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Abstract

As an essential component of task-oriented

dialogue systems, Dialogue State Tracking

(DST) takes charge of estimating user inten-

tions and requests in dialogue contexts and ex-

tracting substantial goals (states) from user ut-

terances to help the downstream modules to de-

termine the next actions of dialogue systems.

For practical usages, a major challenge to con-

structing a robust DST model is to process a

conversation with multi-domain states. How-

ever, most existing approaches trained DST on

a single domain independently, ignoring the

information across domains. To tackle the

multi-domain DST task, we first construct a

dialogue state graph to transfer structured fea-

tures among related domain-slot pairs across

domains. Then, we encode the graph infor-

mation of dialogue states by graph convolu-

tional networks and utilize a hard copy mech-

anism to directly copy historical states from

the previous conversation. Experimental re-

sults show that our model improves the per-

formances of the multi-domain DST baseline

(TRADE) with the absolute joint accuracy of

2.0% and 1.0% on the MultiWOZ 2.0 and 2.1

dialogue datasets, respectively.

1 Introduction

A task-oriented dialogue system provides funda-

mental technologies for continuous interactions

with a human to accomplish predefined specific

goals, such as taxi reservation or hotel booking.

Dialogue State Tracking (DST) is a crucial compo-

nent in the task-oriented dialogue system. Users’

intentions and goals are extracted from the current

utterances and the conversation history. Then, the

DST model encodes the information as a set of

states to help dialogue systems to determine which

actions should be taken in next steps (Young and

Thomson, 2013).

A dialogue state generally comprises an entity

Usr: I’m looking for an expensive restaurant in the centre of town.

Sys: What about the Cambridge chop house? A British restaurant located in the centre of town.

Usr: I need to book a table for four people at 16:45 on Friday.

Sys: Booking was successful. Reference number is 10p0levh. Anything else today?

Usr: I’m also looking for a place to stay. Ideally a hotel with free WIFI that is also expensive.

Sys: There is the Gonville hotel. It has internet and is rated 3 stars. Would you like to book?

Usr: Great, can you book it for two people, for four nights starting Friday?

Sys: Your booking was successful starting Friday for four nights. Reference number is drw9.

Usr: I also need a taxi to this hotel and leave at 21:45.

Sys: Ok, what will your departure be?

Usr: St. John’s College
Sys:  Okay, I have booked a taxi for you, the number is 07240037071.

(price-range, expensive)

Domain: Restaurant

Domain: Hotel

(price-range, expensive)

(area, centre) (book-day, Friday)

(book-day, Friday)

(book-people, four)

(book-people, two) (name, Gonville)

Domain: Taxi

(leave at, 21:45)(departure, St. John’s College) (destination, Gonville)

Figure 1: A conversation with dialogue states (solid

box) of three domains (dashed boxes) of MultiWOZ

2.0. The colored slots in states are corresponding to

their values with the same color in the conversation.

Each tuple denotes a slot-value pair, and the lines be-

tween them represent that they have the same slot or

the same value.

attribute (slot) and its corresponding value of a

specific domain. For example, there might be a

slot-value pair (book-day, Friday) in the domain

of restaurant. In general, the dialogue states in

DST are predefined by a single domain ontology.

However, as a real conversation is inherently com-

plex and across multiple domains, modeling multi-

domain DST is of great practical application value

in real-life situations. As shown in Figure 1, the

conversation includes three domains (restaurant,

hotel, and taxi), in which some dialogue states and

their expressions, such as the states connected with

lines, are similar. This paper focuses on multi-

domain DST.

To extract dialogue states from a conversation,

there are generally two kinds of approaches. One

is utilizing delexicalization to get rephrasings of

states by a semantic dictionary (Zilka and Jurci-
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cek, 2015; Rastogi et al., 2017). The other kind of

DST models is based on neural networks, which

uses word embeddings instead of delexicalization

(Mrkšić et al., 2017). However, these approaches

lack the capability of sharing and transferring in-

formation across domains, which causes low scala-

bility in multi-domain settings.

Recently, Wu et al. (2019) proposed a generative

multi-domain DST model (TRADE) based on a

copy mechanism, which transfers state represen-

tations by sharing the parameters across domains.

