimum redundancy. The relevance
of a feature indicates that the feature is always nec-
essary to predict the class label.

There are various text feature selection methods
in the literature, each being filter, wrapper, hybrid,
and embedded methods. The filter method evalu-
ates the quality of a feature using a scoring func-
tion. Some filter methods evaluate the goodness
of a term based on how frequently it appears in
a text corpus. Document Frequency (DF) (Lam
and Lee, 1999) and Term Frequency - Inverse Doc-
ument Frequency (TFIDF) (Rajaraman and Ull-
man, 2011) comes under this category. Other fil-
ter methods that originate from information theory
are, Mutual Information (MI) (Taira and Haruno,
1999; Tang et al., 2019), Information Gain (IG)
(Yang and Pedersen, 1997), CHI (Rogati and Yang,
2002), ANOVA F measure (Elssied et al., 2014),
Bi-Normal Separation (BNS) (Forman, 2003) and
the GINI method (Shang et al., 2013). They use
hypothesis testing, contingency tables, mean and
variance scores, conditional and posterior probabil-
ities for selecting the features.

The wrapper method (Maldonado and Weber,
2009) use a search strategy to construct each possi-
ble subset, feeds each subset to the chosen classi-
fier, and then evaluates the classifier’s performance.
These two steps are repeated until the desired qual-
ity of the feature subset is reached. The wrapper
approach achieves better classification accuracy
than filter methods. However, the time taken by
the wrapper method is very high when compared
to filter methods.

Embedded methods complete the FS process
within the construction of the machine learning al-
gorithm itself. In other words, they perform feature
selection during the model training. An embedded
method is Decision Tree (DT) (Quinlan, 1986). In
DT, while constructing the classifier, DT selects
the best features/attributes that may give the best
discriminative power.



274

Hybrid methods are robust and take less time
when compared to the wrapper and embedded
methods. They combine a filter method with a
wrapper method during the feature selection pro-
cess. The HYBRID model (Günal, 2012) employs
a combination of filter methods to select to rank the
features and then a wrapper method to the obtained
final features set. Our FS method is similar to the
HYBRID model.

A detailed report on the benefits of using the
feature selection methods in the pipeline with tradi-
tional classifiers is presented in Deng et al. (2019);
Forman (2003).

Apart from using traditional classification meth-
ods, deep feature selection using neural networks
were also proposed. These models use deep neural
network autoencoders for the feature set reduction
and text generation (Mirzaei et al., 2019; Han et al.,
2018).

Lam and Lee (1999) studies the effect of feature
set reduction before applying the neural network
classifiers. The paper uses a multi-layer perceptron
(MLP) classifier in combination with filter-based
FS method. Alkhatib et al. (2017) proposes the use
of neural network-based feature selection and text
classification. Our work comes under this category.

3 Proposed Pipeline

In this section, we present our feature selection and
neural network pipeline.

The feature selection and neural network
pipeline start with selecting a good tokenizer to
tokenize the data and create a feature set. The
tokenizer used for our feature selection is the Sen-
tencepiece tokenizer (Kudo and Richardson, 2018).
Sentencepiece tokenizer implements subword units
by using byte-pair-encoding (BPE) (Sennrich et al.,
2015) and unigram language model (Kudo, 2018).
In the feature subset generation, we considered
a hybrid feature selection method known as HY-
BRID (Günal, 2012). It has proved that a combi-
nation of the features selected by various methods
is more effective and computationally faster than
the features selected by individual filter and wrap-
per methods. Similar to the HYBRID model, we
used three filters to obtain the relevancy score. The
filters we considered were CHI2, ANOVA-F, and
MI. These filters calculate the relevancy between
the word and the class labels.

Before feature selection, we used the Bag-of-
Words(BoW) model to vectorize the data. In the

BoW model, each feature vector is represented by
TF IDF scores.

Then we used statistical measures such as χ2,
ANOVA-F, and MI for obtaining feature scores.
χ2 1 is a statistic to measure a relationship be-

tween feature vectors and a label vector.
Analysis of Variance (ANOVA2) is a statistical

method used to check the means of two or more
groups that are significantly different from each
other.

Mutual Information (MI3) is frequently used to
measure the mutual dependency between two vari-
ables.

