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Abstract
Regulators require most companies to publish
yearly reports, describing their activities, results,
future plans, and risk factors. Sometimes a risk
factor can be omitted in a document, possibly –
voluntarily or not– misleading the readers. In this
paper, we introduce a task for detecting omitted risk
factors in Annual Reports. This new task requires
to catch the risks mentions in multiple sentences,
and to identify the ones that are specific to a sector
or a period. To address it, we use a neural architec-
ture to extract risk sentences from documents and
cluster the risk factors from these sentences. Fi-
nally, we generate synthetic risk factor omissions
and propose a metric to evaluate the omission de-
tection method.

1 Introduction
Risk analysis is a popular task in Business and Management
research. While usually approached through expert knowl-
edge and quantitative inputs [Kaplan and Garrick, 1981], it
can benefit from the use of unstructured data such as legal
and regulatory documents. One of the associated tasks is the
automatic extraction of risk sentences.

Theoretically, a risk can be defined as a hazard with a po-
tential for damage to an entity. Its meaning differs from the
notion of uncertainty; in the former, one is able to quantify
precisely the probability of occurrence and its potential im-
pacts [Altham, 1983]. Therefore, a risk can be defined as
a triplet composed of the potential event characterized as a
risk, its quantitative counterparts such as the probability of
occurrence, and its possible consequences [Kaplan and Gar-
rick, 1981]. Thus, risk evocations can be identified by a topic-
oriented summarization system able to detect occurrences of
these triplets from natural language written documents such
as Annual Reports (ARs).

Listed companies are regulated by the Financial Market in
which their value is most traded in, often inducing the obli-
gation to regularly publish information documents. ARs are
supposed to exhaustively describe a company’s current well-
being, perspectives and the risks it is facing. In France, nearly
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190 ARs are released each year from CAC40, CAC60 and
CAC90 indexes (the principal French stock indexes from Eu-
ronext.).

To the best of our knowledge, few authors tackle risk sen-
tences extraction from non-HTML indexed ARs [Liu et al.,
2018]; they often rely on XBRL1-indexed 10-K filings to
identify risk factors markers [Huang and Li, 2011]. However,
automatic analysis of such raw long documents can be bene-
ficial for the Financial and Regulatory sectors. These docu-
ments represent the vast majority of ARs disclosed worldwide
and are composed of an average of 3500 sentences with var-
ious sections and topics [AMF, 2020]. As for now, little has
been done on extracting specific sections from Annual Re-
ports or indexing them. In this paper, we focus on extracting
and analysing the risk factors from these ARs.

In France, the financial market is regulated by the Financial
Market Authority (AMF). In particular, disclosure of ARs de-
pends on the “Code Monétaire et Financier” and on the “Doc-
trine” 2. Companies must release every year a report contain-
ing all the requested information. If an element that might be
important for a potential investor is missing from an AR, the
company runs the risk of being accused of voluntarily omit-
ting information, which is a specific kind of fraud.

From the extracted risk sentences, it is therefore possible to
identify the possible omission of a risk in an AR by compar-
ing its risk distribution to other ARs from the same sector and
year. Therefore, in this paper, (1) we propose a new task for
omitted risk factors detection from the DoRe Corpus [Mas-
son and Paroubek, 2020], composed of European Companies
ARs; and (2) we present a resolution method based on Neu-
ral Risk Sentences Extraction and Unsupervised Risk Factors
Clustering. We hope to gather people to make the task grow.3

2 Related Works
The literature on corporate ARs analysis is plentiful in the
financial research community. However, from the NLP per-
spective, research is more scarce and much more recent,
while offering a wide range of applications from stock mar-
kets volatility prediction [Kogan et al., 2009] to fraud detec-
tion. Today, financial reporting for companies faces a con-

1https://www.xbrl.org/the-standard/what/ixbrl/
2AMF guidance for righteous behavior on the market.
3Please contact us by email for access to the corpus.
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tradiction: the huge increase in volume leads to more and
more need of solution from the NLP community to analyse
this unstructured data automatically. However, more report-
ing from more companies leads to more diversity in the shape
of the documents; this lack of standardization and structure
makes the analysis tougher and requires more complex meth-
ods [Lewis and Young, 2019].