Beyond that, one challenge is that, is there a more

straightforward and explicit approach to encode the

states between domains and to further improve the

performance of multi-domain DST? Besides, a con-

versation often piles up long contexts1. Previous

multi-domain DST systems often behave defec-

tively in predicting dialogue states with such long

contexts at the current turn, which shows another

challenge of the multi-domain DST task.

To address the above issues, we come up with a

more scalable multi-domain DST model. In partic-

ular, to better represent the relationships between

dialogue states, we first construct a state graph

for each conversation. Then, we introduce Graph

Convolutional Networks (GCN) (Kipf and Welling,

2017) to better encode the structured information

into the representations of history state nodes. For

each node, GCN recursively aggregates neighbour

information over the dialogue state graph via effi-

cient graph convolution operations, then extracts

state-centric representations to benefit the feature

transferred across domains. In addition, to avoid

too much noise when generating states from long-

term contexts, we utilize the previous states from

dialogue history and propose a hard copy mecha-

nism for the decoder to pick up the history states

directly. To verify the proposed approach, we com-

bine it into an effective multi-domain DST frame-

work (Wu et al., 2019).

The experiments are carried out on the Multi-

WOZ 2.0 / 2.1 dialogue corpus (Budzianowski

et al., 2018; Eric et al., 2019). The results show

that the proposed multi-domain DST approach im-

proves 2.0% / 1.0% of joint accuracy over the base-

line. We also analyze our model from different

perspectives to show the effectiveness of our ap-

proach.

The paper proceeds as follows. First, we in-

troduce the state graph-based multi-domain DST

165% of conversations in MultiWOZ 2.0 are over 5 turns.

model (§2). Next, we describe the experimental

results and analyze the effects of different settings

and the case study (§3). Finally, we discuss the

related work (§4) and conclude the study (§5).

2 Method

Figure 2 illustrates the encoder-decoder framework

of our Graph-based and Copy-augmented multi-

domain Dialogue State Tracker (GCDST). Differ-

ent from the previous work (Wu et al., 2019), we

introduce state graph representations into both the

encoder and the decoder to model the associated in-

formation between dialogue states across domains.

In addition, we propose a hard copy mechanism

in dialogue decoder to get the history states from

the last prediction. The framework consists of four

main components.

• State graph representation extracts the graph-

structured information of dialogue states in a

conversation and provides the node represen-

tations using graph embeddings.

• Dialogue encoder models history utterances

and states of previous turns into a sequence of

fixed-length vectors.

• Dialogue decoder with copy mechanism pre-

dicts the current slot value by the historical

states of the last turn. Such a mechanism helps

to decode a sequence of tokens from all possi-

ble domain-slot candidates effectively.

• Slot gate, similar to the previous work (Wu

et al., 2019), predicts ptr, none, and dontcare

to filter some unrelated states.

2.1 State Graph Representation

A practical conversation usually contains dialogue

states in more than one domain. Different domains

often have lots of same slots that might share the

same values or have similar expressions and lin-

guistic features. As shown in Figure 1, when a user

books a restaurant, a hotel, and a taxi simultane-

ously in the conversation, the slot price-range ex-

ists in the restaurant domain and the hotel domain

respectively. Moreover, for the state expression,

the value of hotel-name might be as same as that

of taxi-destination, which means that after booking

a hotel, the user will book a taxi to the hotel. Thus,

representing and transferring features between the

same slots across domains or different domain-slot

pairs that have the same values are imperative.
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History states Utterances

Candidate domain-slots
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Figure 2: Framework of graph-based and copy-augmented multi-domain dialogue state tracker.

Graph Construction The prior work mainly

tracks slot information across domains by sharing

parameters (Zhong et al., 2018; Wu et al., 2019).

However, it is difficult to transfer the information

between slots explicitly and directly. Therefore,

we come up with a graph structure to represent the

relationship between dialogue states in a conversa-

tion. Based on the graph, features learned from the

states in one domain are able to directly transfer to

other domains.

