
PublishInCovid19 at the FinSBD-2 Task: Sentence and List Extraction in Noisy
PDF Text Using a Hybrid Deep Learning and Rule-Based Approach

Janvijay Singh
Flipkart Private Limited

janvijay.singh@flipkart.com

Abstract
This paper describes the approach that we em-
ployed to tackle the FinSBD-2 shared task in
IJCAI-2020. FinSBD-2 comprises of two sub-
tasks: 1) extraction of boundaries of sentences,
lists and items from noisy PDF (financial docu-
ments) text and 2) organisation of lists and items
in a visual hierarchy. We solve these subtasks in
two phases. In the first phase, we pre-process the
data to embed relevant visual cues and form non-
recursive and non-hierarchical tags. We then for-
mulate the boundary prediction problem as a se-
quence labelling task and evaluate two neural ar-
chitectures, namely BiLSTM-CRF and BERT. In
the second phase, we identify the recursive rela-
tion among different items as well as their hierar-
chical visual layout. A rule-based method is used to
achieve desired recursiveness and hierarchy in tags
predicted from the first phase. The rules are based
on visual cues like left-indentation and bullet-style
of items. Our combined final approach achieved
an F1-score of 0.937 on subtask-1 and 0.844 on
subtask-2 for the English test set. We were ranked
first overall in terms of MEAN F1-score.

1 Introduction
Sentence Boundary Detection (SBD) involves identification
of boundaries (begin/from-end/to token indices) of sentences
within a text. Sentences are the foundational units of most
of the Natural Language Processing (NLP) applications in-
cluding Part of Speech Tagging, Discourse Parsing [Polanyi
et al., 2004], Machine Translation, Sentiment Analysis and
Information Retrieval [Read et al., 2012]. Hence, errors in-
troduced during the extraction of sentences can propagate
further and degrade the performance of the complete NLP
pipeline. Despite its fundamental importance in building
NLP-based solutions, SBD has so far not received enough
attention. Most of the previous research work in this
area has focussed on formal texts [Agarwal et al., 2005;
Kiss and Strunk, 2006; Akita et al., 2006; Gillick, 2009;
Kreuzthaler and Schulz, 2015], such as news and European
parliament proceedings, where existing rule-based and ma-
chine learning methods are highly accurate due to the per-

fectly clean data. SBD remains a challenging task when the
input text is noisy or unstructured.

Documents encoded in machine-readable formats (such as
Adobe PDF format) have the exact layout of human-readable
documents. However, the text extracted from such documents
loses these formatting features and is highly noisy or unstruc-
tured. Financial documents or prospectus are also encoded
in such machine-readable formats. Apart from the textual
paragraphs, financial documents contain tabular data, titles,
sub-titles, keywords, lists, headers and footers, which further
increases the complexity of SBD by making the extracted text
noisier. At IJCAI-2019, the FinSBD shared task [Azzi et al.,
2019] was proposed to address the SBD research focussing
on noisy text extracted from financial documents. In specific,
FinSBD was concerned with the identification of begin and
end token indices for sentences present in such noisy text.

The first step to extract information from financial docu-
ments is to transform the noisy or unstructured text into the
semi-structured (with well-marked boundaries for informa-
tion elements) text. Apart from the sentences, lists are the
other most commonly occurring element in financial docu-
ments. Contrary to sentences, lists include multiple sentences
and a visible hierarchy of information. Therefore, identify-
ing the intra-list hierarchy and distinction in sentences and
lists can make information extraction much more accurate.
Building on this idea, FinSBD-2 shared task was proposed at
IJCAI-2020. It comprises of following two subtasks: 1) iden-
tification of boundaries for sentences, items and lists and 2)
identification of the hierarchy of items contained in the lists.
We tackle these sub-tasks in two phases, using a hybrid rule-
based and deep learning approach.

In the first phase, we pre-process the data to embed rele-
vant visual cues and form non-recursive and non-hierarchical
list/item tags. We then formulate the boundary prediction
problem as a sequence labelling task and evaluate two neural
architectures, namely BiLSTM-CRF and BERT. In the sec-
ond phase, we employ a rule-based approach to identify the
recursive and hierarchical relation in the items predicted from
the first phase. The rules are based on visual cues like left-
indentation and bullet-style of items.