For investors and regulators, risk sections are important
parts of ARs, as they contain information about the risks
faced by the companies and how they handle it. [Mandi et
al., 2018] extract risk sentences from legal documents us-
ing Naive Bayes and Support Vector Machine on paragraph
embeddings. [Dasgupta et al., 2016] explore project man-
agement reports from companies to extract and map risk sen-
tences between causes and consequences, using hand-crafted
features and multiple Machine Learning methods. [Ekmekci
et al., 2019] performed a multi-document extractive summa-
rization on a news corpus for a risk mining task. As it has
not yet been done, we experiment extractive summarization
on risk extraction task in ARs.

Automatic text summarization is the task of producing a
concise and fluent summary while preserving key informa-
tion and overall meaning. In recent years, approaches to
tackle this difficult and well-known NLP problem make use
of increasingly complex algorithms ranging from dictionary-
based approaches to Deep Learning techniques [Xiao and
Carenini, 2019]. The current research trend deviates from
general summarization to topic-oriented summarization [Kr-
ishna and Srinivasan, 2018], targeting a specific subject in the
document such as risks in ARs in our case.

Focusing on detecting risk factors in ARs, topic modeling
has been extensively used for this task in the literature [Zhu et
al., 2016; Chen et al., 2017]. The evaluation is mostly done
using intrinsic measures and by looking at the topics manu-
ally. Only [Huang and Li, 2011] manually define 25 risk fac-
tor categories, relying on ARs from the Securities Exchange
Commission.

3 Pipeline
We propose a pipeline including a Risk Sentence Extractor
module with Active Learning labeling framework and a Top-
ics Modeling module to identify omitted risk factors.

3.1 Risk Sentences Extraction
As presented in Figure 1, each sentence in the document is
processed sequentially using a fine-tuned French version of
BERT [Devlin et al., 2019] named Flaubert [Le et al., 2020].
The goal is to compute the probability for each sentence to be
a risk sentence using three modules: a Sentence Encoder, a
Document Encoder and a Sentence Classifier.

Data Description
ARs are often disclosed in PDF format, which requires a lot
of pre-processing (a notable exception are the 10-K filings
[Kogan et al., 2009]). ARs are extremely long documents:
they contain an average of 3500 sentences and 27 different
sub-sections. Due to the large size of each document, com-
pletely labeling a set of reports would take a considerable

Figure 1: Risk Sentences Extraction architecture overview.

amount of time. To handle this, we propose to split the docu-
ment into a set of disjoint sub-documents and label by hand a
randomly selected subset of these sub-documents.

Model Architecture
The first module is a Sentence Encoder; its goal is to embed
each sentence into a k-dimensional space without the infor-
mation from the surrounding sentences. Due to the limited
amount of labeled data, we use a FlauBERT pre-trained
Language Model and fine-tune it for the extraction task,
allowing it to get a good approximation of basic syntax and
semantic features in higher layers [Jawahar et al., 2019].
With ND being the number of sentences in a document
D = (S1, S2, ..., SND

) and Mi being the length of the
sentence Si = (w1, w2, ..., wMi

), SentEnci is the sum of
the token embeddings computed by the fine-tuned FlauBert:

SentEnci =

Mi∑
j=1

BERTTokenEmbj (Si)

We also experiment with a version where the sentence em-
beddings SentEnci are computed using the [CLS] token
from the FlauBert model. In both cases, each sentence is
mapped into a v dimensional vector.

Risk evocations are often split into multiple sentences. For
example, in Figure 2, the first sentence displays the risk factor
while the second depicts the uncertainty with ’if’ and ’might’
along with the potential impact (’affect its market share in a
near future’).

The sector is driven by innovation from newcomers. If the
Group does not keep with the process, it might affect its mar-
ket share in a near future.

Figure 2: Example of risk evocation.