Formally, a dialogue state graph is denoted as

G = {N,E}, where N = {(d, s)} stands for

domain-slot tuple nodes and E represents undi-

rected edges between nodes. Considering two

nodes Ni = (di, si) and Nj = (dj , sj), we explore

four ways of constructing of the edge adjacency

matrix A:

• Domain-connection: if di = dj , Aij = 1;

• Slot-connection: if si = sj , Aij = 1;

• Value-connection2: ∃vi, vj : if vi = vj , Aij =
1 where vi is one value of Ni;

• Slot/value-connection: union of slot and value

connection.

Graph Encoding To propagate information

among dialogue state nodes over the graph, we in-

troduce the Graph Convolutional Networks (GCN)

2If the types of slots are times or numbers, e.g. taxi-leaveat
or hotel-book people, there is no connection between these
nodes, as the semantic correlation among them is uncertain.

(Kipf and Welling, 2017) to update structure-aware

node representations by pooling features of their

adjacent nodes. In general, the input of GCN in-

cludes 1) the node embedding matrix H ∈ R
|V |×d,

where |V | is the number of nodes and d denotes

the dimension of node embedding, and 2) the ad-

jacency matrix A ∈ R
|V |×|V |, where Aij = 1 if

there is an edge between the node Ni and the node

Nj , which represents the dialogue state graph struc-

ture. In the dialogue state graph, the information

propagation among nodes takes up at most two

hops away. Thus, we consider a two-layers GCN,

in which every layer can be written as a non-linear

function and a symmetric adjacency matrix:

H
0 = I,

H
l+1 = σ(ÂH

l
W

l + b
l),

(1)

where H
l is the input node embedding matrix,

H
l+1 is the output node embedding matrix, and

W
l and b

l are a parameter matrix and a bias vector

for the l-th GCN layer, respectively. σ(·) is a non-

linear activation function (we use the ReLU(·) in

this paper). Finally, we can obtain a |V | × d node-

level feature matrix Enode = H
l+1.

In addition, the adjacency matrix A often adds

self-loops to each node in the graph.

Â = A+ λI, (2)

where I is a |V | × |V | identity matrix. As sug-

gested in Kipf and Welling (2017), we introduce

the trade-off parameter λ, as the importance of self
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and neighboring node connections might be not

equal. Through the self-loop, the representation of

each node can be affected by itself.

2.2 Dialogue Encoder

Previous works (Zhong et al., 2018; Wu et al.,

2019) only exploited utterances to encode the di-

alogue history. However, the foregoing dialogue

states are informative and related to the current

state. For instance, when a user inquiries the area

or the number of people for a hotel, she is quite

likely to have similar inquiries for other domains

such as the restaurant in the following conversa-

tion. Thus we propose an utterance encoder and

a state encoder to encode history utterances and

states respectively, by utilizing bi-directional gated

recurrent units (GRU) (Chung et al., 2014).

Specifically, the input of utterance encoder

is the word sequence of history utterance

{w1, w2, ..., wU}, where wi is the ith token of

the sequence of the user utterances and the sys-

tem responses of previous turns. On the other

hand, the input of state encoder is denoted as

{(d1s1, v1), ..., (dMsM , vM )}, where M is the

max number of history state, and djsj is the jth

domain-slot pair. For each domain slot pair, we use

graph embedding to encode it. In a few cases, the

value of a domain-slot pair is a phrase that contains

more than one word3. For simplicity, we encode

the value vj only according to its first word by a

shared word embedding of the utterance encoder4.

Finally, we concatenate djsj and vj as the input

representation and feed it into the state encoder.

During testing, we only use predicted state as

input of state encoder, although there might be

some errors in the predicted states. In order to

simulate this situation, we randomly replace, add,

and delete some history states in the training step.

Specifically, for replacing or adding operation, only

the states that have the same domain, slot, or value

are selected as the candidates.

2.3 Dialogue decoder with copy mechanism

To predict the current state of a conversation, both

the historical utterances and states can be taken

into account. Previous work (Wu et al., 2019) ap-

plies a copy mechanism to copy the words from

3According to the statistics on the training set of Multi-
WOZ 2.1, there are 85% of domain-slot pairs containing only
one word in their corresponding value.