The rest of the paper is structured as follows: Section 2
states the task definition. Section 3 describes the specifics of
our methodology. Section 4 explains the experimental setup
and the results, and Section 5 concludes the paper.

55
Proceedings of the Second Workshop on Financial Technology and Natural Language Processing

2 Task Definition
In the literature, SBD has been attempted using several ap-
proaches. These approaches fall into three major categories:
(a) rule-based approaches, which rely on hand-crafted heuris-
tics (e.g. Stanford Core NLP1, SpaCy2 etc); (b) supervised
machine learning based approaches, which utilise annotated
training data to predict boundaries ([Reynar and Ratnaparkhi,
1997; Gillick, 2009; Du and Huang, 2019]); and (c) unsuper-
vised machine learning approaches, where the training data
is unlabelled ([Read et al., 2012]). Rule-based methods are
widely used for SBD since they provide ease of usage and de-
cent performance for most of the NLP tasks. In presence of
data with annotated boundaries, supervised machine learning
approaches tend to provide the best performance.

Training dataset provided with FinSBD-2 shared task com-
prises of following:

1. String of text extracted from financial documents;
2. Bounding box coordinates corresponding to each char-

acter in the text; and
3. Set of pairwise (begin/from-end/to) character indices

for some classes, namely sentences, lists, items, item1,
item2, item3 and item4.

Set sentences and lists have non-overlapping elements; this
implies that a character cannot be a part of both sentence and
list segment. Each element of set items overlaps with exactly
one element in set lists, this implies that a list can contain
multiple items. Similar to lists, an item can contain multi-
ple items inside it. Hence, items and lists are recursive in
nature. Sets item1, item2, item3 and item4 provide the hi-
erarchical structure of the list. Set item1 comprises of items
which are one-level inside the containing list. Set item2 com-
prises of items which are one-level inside containing item1,
and two-level inside containing list. The hierarchical struc-
ture for items in set item3 and item4 is defined similarly. Set
items is a union of sets item1, item2, item3 and item4.

Modelling this task as a sequence-labelling problem is not
trivial because of a few reasons. Firstly, due to the recur-
siveness in lists and items, the end boundary of multiple list
and item segments can share the same indices. This will re-
quire us to classify a few token indices into multiple classes.
Secondly, recursiveness causes list and item segments to span
over up to 1500 tokens (words). Since most of the sequence
labelling models learn far smaller contextual dependencies,
it becomes essential to deal with this recursiveness at pre-
processing stage only. Thirdly, items at different hierarchical
levels are indistinguishable from one another if the context
is constrained to a small length. Therefore, determining hi-
erarchy based on visual cues such as bullet-style and left in-
dentation should be carried out once the boundaries of lists
and items are precisely known. To formulate this task as a
sequence labelling problem, we pre-process the dataset to re-
move the recursiveness and hierarchy among lists and items.

With non-recursive and non-hierarchical boundaries for
lists and items, we formulate the boundary prediction prob-
lem as a sequence labelling task. In sequence labelling,

1https://stanfordnlp.github.io/CoreNLP/ssplit.html
2https://spacy.io/usage/linguistic-features/#sbd

each token in the sequence is classified to one among certain
classes (classes are commonly represented using IOB tagging
scheme [Evang et al., 2013]). For our task, we define the fol-
lowing seven classes:
• S-SEN: begin and end of a sentence with a single token;
• B-SEN: begin of a sentence segment;
• E-SEN: end of a sentence segment;
• S-IT: begin and end of list/item with a single token;
• B-IT: begin of a list/item segment;
• E-IT: end of a list/item segment;
• O: other, neither of the classes mentioned above.

We utilise this sequence labelling model to predict bound-
aries for sentences and non-hierarchical lists/items. We then
employ a rule-based method to identify the recursiveness
and hierarchy in the previously predicted list/item segments.
The rules for this method are based on left-indentation (de-
termined from bounding-box coordinates) and bullet-style.
Specifics of the different phases mentioned here are described
in subsequent sections.

3 Methodology
Our approach is composed of two phases. In the first phase,
we learn to predict the non-hierarchical and non-recursive
sentence, list and item boundaries. Details of the first phase
are included in sub-section 4.1 and 4.2. In the second phase,
we identify the recursiveness and hierarchy in segments pre-
dicted from the first phase using a rule-based approach. Sec-
tion 4.3 and 4.4 describe the details of the second phase.