We want our model to be able to extract all parts of the risk
evocation. In order to extract sentence embedding taking into
account the surrounding sentences (context sentences), we
apply a forward LSTM layer at the document level, each sen-
tence being considered as a token whose embedding comes
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from the Sentence Encoder. We take the hidden state of each
sentence as the context sentence embedding.

DocEnci = LSTM(SentEnc1, SentEnc2, ..., SentEncMi)

As decoder, we add one linear layer with dropout for reg-
ularization. Its input comes directly from the contextualized
sentence embeddings computed through the Document En-
coder module, followed by a softmax layer to compute prob-
abilities.

P (yi = 1) = Softmax(Linear(DocEnc1, ..., DocEncND
))

For training, our loss function is a L2-penalized binary cross-
entropy loss.

L = −
N∑

d=1

Nd∑
i=1

(yilog(pi) + (1− yi)log(1− pi)) +
λ

2
||w||22

Active learning
To our knowledge, there is no freely available dataset for
risk sentences extraction in French nor in English, leav-
ing us with a considerable labeling task. Randomly se-
lecting sub-documents to label would be biased toward
non-risk sentences and therefore would make the dataset
asymmetric. Thus, we implement a Pool-Based Query-By-
Committee [Settles, 2010] Active Learning approach using
dropout masks for committee models generation and compute
stochastic predictions for each sentence [Tsymbalov et al.,
2018]. It allows to select the most informative sub-documents
to label and increase the accuracy of the model for these sen-
tences which are near the segmentation frontier.

With L = {DL
1 , D

L
2 , ..., D

L
NL
} the set of labeled sub-

documents and U = {DU
1 , D

U
2 , ..., D

U
NU
} the set of unla-

beled sub-documents, the framework – or Learner, as called
in the Active Literature – looks for x∗, the most informative
sentence with the selected query strategy. Our committee
H = {h1, h2, ..., hT } is composed of T models. At each
Active Learning iteration, a model is trained on the already
labeled data. Then, T different dropout masks are applied
on the classification layer of the Sentence Classifier mod-
ule in order to generate T different model. They are used
to compute stochastic predictions for each sentence in each
sub-document.

Using the predictions for each sentence, we can compute
the uncertainty score. As the Least Confidence, Sample Mar-
gin and Entropy measures are equivalent in the binary case,
we compute the approximated Least Confidence measure us-
ing votes from the committee H for probability estimation pi
for each sentence. The uncertainty measure of a given sub-
document is the average uncertainty score of all its sentences.

LS(D) =
1

NU
D

NU
D∑

i=1

|pi − 0.5|

where pi = P (yi = 1|Xi)

The learner ranks sub-documents by decreasing uncer-
tainty measure and queries the M most informative sentences

to the Oracle following : x∗ = argmaxDU LS(DU ). The
process is then iterated until a stop criterion is met, such as
an insufficient increase of accuracy between two iterations.

3.2 Risk Omission Detection
We use the set of risk sentences extracted from the ARs to
detect if a risk factor was omitted in a document.

Motivation & Pipeline
All companies describe different types of risks in their ARs,
often through a “risk factors” section. To detect if an AR
is missing a risk factor that should have been reported, we
would need to define a list of risks factors for all the compa-
nies. However, the regulators do not enforce any normalisa-
tion nor provide a list of risks to report. Thus, the number
and the type or risks reported vary a lot in the different doc-
uments. Consequently, we have to use unsupervised methods
to capture them.

From the sets of risk sentences, we create a mapping of the
risks depending on the sector and the year of the ARs. The
distribution of risks per year can also allow to identify emerg-
ing risks, while the distribution per sector allows to identify
the risks that are specific to a sector. We can either work on
the data at the sentence level using sentence clustering or at
the document level by doing topic modeling. We present the
two approaches in the following section.

Sentences clustering
We cluster the risk sentences of all documents together to
identify the types of risks across the full corpus. We use
the sentence representations from the risk sentence extraction
step using FlauBERT.