4We also try the ways of averaging the representations by
word or using RNNs to encode the words, which get similar
or worse results.

historical utterances, but as the dialogue goes on,

the context will become longer. In this case, RNN

might lose much information of the states extracted

from the first few turns. To address the issue, we

first propose a hard copy mechanism to copy the

value from the previous state directly, because the

history state as a summary of context is important

for the current prediction. Then we use a soft-gate

to combine the probability based on vocabulary,

utterances, and states.

In particular, we use a GRU to decode the value

of each domain-slot pair and apply the node em-

bedding Enode(dksk) to represent each dialogue

state candidate. When decoding the t-th word of

dksk, the GRU takes a word embedding from the

previous step wt−1,k as input. The hidden state of

GRU is denoted as ht,k. For the first word we use

h0,k = hencu + hencs and w0,k = Enode(dksk) to

initialize its previous hidden state and word embed-

ding, where hencu and hencs are the last hidden states

of the utterance encoder and the state encoder, re-

spectively. The distributions over vocabulary and

historical utterance are calculated by

pvocabt,k = Softmax(W1 · (ht,k)
T )

puttert,k = Softmax(Hutter · (ht,k)
T )

(3)

where W1 is a mapping matrix from hidden state

size to vocabulary size and Hutter is the history

state from the dialogue utterance encoder.

As there might be many unchanged states in

each dialogue turn, we try to refer to the history

states predicted previously. Thus, we explore two

kinds of methods, a hard copy mechanism (Eq.(4))

and an attention-based method (Eq.(5)), to get the

distribution over the dialogue history state. While

the hard copy mechanism will generate a one-hot

vector, the output of attention-based method is a

distribution over the vocabulary, as below

pstatet,k = One-hot(statet,k), (4)

pstatet,k = Softmax(W2 · [h
enc
u ;hdect,k ;h

enc
s ]), (5)

where statet,k is the t-th word of the domain-slot

pair dksk at the last turn. If statet,k is not exist,

we fill it by padding. W2 is a mapping matrix for

training.

The final output distribution is a weighted sum

of the mentioned three distributions.

pt,k = (1− γ)× [β × puttert,k

+ (1− β)× pvocabt,k ] + γ × pstatet,k

(6)
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Metric Train Dev Test

# Dialogues 8,420 1,000 999
Avg. turns per dialogue 6.73 7.37 7.37
# States (domain-slot pairs) 30 30 30

Table 1: Statistics on MultiWOZ 2.0 and 2.1. Note that

one turn consists of one user utterance and its corre-

sponding system response, which is different from the

previous works (Budzianowski et al., 2018; Wu et al.,

2019).

The parameters β and γ are trainable gates, com-

puted by

β = Sigmoid(W3 · [ht,k;wt,k; c
uttr
t,k ; cstatet,k ]),

γ = Sigmoid(W4 · [ht,k;wt,k; c
uttr
t,k ; cstatet,k ]),

cuttrt,k = puttrt,k ·Huttr,

cstatet,k = Softmax(Hstate · ht,k) ·H
state,

(7)

where W3 and W4 are trainable matrices, and cuttrt,k

and cstatet,k are context vectors of utterances and

states, respectively. By Eq.(6), we are able to copy

the states from pstatet,k directly.

2.4 Slot Gate

Similar with (Wu et al., 2019), we use a slot gate

to predict the probabilities over ptr, none, and

dontcare. If the context does not mention this slot,

our gate predicts none. The gate predicts dontcare

if user think this slot does not matter. If the gate

predicts a slot as ptr, we accept the output of the

decoder. With the input of context vectors of the

utterance and the state, the slot gate for dksk is

denoted as

Gk = Softmax(W5 · [c
uttr
1,k ; cstate1,k ]) (8)

where W5 is a trainable matrix, cuttr
1,k and cstate

1,k are

the context vectors computed by Eq.(7).

2.5 Optimization

During training, we optimize the sum of cross-

entropy loss Lv of the decoder and Lg of the slot

gate,

L = Lg + Lv. (9)

3 Experimentation

3.1 Settings

Datasets The Multi-domain Wizard-of-Oz dia-

logue corpus (MultiWOZ 2.0) (Budzianowski et al.,

Figure 3: Statistics of the numbers of (a) dialogues and

(b) turns of the five used domains on the MultiWOZ 2.0

/ 2.1 dialogue corpus.