3.1 Pre-Processing Dataset
The dataset provided with FinSBD-2 shared task cannot be
used directly to train our sequence labelling model because
of a couple of reasons. Firstly, the dataset contains the text
extracted from financial documents as a large string of char-
acters. Moreover, the segment labels are also provided at
the character level. In contrast, our sequence labelling mod-
els operate at word level and on a smaller input sequence
length. Secondly, as described in the previous section, non-
hierarchical and non-recursive list/item labels are more suited
to the task of sequence labelling. Therefore, we recreate the
training set using the following pre-processing strategy:

1. We create a unified set of all the segments in set lists and
items. We call a segment X as a child of segment Y, if
begin index of Y ≤ begin index of X and end index of
X ≤ end index of Y. For each segment X in the unified
set if X has atleast one child segment, we change the end
index of X to the minimum begin index of all its child
segments. With these steps, the final unified set contains
non-hierarchical and non-recursive list/item boundaries.

2. We tokenize the string of characters extracted from fi-
nancial documents using word tokenizer 3 from NLTK.
In addition to tokenization this removes extra white-
space characters (such as \n) from the text. We then

3https://www.nltk.org/api/nltk.tokenize.html

56

https://stanfordnlp.github.io/CoreNLP/ssplit.html
https://spacy.io/usage/linguistic-features/##sbd
https://www.nltk.org/api/nltk.tokenize.html

assign a tag (one from S-SEN, B-SEN, E-SEN, S-IT, B-
IT, E-IT and O) to each tokenized word, utilizing the
character based indices for sentence and list/item (from
unified set) segments. Hence, we achieve the word/tag
sequence for each financial document.

3. The x-coordinates provided with the dataset increases
from left to right on a page in PDF, whereas y-
coordinates increases from top to bottom. We define a
visual line as a contiguous sub-sequence of words which
have overlapping y-coordinate bounds. Left-indentation
for a visual line is the minimum x-coordinate of a char-
acter present in it. To embed visual cues, we embed
dummy tokens 〈tabopenX〉 and 〈tabcloseX〉 at the be-
ginning and ending of visual line respectively. Here X
is equal to left-indentation of visual line divided (inte-
ger division) by five units. These cues help us achieve
slightly better metrics at sequence labelling task.

4. We use a sliding window (parameterised by the window
and hop length) upon word/tag sequence to achieve se-
quences of smaller length. We use a hop length of 20
words, to ensure that the sequence labelling model is
provided with varied contexts.

3.2 Deep Learning Models for Sequence Labelling
Deep Learning (DL) models have achieved state-of-the-art
performance in most of the NLP tasks. In the domains of
sequence labelling tasks (such as Named Entity Recognition4

and Part of Speech Tagging5), recurrent neural network [Pe-
ters et al., 2018; Straková et al., 2019] and multi-headed self-
attention based DL models [Devlin et al., 2019] have sur-
passed performance of all other methods. In our work, we
evaluate two neural architectures, namely, BiLSTM-CRF and
BERT, which are described below.

BiLSTM-CRF
Recurrent Neural Networks (RNNs) are suited to sequential
input data since they execute the same function at each time-
step and allow the model to share parameters across input
sequence. In order to predict at a time-step, RNNs utilise
a hidden vector which captures the useful information from
past time-steps. In case of longer input sequences, RNNs
suffer from the problem of vanishing gradients. Long short-
term memory (LSTM) [Hochreiter and Schmidhuber, 1997]
was introduced to alleviate the problem of vanishing gradi-
ents. LSTM employ a gating mechanism to capture long-
range dependencies in the input sequence. In contrast to uni-
directional LSTM, bidirectional LSTM (BiLSTM) [Schuster
and Paliwal, 1997] makes prediction by utilising hidden state
vector from past as well as future time-steps.

Our BiLSTM-CRF model is composed of: 1) a character-
level BiLSTM layer; 2) a dropout layer [Srivastava et al.,
2014]; 3) a word-level BiLSTM layer; and 4) a linear-chain
Conditional Random Field (CRF) [Sutton and McCallum,
2012]. The character-level BiLSTM operates on words and
is employed to learn morphological features from them. We
concatenate the output vectors of character-level BiLSTM

4http://nlpprogress.com/english/named entity recognition.html
5http://nlpprogress.com/english/part-of-speech tagging.html

Figure 1: The architechture of our BiLSTM-CRF model.