Using different statistical methods, we measured
the relevance of each feature. We then aggregate
the relevance scores of all satistical methods for
each feature. The relevance of a feature xi is given
by,

Relevancy(xi) =

χ2(xi) +ANOV A(xi) +MI(xi) (1)

Instead of an LR classifier given in the HYBRID
model, we used the fastText classifier (Joulin et al.,
2016) for the feature selection. We used the fast-
Text classifier as it is often on par with deep learn-
ing classifiers in terms of accuracy and performs
faster computations. The fastText classifier treats
the average of word embeddings as document em-
beddings, then feeds document embeddings into
a feed-forward NN or a multinomial LR classi-
fier. We used pre-trained fastText word embeddings
(Grave et al., 2018) while training a classifier.

To get the final features list, we sorted the nor-
malized, aggregated value in descending order and
divided the entire feature space into k sets. In our
model, we divided the sorted feature space into 20
sets. The value of k is fixed to 20 using a trial and
error basis. We take the first set as the vocabulary
of the classifier. We then trained the classifier and
noted its accuracy. In the second iteration, we con-
sidered the vocabulary as the combination of first

1A detailed explanation and a simple example of
χ2 is given at https://www.mathsisfun.com/data/chi-square-
test.html

2A detailed explanation for ANOVA is given in
https://towardsdatascience.com/anova-for-feature-selection-
in-machine-learning-d9305e228476.

3A simple explanation and working
python example of MI is available at
https://machinelearningmastery.com/information-gain-
and-mutual-information/



275

Figure 1: Modifying text by masking the low ranked words

Figure 2: Meta-Embeddings, including feature scores
along with word embeddings

and second sets. Similarly, the third set has the
vocabulary of the first three sets combined. We
repeated the process until all the lists are exhausted.
The set of features that resulted in a better clas-
sification metric is considered as the final feature
set.

According to the proposed FS method, the fi-
nal feature set is considered relevant, and they are
necessary to perform the text classification. In con-
trast, the other features have little to no effect on the
text classification or might degrade the classifier’s
performance.

After feature subset generation, we propose three
methods for including the feature selection informa-
tion before training the neural network classifiers.

1. Method 1 (Selecting only the relevant fea-
tures)4: Like traditional classification algo-
rithms, we select only the relevant features
that are estimated to be important by the fea-
ture selection method before training a neural
network classifier.

4This method is already used while selecting the final
features set by the fastText classifier.

2. Method 2 (Masking the features that were
given low importance by our FS method):
We felt that removing the features given low
rank by our FS method might disturb the
original data’s grammatical structure, thus
disturbing the word to word dependencies.
We masked the low ranked words with the
help of < MASK > +POS(word) tag.
< MASK > word masks the low ranked
word, and POS preserves the word’s part of
speech. The visual representation of method
2 is shown in figure 1

3. Method 3 (Meta Embeddings): As shown in
figure 2, we pass the relevancy and feature se-
lection information along with embeddings in
this method. Each slot holds the filter scores,
i.e., CHI, ANOVA, MI scores of each feature.
The last slot holds a 1 or 0 value. 1 is used
for the selected features, and 0 is used for low
ranked features that were not selected by our
hybrid feature selection approach.

We analyzed and evaluated the above methods
with various state-of-the-art NN classifiers on the
benchmark datasets.

3.1 Experiment

In this section, we evaluated our feature selection
and neural network pipeline on two tasks. We
wanted to determine:

• If the pipeline decreases the training time of
the classifier

• If it helps in obtaining better local optima,
thus improving the classification accuracy.

We tested our pipeline across multiple state-of-
the-art text classification algorithms.



276

1. CNN: (Kim, 2014) This convolutional neu-
ral network-based text classifier is trained by
considering pre-trained word vectors.

2. Bi-LSTM: (Liu et al., 2016) A two-layer,
bi-directional LSTM text classifier with pre-
trained word embeddings as input was consid-
ered for the task of text classification.

3. fastText: (Joulin et al., 2016) This is a sim-
ple, efficient, and the fastest text classification
method. It treats the average of word/n-grams
embeddings as document embeddings, then
feeds document embeddings into a linear clas-
sifier.