Moreover, we can assume that successive sentences, or
sentences that are close in the document, have a high proba-
bility to deal with the same risk factor. Thus, the surrounding
sentences as well as their distance to the target sentence can
add valuable information to the clustering. We use the repre-
sentation of the surrounding sentences as features for the clus-
tering, by doing element-wise sum with the representation of
the main sentence, weighted by a factor of their distance to
the main sentence. The distance is computed according to
the number of sentences: two successive sentences have a
distance d = 1, etc. Then, the weight of each sentence is
computed as the inverse of its distance to the main sentence
augmented by one: w = 1

d+1 .
For the clustering, we use the K-means algorithm. The

number of clusters k is chosen according to the literature on
risk factors in ARs. To ease the interpretation of the different
clusters of risk sentences, we use a method to detect keywords
in the clusters. We consider each cluster of sentences as a
document and the set of clusters as a corpus. To identify the
most representative words in a cluster, we compute the tf-
idf (Term Frequency - Inverse Document Frequency) score of
each word in the clusters. We exclude stopwords and words
that can be found in 50% of the clusters or more. The words
with the highest score in each cluster are used to label it.

Topic Model on Documents
We challenge the previous method using a popular topic mod-
eling algorithm: the Latent Dirichlet Allocation (LDA) [Blei
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et al., 2003]. Each document is characterised by a probability
distribution over a set of topics, while each topic is charac-
terised by a probability distribution over all the words of the
vocabulary. Therefore, the top words per topic are used as a
set of keywords to describe it. The number of topics is the
same as the number of clusters for the sentence clustering
with K-Means.

Intrinsic Evaluation Measures
We compute several measures, all relying on a list of key-
words characterising each topic or cluster.

First, the Normalized Point-wise Mutual Information
(NPMI) [Aletras and Stevenson, 2013] measures the topic co-
herence. It relies on word co-ocurrences to measure the level
of relatedness of the top k words characterizing each topic.
We also use external knowledge – pre-trained Word2Vec em-
beddings [Mikolov et al., 2013] 4 – to evaluate topic coher-
ence. Similarly to [Ding et al., 2018], we compute the pair-
wise cosine similarity between the vectors of the top k words
characterizing each topic, and average it for all topics. We
call this second topic coherence measure TC-W2V. For the
two measures, we use a relatively low k (k = 10). A high
NPMI or TC-W2V measure indicates an interpretable model.

These two measures are completed by a topic uniqueness
(TU) measure [Nan et al., 2019] for the top k keywords, rep-
resenting the diversity of the topics. For a given topic t, with
cnt(i) being the number of times the word i appears in the
top words of all the topics, the TU is computed as:

TUt =
1

k

k∑
i=1

1

cnt(i)

We take the global TU measure as the average TU for all top-
ics. The higher the TU measure is (close to 1), the higher the
variety of topics. We use k = 25 for this measure.

Risk Omission Detection Task
The extrinsic evaluation is done using the detection of omis-
sions as downstream task. We want to detect if a company
omitted or under-reported a risk in one of its reports, by ob-
serving the risks reported in the document, and comparing it
with the ones reported in other documents of the same year
and the same sector.

First, we generate synthetic risk omissions in our corpus.
We randomly sample a small set of ARs, manually select a
section of each document describing one type of risk, and
remove it. Our goal is double: to detect that a risk factor
is missing in the altered document, and to identify the risk
associated with the removed section.

To tackle this problem, we compute a measure relying on a
binarized version of the topic distribution of a document. In-
deed, both the topic model and the sentence clustering meth-
ods output a distribution of risks (respectively topics or clus-
ter) for each document. We consider that a document in-
cludes a topic (or a cluster) if the proportion of the topic (or
the number of sentences belonging to the cluster) is higher
than a threshold ε. Below this threshold, we consider that the

4We use pre-trained French word embeddings on the Wikipedia
Corpus: http://fauconnier.github.io

document does not report the risk characterised by that topic.
Then, for each sector and for each year, we extract the set of
“typical” topics: the ones that are present in most documents
for that sector or year, and therefore are expected to appear in
all documents of the same sector and year.