(character representation) with pretrained word embeddings
(GloVe [Pennington et al., 2014]) to provide our model with
more powerful word representations. In order to prevent the
model from depending on one representation or the other too
strongly, we pass this concatenated vector through a dropout
layer. The output of the dropout layer is then passed to
the word-level BiLSTM layer, which outputs a vector cor-
responding to each word in the input sequence. For our task,
output labels share dependencies among themselves, such as
an end-tag is followed by a begin-tag. In order to model these
dependencies, we use a linear-chain CRF at the end, instead
of the commonly used softmax layer. A linear-chain CRF is
parameterised by a transition matrix (transitions within out-
put labels), and consequently is capable of learning depen-
dencies in the output sequence. The complete architecture of
our BiLSTM-CRF model for this task is shown in Fig. 1.

BERT
Transformer [Vaswani et al., 2017] based neural models have
shown promising results in most of the NLP tasks. Its archi-
tecture is composed of feed-forward layers and self-attention
blocks. The fundamental difference in RNN based models
and transformer is that transformer does not rely on recur-
rence mechanism to learn the dependencies in the input se-
quence. Instead, on each input time step, they employ self-
attention. Attention can be thought of as a mechanism to map
a query and a set of key-value pair to an output, where query,
keys, values and output are all vectors. In the case of self-
attention, for each vector in the input sequence, a separate
feed-forward layer is used to compute query, key and value
vectors. Attention-score for a input vector, is determined as
the output of a compatibility function, which operates on in-
put’s key and the some query vector. The output of self at-
tention mechanism is weighted sum of value vectors, where
weight is determined by the attention-score. In case of multi-
headed attention, multiple blocks of such self-attention mod-
ules operate on the input sequence.

Transformer’s encoder is composed of 6 identical layers,
where each layer is composed of two sublayers. These two
layers are multi-head self-attention and a position-wise fully

57

http://nlpprogress.com/english/named_entity_recognition.html
http://nlpprogress.com/english/part-of-speech_tagging.html

Figure 2: The token-tagging architecture for fine-tuning BERT.

connected feed-forward network. A residual connection is
used around each sublayer, followed by layer normalisa-
tion. BERT [Devlin et al., 2019] utilises a multi-layer Trans-
former encoder to pre-train deep bidirectional representations
by jointly conditioning on both left and right context across
all layers. As a result, pre-trained BERT representations can
be fine-tuned conveniently using only one additional output
layer.

For a given token, BERT’s input representation is con-
structed by summing the corresponding token, segment, and
position embeddings. BERT is trained using two unsuper-
vised prediction tasks, Masked Language Model and Next
Sentence Prediction. In order to fine-tune BERT on a se-
quence labelling task, BERT representation of every token of
the input text is fed into the same extra fully-connected layers
to output the label of the token. The predictions are not con-
ditioned on the surrounding predictions. Since we view our
task as a sequence labelling problem, we configure BERT to
instantiate the token tagging architecture which is shown in
Fig 2.

3.3 Post-Processing Predicted Tags
To extract a sentence or list/item segment, both begin and end
tags need to be predicted accurately. From predictions on the
validation dataset, we realise that many unretrieved segments
have a single missing begin or end tag. In order to recover as
many as possible missing/erroneous tags, we employ (in the
order as described) the following post-processing strategy on
the predicted tags:

1. If E-IT tag is missing for a B-IT tag, then E-IT occurs at
the end of a visual line (one with B-IT tag or the follow-
ing ones) if:
• first tag in next visual line is B-IT or B-SEN.
• last tag in the current visual line is E-SEN.
• vertical-spacing between current visual line and

next visual line is greater than most frequent inter
visual line spacing (specific to a document).

2. If B-IT tag is missing for a E-IT tag, then B-IT occurs
at:
• the word next to the just (all the tags in between are

O) previously occurring E-IT or E-SEN tag.
• the just previously occurring B-SEN.

3. If B-SEN tag is missing for a E-SEN tag, then B-SEN
occurs at the word next to the just previously occurring
E-SEN tag.