4. Text GCN: (Yao et al., 2019) Builds a het-
erogeneous word document graph for a whole
corpus and turns document classification into
a node classification problem. It uses GCN
(Kipf and Welling, 2017) to learn word and
document embeddings.

5. DocBERT: (Adhikari et al., 2019) A fine-
tuned BERT model for document classifica-
tion. The BERT model (Devlin et al., 2018)
uses a series of multiheaded attention and
feedforward networks for various NLP tasks.

3.2 Datasets
We ran our experiments on three widely used bench-
mark corpora and multilingual corpora. They are
20Newsgroups(20NG), R8, and R52 of Reuters
21578 and MLMRD.

• The 20NG dataset contains 18,846 documents
divided into 20 different categories. 11,314
documents were used for training, and 7,532
documents were used for testing.

• R52 and R8 are two subsets of the Reuters
21578 dataset. R8 has 8 categories of the top
eight document classes. It was split into 5,485
training and 2,189 test documents. R52 has
52 categories and was split into 6,532 training
and 2,568 test documents.

• MLMRD is a Multilingual Movie Review
Dataset. It consists of the genre and synopsis
of movies across multiple languages, namely
Hindi, Telugu, Tamil, Malayalam, Korean,
French, and Japanese. The data set is min-
imal and unbalanced. It has 9 classes and a
total of 14,997 documents. The data was split
into 10,493 training and 4,504 test documents.

We first preprocessed all the datasets by cleaning
and tokenizing. The tokenizer used is the fastText
tokenizer.

For baseline 1 models, we used multilingual fast-
Text embeddings (Grave et al., 2018) of dimension-
ality 300, and baseline 2 models had the dimension-
ality of 304. We used default parameter settings as
in their original papers for implementations. For
calculating TFIDF, CHI2, ANOVA-F, MI scores,
we used the scikit-learn library (Pedregosa et al.,
2011). For POS tagging, we used the NLTK (Bird
et al., 2009) pos tagger.

All the neural network models were run on the
GPU processor on the Windows platform with
NVIDIA RTX 2070 graphics card.

4 Performance

Datasets Our FS HYBRID FS
20Newsgroups 81.27% 77.34%
R8 96.94% 93.79%
R52 92.72% 86.43%
MLMRD 47.09% 42.98%

Table 1: The classification accuracy of our FS model
when compared to the HYBRID model.

In our work, we modified the HYBRID (2012)
feature selection model by changing the LR clas-
sifier to the fastText classifier. We selected the
fastText classifier in the feature selection process
because of its fast learning ability of a NN model
compared to the traditional ML classifiers and other
neural network classifiers (Joulin et al., 2016) with-
out any decrease in classification accuracy. The
neural network classifiers such as MLP, CNN,
RNN, transformer, and GCN models achieve bet-
ter classification accuracy when compared to tradi-
tional ML classifiers, but their training time is very
high.

Using a fastText classifier during feature selec-
tion, we observed that our model performed better
on all the benchmark datasets than the HYBRID
model. The results are shown in table 1. The fast-
Text classifier’s use helped the model obtain better
relevant features, increasing the current feature se-
lection model’s accuracy compared to the HYBRID
model.

As mentioned above, we used the training time-
taken and test accuracy as the metrics to evaluate
our approach. The accuracy and training time are
recorded by running the model 10 times, and the



277

Datasets 20Newsgroups R8 R52 MLMRD
Baseline 1 & 2 1,01,631 (V) 19,956 (V) 26287 (V) 94073 (V)
Method 1 25732 (0.25V) 17364 (0.87V) 22372 (0.85V) 52015 (0.55V)
Method 2 25732+30 (0.25V) 17364+30 (0.87V) 22372+30 (0.85V) 52015+143 (0.55V)
Method 3 1,01,631 (V) 19,956 (V) 26287 (V) 94073 (V)

Table 2: The vocabulary size in all the FS inclusion methods when compared to the baselines. “V” is denoted as
the vocabulary size of the actual data. Baselines 1,2, and method 3 have no change in vocabulary. However, using
our FS method, the vocabulary is reduced to a maximum of 75% (for 20Newsgroups data). Other datasets have
seen a 13% to 45% decrease in vocabulary size. We can see an increase in vocabulary from method 1 to method 2.
It is due to the additional vocabulary resulted from the mask words when they are accompanied by pos tags. Here
Penn Treebank POS tagset is used.

