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Abstract

In this paper, we describe the results of team LIORI at the FinCausal 2020 Shared task held as
a part of the 1st Joint Workshop on Financial Narrative Processing and MultiLingual Financial
Summarisation. The shared task consisted of two subtasks: 1) classifying whether a sentence
contains any causality and 2) labelling phrases that indicate causes and consequences. We used
Transformer-based models with joint-task learning and their voting ensembles. Our team ranked
1st in the first subtask and 4th in the second one.

1 Introduction

The Financial Document Causality Detection Task was devoted to finding causes and consequences in
financial news (Mariko et al., 2020). This task is relevant for information retrieval and economics. This
task was focused on causality associated with a financial event while an event was ”defined as the arising
or emergence of a new object or context in regard to a previous situation”.

The shared task consisted of two subtasks:

• Sentence Classification

It was a binary classification task. The goal of this subtask was to detect whether a sentence dis-
played any causal meanings or not

• Cause and Effect Detection

This task was a relation detection task. Participants needed to identify ”in a causal sentence or
text block the causal elements and the consequential ones” 1. This task could be considered as
a sequence labelling problem because individual words and phrases corresponded to three labels:
cause, consequence, empty label. Each word or character corresponded to only one label.

For both tasks simultaneously we used a single Transformer-based model (Vaswani et al., 2017) with
two inputs and outputs for each of the tasks respectively. The first task was treated as a classification task
with a single label for the input, while for the second the label was predicted for each input word. The
training and dataset processing code is published on our GitHub page 2.

Our team ranked 1st in the first subtask and 4th in the second one.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.

1http://wp.lancs.ac.uk/cfie/fincausal2020/
2https://github.com/InstituteForIndustrialEconomics/fincausal-2020
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2 Related Work

There are many works devoted to sequence labelling in various domains as it is one of the most popular
tasks in Natural Language Processing (NLP).

Causality detection in texts is also a very old topic. First works date back to the 80s according to
the report by Asghar (Asghar, 2016). Recently there have appeared works that leverage neural networks
against for causality labelling (Li et al., 2019). The results of neural networks there seem to be in line
with the performance for other sequence labelling tasks such as named entity recognition (Ghaddar and
Langlais, 2018) for Bi-LSTM models according to paperswithcode.com 3. For our work, we adopted
a Transformer-based approach as it performs the best against current models for sequence labelling
and relation extraction. For example, if we look again at named entity recognition (one of the most
popular sequence labelling tasks) - at paperswithcode.com4, we can see that the top 3 best performing
use an attention-based model for Ontonotes v5 and CoNLL 2003. Some recent works have also shown
that multi-task learning can produce better results if we have several targets for the same input due to
eavesdropping and lower task-bias (Ruder, 2017), thus discouraging model from over-fitting. Recent
competitions, where multi-task models perform well, also prove this point (Dai et al., 2020; Davletov et
al., 2020; Gordeev and Lykova, 2020).

3 Dataset

The task dataset has been extracted from different 2019 financial news provided by Qwam 5. The corpus
consists of HTML-pages of financial news from 2019. It also contains various financial and legal reports
from the SEC Edgar Database ticker list, filtered on financial keywords.

The texts have been normalized for the research task in the following way:

• First, the text was split into sentences.

• Then, sentences containing causal elements were identified.

• The document text is then split into passages of consecutive sentences, keeping causally-related
sentences in the same passage which are used for binary predictions in the first subtask.

• Passages with positive classes are used as the dataset for the second subtask.

• The organizers provide the start and end indices for causes and effects.

The dataset was split into trial, train and test datasets by the organizers. The trial and train parts
contained training labels, while the test part did not include them and was used for ranking. We combined
the trial and train parts and used 20% of the combined dataset for validation.

4 Solution

In this work, we went with multitask Transformer-based models for both subtasks. It means that we had
two inputs and outputs, for each of the tasks respectively. In this work we tried BERT (Devlin et al.,
2018) and ROBERTa (Liu et al., 2019) based models. BERT is a multilingual language model based on
self-attention. ROBERTa is a ”robustly optimized” BERT variant with larger mini-batches and byte-level
BPE (byte-pair encodings). In both cases we used English large model variants (bert-large and roberta-
large). On top of pre-trained BERT and ROBERTa models, we added two Linear layers with dropout
for each of the tasks. Cross-entropy was used for training the models. Thus, we had two loss functions
(for each of the output layers) that were weighted and concatenated. All used models were provided by

3https://paperswithcode.com/sota/named-entity-recognition-ner-on-ontonotes-v5
4https://paperswithcode.com/task/named-entity-recognition-ner
5http://www.qwamci.com/
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Hugging Face (Wolf et al., 2019). Our combined loss function can be seen below, where La is the first
subtask loss and Lb is the second subtask loss.

La = − 1

m

m∑
j=1

Nc∑
i=1

yi · log(ŷi)

where m is the number of samples in the batch, yi is the target value, ŷi – our predicted value and Nc is
the number of classes.