2018)5 is a human-human written conversational

corpus spanning over seven domains. MultiWOZ

2.1 (Eric et al., 2019) is released after fixing 32%

annotated noise. For an easy and fair comparison

with previous works, we follow the experimental

setup in Wu et al. (2019), which only uses five

domains, since the other two domains have very

few instances and only exist in the training set. Ta-

ble 1 summarizes the statistics of MultiWOZ 2.0

and 2.1. It shows that the training set of the Mul-

tiWOZ contains 8,420 multi-turn dialogues, with

an average of 6.73 turns per dialogue, and 30 states

with over 4,500 possible values, which makes it

significantly more diverse and complex than other

datasets such as DSTC2 (Henderson et al., 2014a)

and WOZ (Wen et al., 2017). We choose the best

model on the development sets and evaluate the

performances on the test sets of both MultiWOZ

2.0 and MultiWOZ 2.1. Figure 3 demonstrates the

distributions of numbers of dialogues and turns of

the five domains on the training set, the develop-

ment set, and the test set, respectively. Note that

the total amount of dialogues in all five domains is

larger than that in Table 1 because a dialogue often

spans over multiple domains in practice.

Metric To evaluate the multi-domain DST mod-

els, we employ joint goal accuracy as the evalua-

tion metric. Joint accuracy assesses the predictive

capability of the DST model on turn-level. A re-

sult is correct only if all of the predicted values

exactly match the ground truth in a dialogue turn.

This evaluation metric measures the capability of

identifying the completed user goals on multiple

domains in a turn, which is of paramount impor-

tance for multi-domain DST assessment.

Hyper-parameters The word embeddings are

initialized with 400-dimensional pre-trained em-

5http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
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beddings which concatenated the Glove embed-

dings (Pennington et al., 2014) and the character

n-gram embeddings (Hashimoto et al., 2017). For

the two-layer graph convolutional networks, the

dimension of the hidden units for the first layer is

set to 512, and the dimension of the node embed-

dings is set to 400. We initialize the input adja-

cency matrix A by row-normalization. We use the

node embeddings to convert dialogue states into

400-dimensional vector representations. During

training, we set the dropout with 0.2 ratio. The λ

in Eq. (2) is set to 2. The model is trained by using

the Adam optimizer (Kingma and Ba, 2015) with

a batch size of 32. We apply early stopping based

on the joint goal accuracy. In this paper, GCDST

refers to the model proposed at Section 2 with slot-

connection and hard copy mechanism if not clearly

stated.

Baselines We compare with the following mod-

els for multi-domain DST.

• MDBT: It leverages semantic interactions be-

tween dialogue utterances and ontology terms

to learn the shared representations between

slots across domains (Ramadan et al., 2018).

• GLAD: By utilizing system actions and user

utterances, this model builds global modules

to share parameters among slot-value pairs

and local modules to learn slot-specific fea-

tures (Zhong et al., 2018).

• GCE: Based on GLAD, this model replaces

the slot-dependent RNN with a global con-

ditioning encoder. It is the state-of-the-art

model of single-domain DST (Nouri and Hos-

seiniasl, 2018).

• SpanPtr: This model uses pointer networks to

generate both start and end positions to per-

form index-based copying (Xu and Hu, 2018).

• TRADE: This model utilizes a copy mecha-

nism that shares parameters across domains,

to generate dialogue states from user utter-

ances (Wu et al., 2019).

3.2 Experimental Results

We compare our GCDST with the previous work

in Table 2. The results show that GCDST achieves

the best performances of joint accuracy of 50.68%

on MultiWOZ 2.0 and 46.09% on MultiWOZ 2.1,

Model MultiWOZ 2.0 MultiWOZ 2.1

MDBT 15.57 -
SpanPtr 30.28 -
GLAD 35.57 -
GCE 36.27 -
TRADE 48.62 44.98∗

GCDST 50.68 46.09

Table 2: Comparison of multi-domain DST models on

MultiWOZ 2.0 and 2.1. ∗: We get the result with the

open-sourced model provided by Wu et al. (2019) but

on our pre-possessed dataset, while the result reported

in Eric et al. (2019) paper is 45.6%.