Datasets Method Classifier(s)
CNN Bi-LSTM fastText DocBERT Text GCN

20Newsgroups Baseline 1 79.31% 73.60% 81.04% 90.19% 86.13%
Baseline 2 79.46% 74.25% 82.44% NA 86.23%
Method 1 78.27% 73.44% 81.27% 89.37% 86.25%
Method 2 77.29% 70.48% 80.14% 88.43% 85.65%
Method 3 80.59% 76.57% 84.48% NA 86.15%

R8 Baseline 1 97.24% 92.70% 96.13% 97.62% 96.80%
Baseline 2 97.37% 93.82% 96.50% NA 96.94%
Method 1 97.39% 93.74% 96.94% 97.44% 96.28%
Method 2 96.57% 94.34% 96.07% 97.44% 96.85%
Method 3 97.39% 96.74% 97.18% NA 96.94%

R52 Baseline 1 94.78% 87.53% 92.02% 92.95% 93.56%
Baseline 2 94.84% 90.79% 92.76% NA 93.64%
Method 1 94.29% 87.47% 92.72% 93.10% 92.97%
Method 2 91.71% 91.90% 90.30% 92.10% 93.19%
Method 3 94.84% 91.48% 92.83% NA 93.74%

MLMRD Baseline 1 47.63% 46.43% 46.92% 53.11% 47.62%
Baseline 2 47.79% 47.43% 48.92% NA 49.62%
Method 1 44.98% 44.82% 47.09% 51.90% 46.58%
Method 2 44.63% 44.05% 46.61% 50.90% 46.98%
Method 3 48.44% 49.13% 49.55% NA 51.50%

Table 3: Test accuracy on various neural network classifiers for the task of document classification. As the BERT
model used is a fine-tuned one, we did not modify the model.

average of the metrics was presented.

4.1 Effects of our methods on classification
accuracy

Table 3 demonstrates the accuracy of feature selec-
tion methods on NN classifiers.

When methods 1 and 2 were used, there is a
slight decrease in classification accuracy because
the first two methods lost semantic connection
among words. Thus, the classification performance
is degraded. Also, some words which were rele-
vant to the classifier were masked out during the FS
method. Whereas in method 3, including the fea-

ture selection scores with word-embeddings, has
shown a significant improvement in accuracy on
all the datasets.

Compared to the other datasets, the 20NG
dataset has seen a significant decrease in vocab-
ulary size. The vocabulary was decreased by 75%.
However, eliminating those features did not affect
the accuracy of the classifier for methods 1 and 2.

Introducing the masked features in method 2
shown an increase in accuracy only in the Bi-LSTM
method as this method considers word dependen-
cies while training a classifier.

Including the feature selection scores along with



278

the word-embeddings improved the classification
accuracy on all the datasets. The feature selection
metadata helped the neural network classifier learn
a better relationship between the words and classes
and improve the classifier’s accuracy by reaching
better local optima.

In R8 and R52 datasets, we have seen an increase
in accuracy using method 1 because our hybrid FS
method worked better on these datasets by remov-
ing the noisy words without disturbing the relevant
words. The maximum improvement in accuracy is
shown in the R8 dataset, with a +4% increase in
classification accuracy.

Our approach did not show any better results
on MLMRD datasets as this dataset has a limited
number of documents to train and test the data for
some languages (Telugu, Tamil, Malayalam, Ko-
rean). Reducing vocabulary size by the FS method
decreased the classification accuracy.

4.2 Effects of our methods on training time

The pictorial representation of time taken by the
classifiers for all the datasets is given in appendix
B of the supplementary material.

The time taken by method 1 is lower than in
all baseline models. In method 1, as the text is
modified by considering only relevant features, the
vocabulary size is reduced, and the sentence length
is reduced. It resulted in the more accelerated train-
ing of the neural network.

The time taken by baseline 2 and method 3 is
similar because of the same embedding dimension-
ality of 304, but method 3 has achieved local op-
tima a few epochs before compared to baseline
2, resulting in a time decrease of a few seconds.
This phenomenon is attributed to the use of feature
selection scores along with word embeddings.

