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Abstract

Contending hate speech in social media is one
of the most challenging social problems of our
time. There are various types of anti-social
behavior in social media. Foremost of them is
aggressive behavior, which is causing many
social issues such as affecting the social lives
and mental health of social media users.
In this paper, we propose an end-to-end
ensemble-based architecture to automatically
identify and classify aggressive tweets.
Tweets are classified into three categories -
Covertly Aggressive, Overtly Aggressive, and
Non-Aggressive. The proposed architecture is
an ensemble of smaller subnetworks that are
able to characterize the feature embeddings
effectively. We demonstrate qualitatively that
each of the smaller subnetworks is able to
learn unique features. Our best model is an
ensemble of Capsule Networks and results in
a 65.2% F1 score on the Facebook test set,
which results in a performance gain of 0.95%
over the TRAC-2018 winners. The code and
the model weights are publicly available at
https://github.com/parthpatwa/
Hater-O-Genius-Aggression-
Classification-using-Capsule-
Networks.

1 Introduction

Even though social media offers several benefits to
people, it has caused some negative effects due to
the misuse of freedom of speech by a few people.

Aggression is a behavior that is intended to
harm other individuals who do not wish to be
harmed (O’Neal, 1994). Aggressive words are
commonly used to inflict mental pain on the victim
by showing covert aggression, overt aggression
or by using offensive language (Davidson et al.,
2017).

The process of manually weeding out aggres-
sive tweets from social media is expensive and in-

definitely slow. So, there is a growing need to build
and analyze automatic aggression classifiers.

In this paper, we propose an architecture that is
an ensemble of multiple subnetworks to identify
aggressive tweets, where each subnetwork learns
unique features. We explore different word em-
beddings for dense representation (Mikolov et al.,
2013), deep learning (CNN, LSTM), and Cap-
sule Networks (Sabour et al., 2017). Our best
model (figure 1) uses Capsule Network, and gives
a 65.20% F1 score, which is a 0.95% improve-
ment over the model proposed by Aroyehun and
Gelbukh (2018). We also release the code and the
model weights.

2 Related Work

The challenge of tackling antisocial behavior like
abuse, hate speech, and aggression on social media
has recently received much attention. Researchers
like Nobata et al. (2016) tried detecting abusive
language by using Machine Learning and linguis-
tic features. Other researchers like Badjatiya et al.
(2017) used CNNs and LSTMs, along with gradi-
ent boosting, to detect hate speech.

The TRAC-2018 shared task (Kumar et al.,
2018a), aimed to detect aggression, was won by
Aroyehun and Gelbukh (2018), who used deep
learning, data augmentation, and pseudo labeling
to get a 64.25% F1 score. Another team Risch and
Krestel (2018), used deep learning along with data
augmentation and hand-picked features to detect
aggression. However, in order to develop an end-
to-end automated system, one cannot use hand-
picked features as they may vary from dataset to
dataset. Srivastava et al. (2018) experimented with
capsulenets for detecting aggression and achieved
a 63.43% F1 score. Our work differs from theirs as
we experiment with architectures (Fig. 1) that are
an ensemble of multiple subnetworks. Recently,
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Khandelwal and Kumar (2020) used pooled biL-
STM and NLP features to achieve 67.7% F1 score
on the TRAC-2018 Facebook data.

The TRAC-2020 shared task (Kumar et al.,
2020) released a data set (Bhattacharja, 2010)
of aggression and misogyny in Hindi, English
and Bengali posts. Risch and Krestel (2020) tried
an ensemble of BERT to achieve the best per-
formance on most tasks. Safi Samghabadi et al.
(2020) used BERT in a multi-task manner to solve
the task, whereas Kumari and Singh (2020) used
LSTM and CNNs.