4. If E-SEN tag is missing for a B-SEN tag, then E-SEN
occurs at the word previous to the just next occurring
B-SEN tag.

3.4 Identification of Recursiveness and Hierarchy
After the prediction of non-hierarchical items, we identify the
recursiveness and hierarchy among them using a rule-based
method. The rules of this method rely on two pieces of infor-
mation, namely, left-indentation and bullet of the item seg-
ment. Bullet of an item segment can be a roman number, an
English letter or a special symbol present at its start. Left-
indentation for an item segment is the minimum x-coordinate
of its first word (excluding bullet). We define a bullet’s prede-
cessor as the bullet that will occur just before it in the list of
ordered bullets of corresponding bullet-style. e.g. predeces-
sor of bullet (c) will be (b), predecessor for bullet 5. will be 4.,
predecessor for • will be •. We call a bullet to be of start type
if it occurs first in the list of ordered bullets of corresponding
bullet-style. e.g. (a), 1. and • are of start type. With these
pieces of information we employ the algorithm described be-
low. We maintain a set called candidate lists which stores
the final lists and recursiveness/hierarchy among its item seg-
ments.

1. Sort all the items extracted from a financial document on
the basis of their occurrence in the original text string.
Jump to 2.

2. If last-item has been assigned call last-item as first-item,
else choose the first item from the list of sorted item seg-
ments and call it first-item. Create a list with just first-
item and call it candidate list. Jump to 3.

3. If no new items are left in sorted list of item segments
exit the algorithm. Call the next new item in sorted list
of item segments as current-item. If candidate list has
just one element then jump to 4, else jump to 5.

4. If current-item has a bullet of start type mark it as child
of first-item and jump to 3, else store candidate list in
candidate lists and jump to 2. Before jumping, assign
current-item to last-item.

5. If left-indentation of current-item and last-item are
equal, jump to 6. If left-indentation of current-item
is greater than that of last-item jump to 7. If left-
indentation of current-item is less than that of last-item
jump to 8.

6. If last-item’s bullet is predecessor of current-item’s bul-
let then mark current-item as child of last-item’s parent;
store current-item in candidate list and jump to 3, else
store candidate list in candidate lists and jump to 2. Be-
fore jumping, assign current-item to last-item.

7. If current-item has a bullet of start type mark it as child
of last-item; store current-item in candidate list and
jump to 3, else store candidate list in candidate lists and
jump to 2. Before jumping, assign current-item to last-
item.

8. Assign parent of last-item to candidate-sibling. Jump to
9.

58

9. If candidate-sibling has greater left-indentation than
the current-item, assign parent of candidate-sibling to
candidate-sibling and jump to 9, else jump to 10.

10. If candidate-sibling’s left-indentation is equal to that
of current-item and candidate-sibling’s bullet is pre-
decessor of current-item’s bullet then mark the parent
of current-item with parent of candidate-sibling; store
current-item in candidate list and jump to 3, otherwise
store candidate list in candidate lists and jump to 2. Be-
fore jumping, assign current-item to last-item.

With above mentioned algorithm we achieve a set called
candidate lists which captures parent-child relationships in
initial item segments. If an item in the candidate lists has
atleast one child, we change its end boundary to maximum
of end boundaries of its children. The items at highest level
(with no parents) correspond to lists. Items at one level lower
correspond to item1 and so on.

4 Experiments
We evaluated two neural architectures followed by rule-based
post-processing. In this section, we describe the dataset, sys-
tem settings, evaluation metrics, results and a brief error-
analysis for our system.

4.1 Dataset
The dataset for FinSBD-2 shared task (English track) was
provided in the form of JSON files. Each of the JSON
files contained text and character-based coordinates extracted
from a different financial document. The train and test set
contained six and two files, respectively. Segment boundaries
were provided in the form of character-based index pairs.
Segment boundaries for the test dataset were provided after
submission of our system’s predictions. Table 1 summarises
the statistics for the official FinSBD-2 dataset.