Method 2 has shown an increase in training time
even though the vocabulary is decreased because
of 2 factors.

1. The masking of features created unknown
words in the data, and the classifier has to be
trained to learn the representation of masked
words, whereas the other words had pre-
trained embeddings.

2. Apart from vocabulary, the neural network
training time also depends on the input batch
size given to the network and the length of the
sentence in each batch. Because of the masked
words, there is no decrease in either batch size

or the sentence length. So the masking of
data did not decrease the training time of the
classifier.

On the contrary, the Text GCN model has shown
a decrease in training time because the classifier
computes heterogeneous graph embeddings of each
word based on the textual data before classification.
It did not use any pre-trained embeddings.

In method 3, there is a slight increase in training
time because of increased vocabulary size due to
the inclusion of feature selection metadata.

Of all the NN classifiers, the Text GCN model
had shown a maximum decrease in training time by
488 sec when method 1 was used on 20NG data. As
the Text GCN operates on building a graph on the
complete vocabulary of data, the time taken by the
method to build the graph is reduced significantly
by reducing the vocabulary size. It is followed by
the DocBERT and Bi-LSTM on 20NG data with
a decrease in training time by 480 and 394 sec.
Text GCN and Bi-LSTM have shown a significant
decrease in training time on all the datasets. On
the contrary, fastText and CNN are very fast while
training the NN model. The training time of such
models was unchanged when our method 1 was
used.

When compared to all the classifiers, DocBERT
achieved better results because of its evolutionary
multi-headed attention and transformer models. As
the Text GCN captures both local and word em-
beddings by constructing a heterogeneous graph,
their results were better than those of the CNN
and Bi-LSTM models, which work only on local
word dependencies. As we increased the size of
the embedding in FS method 2, this increased the
dimensionality of vocabulary, resulting in the clas-
sifier’s increased training time.

5 Conclusion

In our work, ”Does a Hybrid NN FS Model Im-
prove Text Classification?”, we used the NN based
hybrid FS method to extract relevant features and
used NN classifiers for text classification. We ex-
tracted the relevant or high ranked features using
filter-based methods and a fastText classifier. We
then proposed three methods on how the feature
selection can be included in the NN classification
process. First, modifying the corpus by consid-
ering only relevant features. Second, modifying
the data by masking the low ranked features, and



279

the third method introduces feature selection in-
formation along with word embeddings. We ob-
served that method 1 had shown a significant re-
duction in training time when large datasets or
slower models are used, accompanied by a min-
imal change in classification accuracy. By intro-
ducing MASK + P0S(word), we inferred that
the masked word was a burden to the classifier,
and it always tried to adjust the word embeddings,
which resulted in increased epoch time during train-
ing and a slightly negative effect on classification
accuracy. Whereas method 3 has shown no effect
on decreasing the training time, it has shown a max-
imum of 4% increase in the classification accuracy
compared to baseline. It proved that introducing
feature scores along with pre-trained word embed-
dings while training the NN classifier is beneficial.

Instead of opting for random naive vocabulary
reduction techniques such as using min df and
max df (minimum and maximum document fre-
quency) for selecting features, by using FS meth-
ods, we can calculate the relevance of the word
beforehand and use that as metadata to the NN clas-
sifier. When the datasets are huge, these methods
are of more significance. We can use the modi-
fied data while tuning the hyperparameters. Then
we can use the real data to train and evaluate the
model. Even in the critical domain datasets such
as “medical”, we cannot rely on removing a word
based on min df and max df scores. Each word in
those datasets should be treated with utmost sig-
nificance. FS methods help in such scenarios by
calculating the word’s relevance and helps maintain
better vocabulary before training neural network
classifiers.

References
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Docbert: Bert for document clas-
sification. arXiv preprint arXiv:1904.08398.

Basant Agarwal and Namita Mittal. 2014. Text classifi-
cation using machine learning methods-a survey. In
Proceedings of the Second International Conference
on Soft Computing for Problem Solving (SocProS
2012), December 28-30, 2012, pages 701–709, New
Delhi. Springer India.

Wael Alkhatib, Christoph Rensing, and Johannes Sil-
berbauer. 2017. Multi-label text classification us-
ing semantic features and dimensionality reduction
with autoencoders. In International Conference on
Language, Data and Knowledge, pages 380–394.
Springer.