3 Dataset

To identify the type of aggression, we use the
English train dataset, and the Facebook (fb) test
dataset provided by the 2018 TRAC shared task
(Kumar et al., 2018a). The data collection and
annotation method is described in Kumar et al.
(2018b). The training data is combined with the
augmented data provided by Risch and Krestel
(2018). The final distribution is given in table 1.
The data has English-Hindi code-mixed tweets,
which are annotated with one of three labels:

• Covertly Aggressive (CAG): Behavior that
seeks to indirectly harm the victim by us-
ing satire and sarcasm (Kumar et al., 2018b).
E.g., ”Irony is your display picture at one end
you are happy seeing some one innocent dy-
ing and at other end you are praying to not
kill an innocent”

• Overtly Aggressive (OAG): Direct and ex-
plicit form of aggression which includes
derogatory comparison, verbal attack or abu-
sive words towards a group or an individual
(Roy et al., 2018). E.g., ”Shame on you ass-
holes showing some other video and making
it a fake news u chooths i hope each one you
at *** news will rot in hell”

• NAG: Texts which are not aggressive. E.g.,
”hope car occupants are safe and un-
harmed.”

We observe that the dataset contains some tweets
which have improbable annotations. For exam-
ple, the tweet ”Mr. Sun you are wrong, Pak-
istan produces one thing that is ’ terrorists’ and
through CPEC Pak will increase the supply of this
product throughout world. Wait you will feel the
touch of their product in your Muslim dominated

Table 1: Data distribution

Class Train Test

Covertly Aggressive 14,187 144
Overtly Aggressive 9,137 142
Non-Aggressive 16,188 630

Total 39,512 916

province.” is labeled as NAG; ”#salute you my
friend” is labeled as OAG. To have a fair compari-
son with the results of previous works, we don’t do
anything to address this. The dataset is imbalanced
with maximum tweets labeled as NAG.

4 Preprocessing and Embeddings

The tweets are first converted to lower case. Next,
we remove digits, special characters, emojis, urls,
and stop words. We restrict the continuous repe-
tition of the same character in a word to 2 (e.g.
’suuuuuuper’ is converted to ’suuper’). Each tweet
is tokenized and converted into a sequence of inte-
gers. The maximum sequence length is restricted
to 150. To have dense representation of tokens, the
following word embedding features are used:

• Glove++: Given the word, we first check
whether it is present in Glove pre-trained 6b
100d embeddings, and use the embedding if
it exists. For Out-Of-Vocabulary words, we
use the word vectors that we train on the en-
tire data using the Gensim library.

• Aggression Embeddings: To have distin-
guishing features to separate aggressive
tweets from non-aggressive tweets, we create
aggression word embeddings. We take all the
tweets classified as OAG and CAG and train
word vectors on them.

• Char Trigram: To get sub-word informa-
tion, we create character trigram embeddings.

5 Proposed Architecture

We propose an architecture that combines features
that are learned from an ensemble of subnetworks
and leverages the feature representation to classify
aggression. All models optimize the categorical
crossentropy loss function using adam optimizer.
All the dense layers, except the final layer, have
ReLu activation. All the CNN layers are followed
by dropout = 0.5. Every model is an ensemble of
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Figure 1: Architecture of CN1 model

smaller subnetworks. Each subnetwork (SN) has
the following configuration:

• Embedding layer - Each token in the input
sequence is represented by its word vector.
Word embeddings help to capture the mean-
ing of the word.

• Convolutional layer - A convolutional layer,
having reLu activation function, to extract
spatial features.

• Max-pooling layer of size 2 or 3 in case of
Deep Learning models.

• Capsule layer to better preserve spatial in-
formation, in case of Capsulenet models.

Each SN of the model uses a different configu-
ration for the CNN layer or embedding. Therefore
each SN learns different information and generates
different features. The output of each SN is flat-
tened and merged and is passed as input to dense
layers. The last dense layer has three neurons and
a softmax activation function, which gives a prob-
ability score to each of the three classes, and the
one with the highest score is the predicted class.

5.1 Deep Learning (DL) Models

The following are the DL baselines:
DL1: It is an ensemble of three subnetworks.

All three SNs use Glove++ embeddings for the
embedding layer. The CNN layers in each SN have
kernel sizes 3,5 and 7, respectively.
DL2: It is an ensemble of 9 SNs. Each max-
pooling layer is followed by a biLSTM layer, hav-
ing 200 units, to capture long term dependencies.
SN 1-3 use Glove++ embeddings. SN 4-6 use Ag-
gression embeddings. SN 7-9 use Character-level
trigram embeddings. CNN layer in SN 1,4,7 has
kernel size = 3, in SN 2,5,8 has kernel size = 5 and
in SN 3,6,9 has kernel size = 7.