In Table 1, columns Min., Max. and Avg correspond to min-
imum, maximum and average length (in number of words)
of segments of a particular type. The column #Count de-
notes the number of occurrences of a certain segment-type
in the dataset. The row items (modified) corresponds to the
non-hierarchical and non-recursive list/item segments (cor-
responding to tags S-IT, B-IT and E-IT). Since the average
length of any segment-type lies far away from the mean of
its range, we can deduce that the length distribution of all
segment-types is highly unbalanced. Additionally, the distri-
bution of segment length for train and test dataset is quite dif-
ferent. On average, segments in the test dataset are longer as
compared to the train dataset. This difference implies that the
test set may be more complicated (more recursive lists/items
and more complex sentences).

We define coverage as the percentage of unique words
from the test set, which appear in the training set. Coverage
gives us a fair idea of the number of unseen words/tokens,
which the model sees at the testing stage. For FinSBD-2
shared task, the training dataset contains 7173 unique words
in total. Whereas, the test dataset contains 4894 unique words
in total. The vocabulary coverage for test set turns out to be
70.55%, implying that around 30% of the words in test set
didn’t appear in train set.

Train Dataset
Segment-Type Min. Max. Avg. #Count

sentences 1 270 24.4 8070
lists 21 1520 149.88 249
items 1 456 32.9 1111
items (modified) 1 236 26.75 1360

Test Dataset
Segment-Type Min. Max. Avg. #Count

sentences 1 391 29 2450
lists 15 1150 213.144 69
items 2 622 45.68 322
items (modified) 2 249 36.10 401

Table 1: Dataset (English) statistics for FinSBD-2020 shared task.

Hyper-parameter BiLSTM-CRF BERT

Max sequence length 300 (words) 500 (sub-words)
Lower case False False
Epochs 25 (max) 5
Batch-size 20 32
Learning rate 0.001 5e-5
Optimizer Adam Adam
Pre-trained model - bert-base-cased
Char-LSTM size 50 -
Word-LSTM size 200 -
Embedding dropout 0.3 -
Pre-trained embedding GloVe -

Table 2: Hyper-parameters employed in training neural models.

4.2 System Settings
In the first phase of our approach, we train two deep neu-
ral models, namely, BiLSTM-CRF and BERT. We train the
BiLSTM-CRF model to a maximum of 25 epochs, along with
an early-stopping strategy. With this strategy, we stop the
training if the model does not show any improvements in F1-
score on validation split for 500 continuous iterations. In ad-
dition to this, we also employ exponential moving averages
of the trained parameters to achieve slightly better F1-scores
on the validation split. For the pretrained word embeddings,
we use GloVE6 which are trained on large Common Crawl
dataset and can effectively represent 84 billion cased tokens.

To train the BERT for our task, we fine-tune a pre-trained
model, namely bert-base-cased. We have utilised hugging-
face’s BERT APIs7 to train our model. Since the pre-trained
BERT model was trained of a maximum input sequence
length of 512 (including special tokens), we could not experi-
ment with larger context window. We ran our experiments on
single NVIDIA V100 GPU. It took around 20 and 30 minutes
to train BERT and BiLSTM-CRF model, respectively. Table
2 summarises the hyper-parameters which we employed to

6http://nlp.stanford.edu/data/glove.840B.300d.zip
7https://huggingface.co/transformers/model doc/bert.html

59

http://nlp.stanford.edu/data/glove.840B.300d.zip
https://huggingface.co/transformers/model_doc/bert.html

Class BiLSTM–CRF BERT

P R F1 P R F1

S-SEN 0.308 0.500 0.381 0.143 0.5 0.222
B-SEN 0.923 0.942 0.932 0.921 0.952 0.936
E-SEN 0.946 0.954 0.950 0.922 0.962 0.941

S-IT - - - - - -
B-IT 0.919 0.875 0.897 0.882 0.88 0.881
E-IT 0.877 0.873 0.875 0.88 0.875 0.878

Table 3: Scores on predictions from deep neural models on test set.

train both the models.