Kusum Kumari Bharti and Pramod Kumar Singh.
2015. Hybrid dimension reduction by integrating
feature selection with feature extraction method for
text clustering. Expert Systems with Applications,
42(6):3105–3114.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Xuelian Deng, Yuqing Li, Jian Weng, and Jilian
Zhang. 2019. Feature selection for text classifica-
tion: A review. Multimedia Tools and Applications,
78(3):3797–3816.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Nadir Omer Fadl Elssied, Othman Ibrahim, and
Ahmed Hamza Osman. 2014. A novel feature selec-
tion based on one-way anova f-test for e-mail spam
classification. Research Journal of Applied Sciences,
Engineering and Technology, 7(3):625–638.

George Forman. 2003. An extensive empirical study
of feature selection metrics for text classification.
Journal of machine learning research, 3(Mar):1289–
1305.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learn-
ing word vectors for 157 languages. arXiv preprint
arXiv:1802.06893.

Serkan Günal. 2012. Hybrid feature selection for text
classification. Turkish Journal of Electrical Engi-
neering and Computer Science, 20(Sup. 2):1296–
1311.

Kai Han, Yunhe Wang, Chao Zhang, Chao Li, and
Chao Xu. 2018. Autoencoder inspired unsupervised
feature selection. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2941–2945. IEEE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

TN Kipf and M Welling. 2017. Semi-supervised clas-
sification with graph convolutional networks iclr.



280

Taku Kudo. 2018. Subword regularization: Improving
neural network translation models with multiple sub-
word candidates. arXiv preprint arXiv:1804.10959.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Savio LY Lam and Dik Lun Lee. 1999. Feature re-
duction for neural network based text categorization.
In Proceedings. 6th international conference on ad-
vanced systems for advanced applications, pages
195–202. IEEE.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Sebastián Maldonado and Richard Weber. 2009. A
wrapper method for feature selection using sup-
port vector machines. Information Sciences,
179(13):2208–2217.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria,
Narjes Nikzad, Meysam Chenaghlu, and Jianfeng
Gao. 2020. Deep learning based text classifica-
tion: A comprehensive review. arXiv preprint
arXiv:2004.03705.

Ali Mirzaei, Vahid Pourahmadi, Mehran Soltani, and
Hamid Sheikhzadeh. 2019. Deep feature selection
using a teacher-student network. Neurocomputing.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

J. Ross Quinlan. 1986. Induction of decision trees. Ma-
chine learning, 1(1):81–106.

Anand Rajaraman and Jeffrey David Ullman. 2011.
Mining of massive datasets. Cambridge University
Press.

Monica Rogati and Yiming Yang. 2002. High-
performing feature selection for text classification.
In Proceedings of the Eleventh International Confer-
ence on Information and Knowledge Management,
CIKM ’02, page 659–661, New York, NY, USA. As-
sociation for Computing Machinery.

S. N. Saleh and Y. El-Sonbaty. 2007. A feature selec-
tion algorithm with redundancy reduction for text
classification. In 2007 22nd international sympo-
sium on computer and information sciences, pages
1–6.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Changxing Shang, Min Li, Shengzhong Feng, Qing-
shan Jiang, and Jianping Fan. 2013. Feature selec-
tion via maximizing global information gain for text
classification. Knowledge-Based Systems, 54:298–
309.

Qinbao Song, Jingjie Ni, and Guangtao Wang. 2011.
A fast clustering-based feature subset selection algo-
rithm for high-dimensional data. IEEE transactions
on knowledge and data engineering, 25(1):1–14.

Hirotoshi Taira and Masahiko Haruno. 1999. Feature
selection in svm text categorization. In AAAI/IAAI,
pages 480–486.

Xiaochuan Tang, Yuanshun Dai, and Yanping Xiang.
2019. Feature selection based on feature interac-
tions with application to text categorization. Expert
Systems with Applications, 120:207–216.

Yiming Yang and Jan O Pedersen. 1997. A compara-
tive study on feature selection in text categorization.
In Icml, volume 97, page 35.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370–7377.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

https://doi.org/10.1145/584792.584911
https://doi.org/10.1145/584792.584911