First, we count the number of documents mentioning each
risk. Then, we binarize it: if the number of documents men-
tioning the risk is lower than half of the total number of doc-
uments in the sector/year, then the risk is considered as not
important for the sector/year and we do not select it. We
compare this list of “expected” topics with the list of topics
reported in each document. It allows to identify the docu-
ments where a risk is absent but should have been reported,
because it is a risk common to most documents for that sector
or year.

For the second step, we check whether the missing topic
detected by our method is the same as the one removed from
the selected document. We use the fitted LDA and the fitted
K-Means algorithm to predict the topics (the clusters) which
can be found in the set of sentences that were removed from
the selected documents. If there is at least one topic in com-
mon between the set of “missing” topics in the document,
and the set of topics predicted from the removed sections, we
consider that the omission has been correctly detected.

In order to evaluate the ability of our methods to tackle the
task, we define the accuracy measure as the proportion of cor-
rectly detected omissions among the 20 altered documents.
This measure can be computed by using the documents of the
same sector or of the same year as comparison; we name it
Binary-sector and Binary-year accuracies. We also compute
a joint measure, taking into account both the expected topics
from the year and the ones from the sector: Binary-all.

4 Experiment
4.1 Data Preparation
Preparation for Risk Extraction
For labeling, we selected a random subset of 50 ARs from
the whole DoRe Corpus containing French and Belgian com-
panies with large, mid and small capitalization from various
sectors. These documents are converted from PDF to TXT
format using MuPDF 5, some were unusable and excluded
after conversion, such as the 2018 AR from AIR LIQUIDE.
We then extracted start and end offset of sentences from
these documents using Stanza6 from StanfordNLP team; we
chose it for its accuracy and relative speed. All of these pre-
processing steps induce errors; that is why we add some cus-
tom rules to filter out unusable sentences based on number
of letters / sentence length ratios and counts of line-breaks in
a sentence. To handle the cold start of our Active Learning
approach, we label up to 1000 sentences in successive groups
of 5 from the 4 first documents in the random sample. The
labeling rule is to label a sentence as Risk sentence if it in-
cludes the notion of uncertainty, and if at least one other ele-
ment from the Risk triplet is present. We take into account the
surrounding sentences to check whether the missing element

5https://mupdf.com/
6https://stanfordnlp.github.io/stanza/
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Accuracy F1 Recall

Iteration 1 0.8412 0.7373 0.7236
Iteration 2 0.8002 0.6403 0.6863
Iteration 3 0.8331 0.7483 0.6771
Iteration 4 0.8721 0.7767 0.8034
Iteration 5 0.8845 0.8158 0.7723
Iteration 6 0.8969 0.8269 0.8216

Table 1: Performance measures for each active learning iteration.

from the triplet is present in a sentence around the current
one; if it is the case, we also label this second one as risk.

The initial set of 200 sub-documents is composed of groups
of 5 successive sentences. We apply zero-padding to those
with less than 5 sentences. We are unable to label a set of
risk sentences representative of all potential risk topics from
different sectors due to the dimensionality of the data; to eval-
uate the ability of the algorithm to detect risks even outside
the sectors it has seen previously, we split the dataset into
two parts and put sub-documents from two of the four first
labeled ARs into the test set. This test set containing 70 sub-
documents is used to follow the evolution of the performance
metrics at each Active Learning iteration. It also allows the
metrics during the Active Learning to be less sensitive to ran-
domness of the split due to the low amount of data.

Active Learning
From these selected data, we train the first model in our Ac-
tive Learning pipeline. The parameters for our Query-By-
Committee approach are the dropout probability of classifica-
tion layers weights set to p = 0.5 and the number of models
in the committeeH set to T = 15 for computation feasibility.

We iterate 6 times and have 39% of risk sentences in the la-
beled sample. We can see in Table 1 that the metrics globally
increase during iterations while it is still subject to instabil-
ity due to the lack of data. A solution to stabilize the results
could be to add a cross-validation step, but it is computation-
ally expensive.