Lb = −
1

m

m∑
i=1

1

Nj

Nj∑
j=1

Nc∑
c=1

yc · log(ŷc)

wherem is the number of samples in the batch,Nj is the number of tokens in the batch,Nc is the number
of NER classes, ŷc – the predicted NER class and yc is the target value.

L = λaLa + λbLb, where λ are scalar weights for the loss functions.

All padded words and non-labeled words (and their resulting tokens) were excluded from loss function
calculation and not included into Nj , while special ‘[SEP]‘ and ‘[CLS]‘ tokens were included.

While training models for the first subtask we tested a number of weighting schemes ranging between
2 and 0 for sequence labelling subtask loss. However, for the second subtask, the weights for text
classification loss were set to zero which makes the model equivalent to a general sequence labelling
model. We also tried various sequence labelling formats of the second subtask input: BIO (beginning,
inside, outside) and BIEO (beginning, inside, end, outside). Learning rates in the range between 5e− 06
and 5e − 05 were tested. Dropout coefficients were tested from 0.1 to 0.2. For the first subtask, there
were also provided the results for ensembles of the best 3, 4 and 5 performing models according to the
validation dataset. Simple voting ensembles were used.

We used a system with 2 NVidia RTX2080 GPUs and Google Colab to train all models.

5 Results

Test
Score

Validation
Score

Model Target
Format

Learning
Rate

Text Loss
Weight

Sequence
Loss Weight

Dropout
Rate

0.96529 0.960016 bert bieo 1e-05 1.0 0.2 0.1
0.965454 0.960291 bert se 7e-06 1.0 0.1 0.1
0.96685 0.961945 bert se 5e-05 1.0 0.2 0.15
... ... ... ... ... ... ... ...
0.973839 0.961179 roberta bio 1e-05 1.0 0.1 0.1
0.973839 0.967221 roberta bio 1e-05 1.0 0.1 0.1
0.975088 0.9657 roberta bio 5e-06 1.0 0.1 0.1
0.975238 top-3 Ensemble
0.975735 top-4 Ensemble
0.977467 top-5 Ensemble

Table 1: Model results for Subtask 1: Sentence Classification. In the Table we provide the results for
only the best and the worst 3 models and of the ensembles of the top-N performing models. The results
are sorted from the bottom to the top.

For the first subtask, the organizers used F1-score. For the second subtask, the metric is a weighted
average F1 score, where the F1 score of each class is balanced by the number of items in each class (see
(Mariko et al., 2020)).

In the first subtask our final model achieved F1 equal to 0.977 on the leaderboard (the next participant’s
score is 0.975 F1), in the second subtask our result was 0.826 F1 with the winning solution having 0.947
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Test
Score

Validation
Score

Model Target
Format

Learning
Rate

Text Loss
Weight

Sequence
Loss
Weight

Dropout
Rate

0.754986 0.872582 roberta bio 0.0001 0.0 1.0 0.1
0.76584 0.82897 roberta bio 0.0001 0.0 1.0 0.2
0.794089 0.865707 roberta bio 9e-05 0.0 1.0 0.2
... ... ... ... ... ... ... ...
0.823952 0.898873 bert bio 0.0001 0.0 1.0 0.2
0.824818 0.894067 bert bio 7e-05 0.0 1.0 0.2
0.826049 0.906328 bert bio 0.0001 0.0 1.0 0.1

Table 2: Model results for Subtask 2: Cause and Effect Detection. In the Table, there are provided the
results for only the best and the worst 3 models. The results are sorted from the bottom to the top.

F1. The results of individual models and their hyperparameters can be seen in Tables 1 and 2 for each of
the subtasks respectively.

As can be seen from Table 1 for subtask 1 ROBERTa robustly outperforms BERT for the first subtask.
The best top-3 single models are ROBERTa-based with various hyperparameters. It can also be seen that
sequence loss improves model results, but the best models have their weights scaled down by 0.1. It also
should be noted that the difference between all individual models is small and the difference between the
best and the worst-performing ones is less than 0.1 F-1-score point. For the first subtask, we also tried an
ensemble of 3,4 and 5 best performing individual models. The increase in the number of the used best
models consistently improved the results. Thus, it may be also beneficial to train other types of models
or to increase the number of models in an ensemble.

Paradoxically, for the second subtask BERT-based models consistently outperform ROBERTa based
ones. Moreover, the difference is much larger and constitutes more than 0.7 F1-score points. We did not
try ensemble-based models for the second subtask. It also can be seen that all our models tend to overfit
to the training and validation datasets. A more robust training scheme such as k-fold cross validation
might be of benefit here.

6 Conclusion

This paper describes the results of team LIORI at the FinCausal 2020 Shared task held as a part of
the 1st Joint Workshop on Financial Narrative Processing and MultiLingual Financial Summarisation.
The shared task consisted of two subtasks: classifying whether a sentence contains any causality and
labelling phrases which indicate causes and consequences. Transformer-based models with joint-task
learning were used. In this paper we show that different model architectures perform better for different
subtasks and that joint-task learning might improve results for some subtasks. However, it also results in
slight overfitting for sequence labelling task and might require further investigation.
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