Connection Type MultiWOZ 2.0 MultiWOZ 2.1

Slot 50.68 46.09
Value 49.12 46.04
Slot/Value 49.16 45.30
Domain 45.64 44.72

Table 3: Comparison of different edge connections of

GCDST with hard copy on MultiWOZ 2.0 and 2.1.

outperforming the baseline (TRADE) with abso-

lute improvements about 2% on MultiWOZ 2.0

and 1% on MultiWOZ 2.1, respectively. Differ-

ent from existing multi-domain DST models, we

do not use complex decoding algorithms (GLAD)

and parameter-sharing mechanism (TRADE). We

attribute the performance improvements to the

straightforward graph structures, by which it could

represent and transfer information among dialogue

state nodes via GCN effectively. Moreover, the

hard copy mechanism copies the values from pre-

vious predicted states directly, which maintains the

consistency of the predicted states. The results

demonstrate the effectiveness of GCDST on captur-

ing information on multiple domain-slot pairs from

dialogues and utilizing the states from historical

turns.

3.3 Analysis and Discussion

Effects of edge connection In Section 2.1, we

propose four types of edge connection for state

graph construction, including slot-connection,

value-connection, slot/value-connection, and

domain-connection. As shown in Table 3, GCDST

with slot-connection achieves the best performance

on both MultiWOZ 2.0 and 2.1. In addition,

the other two connection types by value (value-

connection and slot/value-connection) achieve

comparative performances. We argue that similar

contextualized representations exist between

dialogue states that have the same slot or value.

For instance, in Figure 1, the states restaurant-
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State encoder MultiWOZ 2.0 MultiWOZ 2.1

Hard copy mechanism 50.68 46.09
Attention-based 50.02 45.99
w/o 49.02 45.17

Table 4: Comparison of different state decoders of

GCDST with slot-connection.

Figure 4: Performances of GCDST with respect to the

hyper-parameter λ in Eq.(2) on MultiWOZ 2.1.

book people and hotel-book people have the same

slot book people, so the information between

them can be transmitted via the state graph. There

are similar effects on the value connection-based

graph. However, domain-connection obtains worse

performances. It makes sense that different types

of states are difficult to share expressions even in

the same domain.

Effects of decoder for history states To con-

sult the historical states directly, we introduce two

kinds of state encoders, hard copy mechanism and

attention-based method, to predict the current states

(Section 2.3). Table 4 shows the performances of

GCDST with different state encoders. We observe

that 1) both of the state encoders improve GCDST,

and 2) the GCDST model with hard copy mecha-

nism is slightly better than that with attention-based

method. We argue that the hard copy mechanism

directly copies the states without considering the

hidden states of the utterance encoder and the state

encoder, which increases the learning burden of the

decoder.

Effects of hyper-parameter λ According to

Kipf and Welling (2017), we introduce a trade-

off parameter λ into Eq.(2), which balances the

impacts between self-loops and neighboring node

connections by the adjacent matrix of GCN. To

evaluate its effects, we verify GCDST on Multi-

Figure 5: Performances of GCDST and the baseline un-

der different numbers of turns on MultiWOZ 2.1. The

samples with more than 13 turns are ignored as there

are only 6 of them in total.

WOZ 2.1 by varying λ in range [0, 5]. As shown

in Figure 4, the joint accuracy suffers from a sig-

nificant decrease when λ = 1, which indicates

that there is not equal importance between self-

connections and edges to neighboring nodes. We

also find that the performances become stable when

λ ≥ 1.4. Actually, Kipf and Welling (2017) con-

sider that the λ plays a similar role as the trade-off

parameter between supervised and unsupervised

loss in the typical semi-supervised setting. We

will try to find the reason for this interesting phe-

nomenon in future work.