Preprocessing for risk clustering
We focus on the CAC40 companies. We have 388 annual re-
ports from 40 companies, spanning 12 sectors and 12 years
(from 2008 to 2019). From the risk sentences extraction step,
we have for each document, a set of risk-related sentences and
their position in the document. On average, the extracted risk-
related sentences correspond to 3.6% of the full document
(minimum proportion = 1.3%, maximum = 14.1%). Each
document is associated with a year and a company, which
belongs to one of the 12 sectors. For both the topic model-
ing and the sentence clustering methods, the number of topics
can be chosen by relying on the literature. Following [Huang
and Li, 2011], we use k = 25 topics.

We apply a heavy processing step to all the risk sentences,
in order to get a document as clean as possible to extract
the most important keywords for each topic more efficiently.
From the set of risk sentences, we first clean all errors re-
sulting from the transition from pdf to text (divided words,
merged characters...). Then, we exclude the sentences that

Accuracy F1 Precision Recall

BERT CLS 0.8398 0.7679 0.8968 0.6715
BERT Sum 0.8969 0.8269 0.8323 0.7723

Table 2: Final results of both models after the final Active Learning
iteration.

have less than 60% of letters (too many symbols, spaces or
digits in a sentence usually means that a portion of a data
table was extracted). We delete numbers and symbols from
the remaining sentences. We also remove French stopwords,
words of less than 2 characters, words found in less than 15
documents and words found in more than 80% of the docu-
ments. Finally, we lemmatize all the words. 7

4.2 Results
Risk Sentence Classification
We train two models for risk sentences classification, differ-
ing in the method to compute non-contextualized sentence
embeddings. The first one (BERT Sum) is computed from the
sum of the hidden-states of the last attention layer from the
fine-tuned FlauBert model. The second model (BERT CLS)
uses the CLS token, even though the Extractive Summariza-
tion literature tends to conclude that the second attempt is less
accurate [Xiao and Carenini, 2019]. Regarding the architec-
ture, we set the Document Encoder LSTM hidden-states to
256, the Classifier Linear layer dropout probability to 0.5, the
L2 penalization parameter of the loss function to 0.01 and
the learning rate to 1.e-̂5. The model is optimized by Adam-
Optimizer for 150 epochs with batch size of 16. We keep as
best model the one having the best validation accuracy, and
test it on the previously created test set (not used during Ac-
tive Learning nor training).

Table 2 presents the final results of both models after the
last Active Learning iteration. Even if the (BERT CLS) Pre-
cision is better (0.8968), the increase in the recall (+0.1008)
for (BERT Sum) makes it the best model for the task with the
current amount of data. Table 1 shows the results of the Ac-
tive Learning step, increasing the F1 score by 0.0785 (10%
increase in only 5 iterations). We believe that with a greater
amount of data, the model can still increase its performance
and gain a better capacity to identify unknown risk factors.

For each document, the risk sentences extracted by the
model from each sub-document are concatenated to create the
topic-oriented summary.

Risk Clustering
In order to identify the different risk factors from the topic-
oriented summary, we use the unsupervised methods de-
scribed in section 3.2.

On the one hand, we apply Online LDA [Hoffman et al.,
2010]8 to the set of risk sentences after preprocessing. On

7For lemmatization, we use the LefffLemmatizer() from
Spacy: https://pypi.org/project/spacy-lefff/

8Using Gensim implementation:
https://radimrehurek.com/gensim/models/ldamulticore.html
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NPMI (k=10) TC-W2V (k=10) TU (k=25)

LDA -0.153 0.175 0.691
KM -0.240 0.186 0.652

Table 3: Intrinsic measures of topic modeling and sentence cluster-
ing quality.

the other hand, we apply K-Means to the set of sentence em-
beddings extracted from the Sentence Encoder. We exper-
iment with K-Means of sentences embeddings (KM), Aug-
mented K-Means using weighted embeddings of surrounding
sentences with window = 2 (KM2), and Augmented K-Means
with window = 4 (KM4). As a preliminary measure of qual-
ity, we compute the silhouette score of the K-Means cluster-
ings. The score is the highest for the Augmented K-Means
with a window of 4 sentence (score = 0.178), slightly lower
with a window of 2 sentences (score = 0.162), and even lower
for the standard K-means (score = 0.147).