4.3 Evaluation Metrics
To extract a segment from the text, both begin and end bound-
aries should be predicted accurately. Hence, the evaluation
metric should penalise the predictions in which either of the
boundaries is incorrect. Consider that P and T represent the
set of predicted and ground-truth boundary pairs (begin and
end index pairs) for certain segment-type. Then, pairwise pre-
cision, recall and F1-score for the boundary prediction of the
considered segment-type is defined as follows:

Precision =
|P

⋂
T |

|P |

Recall =
|P

⋂
T |

|T |

F1 =
2 ∗ Precision ∗Recall

Precision+Recall

FinSBD-2 is composed of two subtasks. Subtask-1 aims
at evaluating the system’s ability to predict and differentiate
between sentences, lists and items accurately. Therefore, its
official evaluation metric is mean of pairwise F1-score of sets
sentences, items and lists. Whereas, subtask-2 aims at the
prediction of the hierarchical layout of items, and hence its
official evaluation metric is mean of pairwise F1-score of sets
item1, item2, item3 and item4.

4.4 Results and Error Analysis
FinSBD-2 shared task dataset had no separate validation split.
In order to tune the hyper-parameters of our models, we chose
one among the six financial documents in the train set for the
validation purpose. Utilising this validation data, we tuned
parameters such as input sequence length and hop-length for
our final models. Table 3 and Table 4 summarise the results
of our final models on the official test set.

In the first phase, we defined the problem as a sequence
labelling task with seven output clases. Table 3 states the pre-
cision, recall and F1-score of our BiLSTM-CRF and BERT
models in the first phase on our approach. Using the results
table 3, we can conclude following points:

• Both the models predicted SEN tags more accurately
than IT tags, presumably because sentences are more ho-
mogeneous and have little intra-class variations as com-
pared to items.

Segment-Type P R F1

sentences 0.923 0.938 0.931
lists 0.968 0.895 0.929
items 0.991 0.916 0.951
item1 0.907 0.905 0.906
item2 1.000 0.697 0.783
item3 - - -
item4 - - -

Subtask-1 (Macro F1) : 0.937
Subtask-2 (Macro F1) : 0.844

Table 4: Scores after final rule-based approach on test set.

• Both the models achieve better F1-score for the B-IT tag
than the E-IT tag. This can be attributed to the fact that
the beginning of item has more distinctive features, such
as bullets/numbers, as compared to the ending of items.
• Similarly, models achieve better F1-score for E-SEN

compared to B-SEN due to more reliable punctuation
characters at the ending of the sentence.
• Class S-SEN has too few examples both in train and test

set, and thus the numbers for this class do not convey
much about models’ performance.

For these two models, we also computed the weighted mean
of F1-score of all the classes. BiLSTM-CRF and BERT
achieved the final F1-score of 0.959 and 0.956. Thus, we
conclude that both the models gave an almost similar perfor-
mance on the task.

In the second phase, we utilised the outputs of first phase
to identify the recursiveness and hierarchy. Table 4 states
the precision, recall and F1-score of our rule-based approach.
Our rule-based approach is susceptible to prediction errors, if
the phase-1 fails to recall even a single item in some list. The
falling F1-scores with the increased hierarchy (lists > item1
> item2) further reflect on this fact. The Macro-F1 scores
for subtask-1 and subtask-2 were ranked first among all the
submissions.

5 Conclusion and Future Work
In this paper, we described our approach to tackle the
FinSBD-2 shared task. Our approach was composed of two
phases. In the first phase, we formulated the modified ver-
sion of the task as a sequence labelling problem. We experi-
mented with two neural models, namely, BiLSTM-CRF and
BERT. In the second phase, we employed a rule-based ap-
proach to identify recursiveness and hierarchy among item
segments from the first phase. We experimented with differ-
ent hyper-parameter settings to tune our model. We submitted
a system based on BiLSTM-CRF with an input length 300 as
our final entry to the shared task. Our final system achieved
the highest MEAN F1-score in the shared task. Our approach
in this shared task should motivate research into the usage
of visual information for sentence/list extraction from noisy
PDF documents. In the future, we wish to explore the idea of
multi-modality and end-to-end trainable deep neural models
for this task.

60

References
[Agarwal et al., 2005] Nishant Agarwal, K. Ford, and Mick-

hail N Shneider. Sentence boundary detection using a
maxent classifier. 2005.

[Akita et al., 2006] Yuya Akita, Masahiro Saikou, Hiroaki
Nanjo, and Tatsuya Kawahara. Sentence boundary de-
tection of spontaneous japanese using statistical language
model and support vector machines. 01 2006.