Effects of context length Figure 5 illustrates

how the performances of DST models change with

respect to the context length (turns of dialogue his-

tory) on MultiWOZ 2.1. We can see a consistent

trend of both the baseline and GCDST: 1) As the

conversation progresses through more turns, the

performances of both GCDST and the baseline

decrease, which suffers from predicting dialogue

states for longer context obviously. 2) GCDST

and the baseline achieve comparable performance

with short dialogue history (turn ≤ 6). As the con-

versation goes on, GCDST performs better with

longer dialogue contexts. We argue that the base-

line encodes the previous utterances by only RNN,

which might lose some useful information in con-

text. By contrast, GCDST uses an extra encoder to

model the previous states and exploits hard copy

mechanism to duplicate words from historical state,

which can alleviate the forgetting problem to some

extent. 3) According to statistics, to the cases that

GCDST correctly predicts while the baseline fails

to, the average length is 4.48 turns. On the contrary,
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ID Conversation Model Turn(s) Prediction (domain-slot-value) Result

1

...
Sys-2: What are you looking for?

Baseline 2-7 restaurant-price range-moderate ✓

Usr-2: Let’s start with a moderately priced

place to eat.
Baseline 8-10 restaurant-price range-〈N.A.〉 ✗

...
Usr-10: I appreciate that .

GCDST 2-10 restaurant-price range-moderate ✓

2

...
Usr-4: I am also looking for the hotel a and

Baseline 4-5 hotel-name-a and b guest house ✓

b guest house.

Sys-6: The a&b guesthouse does offer free
Baseline 6 hotel-name-〈N.A.〉 ✗

wifi!
Usr-6: Thank you.

GCDST 4-6 hotel-name-a and b guest house ✓

3

Usr-1: Are there any 4 star hotels which are
moderately priced?

Baseline 2-6 hotel-type-〈N.A.〉 ✓

Sys-2: We have 11 guest houses which are
moderately priced.

GCDST 2 hotel-type-guest house ✗

Usr-2: That’s good.
...

GCDST 3-6 hotel-type-guest house ✗

Table 5: Examples of the predicted dialogue states of GCDST and the baseline. The provenances of the correct

predictions are underlined in conversations. 〈N.A.〉 denotes the model predicts nothing in the current turn.

the average length of the cases only predicted by

the baseline is 3.96 turns. It indicates that GCDST

is good at dealing with long contexts.

3.4 Case Study

We list three examples of the results on MultiWOZ

2.1, as shown in Table 5. For Case 1, the value

moderate of the slot attraction-area is mentioned

at the 2nd turn in the conversation. After the 8th

turn, the baseline cannot correctly predict the value

for the state due to the long context, while GCDST

still predicts it correctly at the 10th turn. It indi-

cates that GCDST can process the longer context,

because this model copies values turn by turn by

copy mechanisms. For Case 2, the expressions of

the slot hotel-name are different between the 4th

turn (a and b guest house) and the 6th turn (a&b

guesthouse). The baseline can predict correctly in

the 4th turn but come to nothing in the 6th turn,

which might be due to the misleading by the dis-

tinct utterance. In the same case, GCDST gets the

correct value by copying it from the previous dia-

logue state. It indicates that our proposed model

can address the issue of expression diversity to

some extent. For Case 3, however, the copy mecha-

nisms also might copy an incorrect state from the

previous, when the model predicts by mistake.

4 Related Work

Dialogue State Tracking Early research on dia-

logue state tracking mainly adopted various kinds

of natural language understanding modules to

extract semantic features from user utterances

(Williams and Young, 2007; Thomson and Young,

2010; Henderson et al., 2012; Wang and Lemon,

2013; Williams, 2014). These feature-engineering

based approaches heavily rely on hand-crafted com-

plex features which are domain-specific and eas-

ily give rise to error propagation. Then, a class

of typical methods directly infer dialogue states

by semantic dictionaries and delexicalization with

the conversation history and the user utterances

(Henderson et al., 2014b; Zilka and Jurcicek, 2015;

Mrkšić et al., 2015). Although these models pos-

sess generalization capability to some extent, it is

difficult to obtain a relatively full dictionary. Mean-

while the number of slot value candidates could be

large and variable.