5.2 Capsule Network (CN) Models

The main difference between CN models and
DL models is that the CN models use a cap-
sule layer instead of max-pooling layer. The cap-
sule layer has 10 capsules of 16 dimension each.
Max-pooling reduces computational complexity
but leads to the loss of spatial information.

Capsules are a group of neurons that are rep-
resented as vectors. The orientation of the feature
vector is preserved in capsules. They use a func-
tion called squashing for non-linearity. Dynamic
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DL models CN models
DL1 57.17% CN1 65.20%
DL2 60.34% CN2 62.70%

Table 2: Weighted F1 scores of DL and CN models

Routing is used to route the feature vector of the
lower-level capsule to the appropriate next level
capsule (Sabour et al., 2017). Dynamic Routing is
based on a coupling coefficient that measures the
similarity between vectors that predict the upper
capsule and the lower capsule and learns which
lower capsule should be directed to which upper
capsule (Kim et al., 2018). Through this process,
capsule layers preserve spatial information, learn
semantic representation, and ignore words that are
insignificant.
CN1: The architecture is shown in figure 1. It
is an ensemble of 3 subnetworks. Each SN uses
Glove++ embeddings, and the CNN layers have
kernel size = 3,4 and 5, respectively.
CN2: Like CN1, but there is an additional biL-
STM layer, having 300 units, after the capsule
layer.

6 Results and Discussion

From table 2, we see that the CN models perform
better than DL models. Both the CN models are
comparable to the models proposed by Srivastava
et al. (2018). This validates the usefulness of cap-
sule networks for aggression detection. CN1 gives
the best results and is better than the best model
proposed by Aroyehun and Gelbukh (2018). DL2
works better than DL1, as it captures more infor-
mation. The performance drops from CN1 to CN2,
despite CN2 having an additional biLSTM layer.
This shows that a more complex model is not nec-
essarily better, which is in agreement with the ob-
servations of Aroyehun and Gelbukh (2018). This
could be due to over-fitting.

Figures 3, 4 and 5 are t-SNE (van der Maaten
and Hinton, 2008) graphs, which depict the out-
put of SN1-3 of CN1, respectively. We visualize
the feature embeddings in all the SNs, and we ob-
serve that each SN is able to characterize the fea-
tures distinctly due to the variability in the network
configurations. When all the SNs are combined in
an ensemble network, the feature representation is
further improved. The inter-class variability is pre-
dominant, as can be validated in Fig. 6. This can
be attributed to the fact that all 3 SNs have com-

Figure 2: Confusion matrix of CN1 model

Figure 3: Flatten vector of subnetwork1

Figure 4: Flatten vector of subnetwork2

Figure 5: Flatten vector of subnetwork3

plimentary feature representations.
As observed from the confusion matrix of CN1

model ( Fig. 2), NAG is the easiest to detect.
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Figure 6: Performance of Output Layer

It is because most of the tweets in the data are
NAG. The performance is better on OAG than on
CAG, despite there being more training examples
of CAG as OAG is more explicit and hence easier
to identify, as opposed to the more indirect CAG
(Davidson et al., 2017). CAG, because of its covert
nature is the most difficult to classify. The con-
fusion of CAG can also be observed in figure 6,
where CAG is overlapping with NAG and OAG.

The confusion can also be seen by analyzing
some CAG tweets predicted as NAG:
”Hundreds of people were killed by your friends in
Bombay, where were you at that time.”
”What’s next? Soon we will be told to have a bul-
lock cart and give up cars? Or live in a shed using
candles?”
”Chit fund operators n loan sharks r more honest”

7 Conclusion and Future Work

We perform experiments to identify aggressive
tweets by applying DL and Capsule Networks
on preprocessed data. We show that capsulenets
are efficient for aggression detection. We use an
ensemble-based model and qualitatively show that
each subnetwork learns unique features which
help in classification. Our best model uses capsu-
lenets and results in a 65.20% f1 score, which is an
improvement over most of the existing solutions.

In the future, we would like to explore other
capsulenet architectures using different routing al-
gorithms. A more in-depth analysis of CAG tweets
could improve the performance on them.
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