[Azzi et al., 2019] Abderrahim Ait Azzi, Houda Bouamor,
and Sira Ferradans. The FinSBD-2019 shared task: Sen-
tence boundary detection in PDF noisy text in the financial
domain. In Proceedings of the First Workshop on Finan-
cial Technology and Natural Language Processing, pages
74–80, Macao, China, August 2019.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota, June 2019. Association for Computational
Linguistics.

[Du and Huang, 2019] Jinhua Du and Yan Huang. Aig in-
vestments.ai at the finsbd task: Sentence boundary detec-
tion through sequence labelling and bert fine-tuning. 2019.

[Evang et al., 2013] Kilian Evang, Valerio Basile,
G. Chrupała, and Johan Bos. Elephant: Sequence
labeling for word and sentence segmentation. pages
1422–1426, 01 2013.

[Gillick, 2009] Dan Gillick. Sentence boundary detection
and the problem with the U.S. In Proceedings of Human
Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Com-
putational Linguistics, Companion Volume: Short Papers,
pages 241–244, Boulder, Colorado, June 2009. Associa-
tion for Computational Linguistics.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. volume 9,
page 1735–1780, Cambridge, MA, USA, November 1997.
MIT Press.

[Kiss and Strunk, 2006] Tibor Kiss and Jan Strunk. Unsu-
pervised multilingual sentence boundary detection. vol-
ume 32, page 485–525, Cambridge, MA, USA, December
2006. MIT Press.

[Kreuzthaler and Schulz, 2015] Markus Kreuzthaler and
Stefan Schulz. Detection of sentence boundaries and
abbreviations in clinical narratives. volume 15 Suppl 2,
page S4, 06 2015.

[Pennington et al., 2014] Jeffrey Pennington, Richard
Socher, and Christopher Manning. GloVe: Global vectors
for word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, Doha, Qatar,
October 2014. Association for Computational Linguistics.

[Peters et al., 2018] Matthew Peters, Mark Neumann, Mo-
hit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 2227–2237, New Orleans,
Louisiana, June 2018. Association for Computational Lin-
guistics.

[Polanyi et al., 2004] Livia Polanyi, Chris Culy, Martin
van den Berg, Gian Lorenzo Thione, and David Ahn. A
rule based approach to discourse parsing. In Proceedings
of the 5th SIGdial Workshop on Discourse and Dialogue
at HLT-NAACL 2004, pages 108–117, Cambridge, Mas-
sachusetts, USA, April 30 - May 1 2004. Association for
Computational Linguistics.

[Read et al., 2012] Jonathon Read, Rebecca Dridan, Stephan
Oepen, and Lars Jørgen Solberg. Sentence boundary de-
tection: A long solved problem? In Proceedings of COL-
ING 2012: Posters, pages 985–994, Mumbai, India, De-
cember 2012. The COLING 2012 Organizing Committee.

[Reynar and Ratnaparkhi, 1997] Jeffrey C. Reynar and Ad-
wait Ratnaparkhi. A maximum entropy approach to
identifying sentence boundaries. In Proceedings of the
Fifth Conference on Applied Natural Language Process-
ing, ANLC ’97, page 16–19, USA, 1997. Association for
Computational Linguistics.

[Schuster and Paliwal, 1997] M. Schuster and K. K. Paliwal.
Bidirectional recurrent neural networks. volume 45, pages
2673–2681, 1997.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton,
Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks
from overfitting. volume 15, page 1929–1958. JMLR.org,
January 2014.

[Straková et al., 2019] Jana Straková, Milan Straka, and Jan
Hajic. Neural architectures for nested NER through lin-
earization. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages
5326–5331, Florence, Italy, July 2019. Association for
Computational Linguistics.

[Sutton and McCallum, 2012] Charles Sutton and Andrew
McCallum. An introduction to conditional random fields.
Found. Trends Mach. Learn., 4(4):267–373, April 2012.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30,
pages 5998–6008. Curran Associates, Inc., 2017.

61

	Introduction
	Task Definition
	Methodology
	Pre-Processing Dataset
	Deep Learning Models for Sequence Labelling
	BiLSTM-CRF
	BERT

	Post-Processing Predicted Tags
	Identification of Recursiveness and Hierarchy

	Experiments
	Dataset
	System Settings
	Evaluation Metrics
	Results and Error Analysis

	Conclusion and Future Work