With the increasing technological sophistica-

tion of neural networks, the mainstream DST ap-

proaches turn to neural-based representation learn-

ing models, which represent a dialogue state as

a distribution over all slot value candidates that

are defined in the ontology. Amongst these, neural

belief tracker (Mrkšić et al., 2017) is a typical CNN-

based DST model which regards DST as a binary

classification task to determine whether each slot-

value pair in the predefined ontology is represented

in the conversation. There are lots of alternative

neural-based frameworks presenting to the DST

task (Wen et al., 2017; Lei et al., 2018; Ren et al.,

2018; Xu and Hu, 2018). However, the aforemen-

tioned approaches only focus on the single-domain

DST task, which is difficult to extend and scale



1071

from one domain to another.

Multi-domain DST In recent years, more and

more researchers are devoted to multi-domain DST.

Rastogi et al. (2017) adopted bi-directional GRUs

to share parameters across slots and transfer the pa-

rameters to a previously unseen domain. Ramadan

et al. (2018) estimated the semantic similarities

and modeled the interactions between user utter-

ances and the ontology terms to determine which

information could be transferred across domains.

Zhong et al. (2018) presented global modules to

share parameters between slots. Based on their

work, Nouri and Hosseiniasl (2018) introduced re-

current networks to further improve performance.

Wu et al. (2019) proposed a copy mechanism to

generate dialogue states from user utterances and

system responses. Such mechanism ensures the

knowledge transfer when predicting the unseen (do-

main,slot,value) triples. Le et al. (2020) introduced

a non-autoregressive method into dialogue state

tracking to accelerate the state decoding.

Recently, many studies have proposed effective

solutions to the multi-domain DST task from var-

ious aspects, including the dual strategy model

(Zhang et al., 2019), the QA-based model (Zhou

and Small, 2019), the memory-based model (Kim

et al., 2020), the multi-attention-based model

(Budzianowski et al., 2020), the copy strategy

model (Heck et al., 2020), and the graph atten-

tion neural networks (Chen et al., 2020). Although

there is still a performance gap between the pro-

posed model and some of the above models, we

argue that the principal motivation of this paper is

to verify the effectiveness of graph neural networks

and copy mechanisms on multi-domain DST, but

not more complicated settings or techniques.

Graph Convolutional Networks for NLP Re-

cently, Graph Convolutional Networks (GCN)

(Kipf and Welling, 2017), one typical variant of

Graph Neural Networks (GNN) (Cai et al., 2018;

Zhou et al., 2018), has been receiving a consider-

able amount of attention and been widely applied

to many NLP tasks such as semantic role labeling

(Marcheggiani and Titov, 2017), relation extraction

(Zhang et al., 2018; Sun et al., 2019), and question

answering (Tu et al., 2019; De Cao et al., 2019).

In this paper, we utilize GCN to encode structured

information into state node representations.

Copy mechanism It is a useful way to keep the

context consistent in sequence-to-sequence frame-

works (Zeng et al., 2016; Eric and Manning, 2017;

Song et al., 2018). In text summarization, Gu et al.

(2016) first introduced copying into a sequence-

to-sequence framework to copy a word from the

source passage. In machine translation, copy mech-

anisms often copy rare words (Luong et al., 2015;

Gulcehre et al., 2016). Similar to previous studies,

we use copy mechanisms to extract the state from

the last turn to keep the dialogue state consistent.

5 Conclusion

This paper presents a graph-based and copy-

augmented multi-domain DST model (GCDST).

In particular, GCDST constructs a graph to trans-

fer knowledge among states with the same slots or

values across domains by GCN and encodes the

history utterances and states by two independent

encoders. Furthermore, we add the hard copy mech-

anism to directly copy states from the last turn for

the decoder. Empirical studies on the MultiWOZ

2.0 / 2.1 dialogue datasets suggest that GCDST

outperforms previous systems substantially for the

multi-domain DST task. Further analysis demon-

strates the positive effects of graph representations

for information transferring across domains and

advantages of copy mechanisms for state tracking

of long-distance dialogue history.
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madan, and Milica Gašić. 2018. Multiwoz - a large-
scale multi-domain wizard-of-oz dataset for task-
oriented dialogue modelling. In EMNLP.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Inigo Casanueva, Stefan Ultes, Osman Ra-
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