From the LDA, we have a set of keywords describing each
topic. Some topic examples along with an interpretation of
the associated risk factor are presented in Table 5. To be
able to compare it with the sentence clustering, we extract
keywords from the sentence clusters from the K-Means algo-
rithm, using the aforementioned tf-idf method (section 3.2.
Then, we compute the three intrinsic measures for both LDA
and K-Means to evaluate the quality of the topic model and
the clustering (Table 3). The measures for the Augmented
K-Means are almost the same as for the standard K-Means.

The measures show that the sentence clustering method
leads to a higher extrinsic topic coherence (TC-W2V) than
the topic model, but lower intrinsic topic coherence (NPMI).
Moreover, the TU measure is lower for K-Means, meaning
that the clusters are less diversified.

Risk Omission Detection
We use the same models for the risk omission detection task.
In order to generate synthetic omissions in ARs, we randomly
sample and alter 20 ARs of the CAC40 companies, by man-
ually removing a section describing one risk factor; and we
add these altered documents to our corpus. We choose risk
sections of different sizes, describing different types of risks;
for example, we remove the System security and cyber attack
section in the 2018 AR from ATOS, and the Risk of delay and
error in product deployment section in the 2017 report from
DASSAULT SYSTEMES.

After fitting the LDA and the K-Means on the corpus, we
obtain the distribution of risks in the altered documents and
the average distribution of risks for each sector and year. Ac-
cording to the method described in section 3.2, we binarize
these vector and compare them in order to identify the list
of missing topics in the altered documents. Then, using the
topic model and clustering fitted on the full corpus, we pre-
dict the distribution of risks in the sections that were removed
from the selected documents. Finally, we can compute the ac-
curacy measures described in section 3.2 using the LDA, the
standard K-Means and the Augmented K-Means with win-
dows of size 2 and 4 (Table 4).

Augmenting the K-Means algorithm by using the sur-

LDA KM KM2 KM4

Binary - sector 0.2 0.7 0.8 0.8
Binary - year 0.2 0.55 0.4 0.4
Binary - all 0.4 0.75 0.8 0.8

Table 4: Accuracy measures for the risk omission detection task on
the manually altered documents.

Risk factor Example of keywords

reputation agency, advertiser, publicity, affect, negatively
patent property, intellectual, licence, brand, software
energy oil, exploration, hydrocarbon, well, damage

Table 5: Translation of keywords examples using LDA with 25 top-
ics, and manually associated risk factor.

rounding sentences, even though it improved the silhouette
score, does not lead to a clear improvement for this task.
However, the LDA leads to much lower accuracy compared
to the K-Means algorithm. It might be linked with the low
extrinsic topic coherence of the LDA compared to K-Means.

5 Conclusion
In this paper, we introduced the task of risk omission detec-
tion and proposed a pipeline to tackle it. First, we extract risk
sentences from company annual reports using an Encoder-
Classifier architecture on top of contextualised embeddings
from the BERT model. Then, we use unsupervised methods
to extract the risk distribution of each annual report.

We generate synthetic risk factor omissions in a sample of
ARs in a straightforward way, propose a method to detect
them, and a metric to evaluate the method. We conclude that
a sentence-level analysis, by clustering sentence representa-
tion extracted with BERT, is more adapted than LDA to ad-
dress the task. Augmenting the sentence clustering by using
a weighted sum of the representations of the surroundings of
a sentence can further increase its quality. The low perfor-
mance of the LDA might be overcame using more advanced
topic modelling methods [Nan et al., 2019], possibly relying
on word embeddings [Dieng et al., 2019].

However, the risk sentence extraction step could be im-
proved with more Active Learning iterations, for the model to
learn more about the notions of uncertainty and the impacts
than about the risk factors that has already been observed dur-
ing training. It could also be improved by increasing the num-
ber of sentences in each sub-document and transferring infor-
mation between consecutive sub-documents in an AR.
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