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Abstract

Recent models achieve promising results in vi-
sually grounded dialogues. However, existing
datasets often contain undesirable biases and
lack sophisticated linguistic analyses, which
make it difficult to understand how well cur-
rent models recognize their precise linguis-
tic structures. To address this problem, we
make two design choices: first, we focus on
OneCommon Corpus (Udagawa and Aizawa,
2019, 2020), a simple yet challenging com-
mon grounding dataset which contains mini-
mal bias by design. Second, we analyze their
linguistic structures based on spatial expres-
sions and provide comprehensive and reliable
annotation for 600 dialogues. We show that
our annotation captures important linguistic
structures including predicate-argument struc-
ture, modification and ellipsis. In our experi-
ments, we assess the model’s understanding of
these structures through reference resolution.
We demonstrate that our annotation can reveal
both the strengths and weaknesses of baseline
models in essential levels of detail. Overall,
we propose a novel framework and resource
for investigating fine-grained language under-
standing in visually grounded dialogues.

1 Introduction

Visual dialogue is the task of holding natural, often
goal-oriented conversation in a visual context (Das
et al., 2017a; De Vries et al., 2017). This typically
involves two types of advanced grounding: symbol
grounding (Harnad, 1990), which bridges symbolic
natural language and continuous visual perception,
and common grounding (Clark, 1996), which refers
to the process of developing mutual understandings
through successive dialogues. As noted in Mon-
roe et al. (2017); Udagawa and Aizawa (2019), the
continuous nature of visual context introduces chal-
lenging symbol grounding of nuanced and prag-
matic expressions. Some further incorporate par-

tial observability where the agents do not share the
same context, which introduces complex misun-
derstandings that need to be resolved through ad-
vanced common grounding (Udagawa and Aizawa,
2019; Haber et al., 2019).

Despite the recent progress on these tasks, it re-
mains unclear what types of linguistic structures
can (or cannot) be properly recognized by existing
models for two reasons. First, existing datasets of-
ten contain undesirable biases which make it possi-
ble to make correct predictions without recognizing
the precise linguistic structures (Goyal et al., 2017;
Cirik et al., 2018; Agarwal et al., 2020). Second,
existing datasets severely lack in terms of sophisti-
cated linguistic analysis, which makes it difficult to
understand what types of linguistic structures exist
or how they affect model performance.

To address this problem, we make the following
design choices in this work:

• We focus on OneCommon Corpus (Udagawa
and Aizawa, 2019, 2020), a simple yet challeng-
ing collaborative referring task under continuous
and partially-observable context. In this dataset,
the visual contexts are kept simple and control-
lable to remove undesirable biases while enhanc-
ing linguistic variety. In total, 5,191 natural di-
alogues are collected and fully annotated with
referring expressions (which they called mark-
ables) and their referents, which can be lever-
aged for further linguistic analysis.

• To capture the linguistic structures in these
dialogues, we propose to annotate spatial ex-
pressions which play a central role in visually
grounded dialogues. We take inspiration from
the existing annotation frameworks (Pustejovsky
et al., 2011a,b; Petruck and Ellsworth, 2018;
Ulinski et al., 2019) but also make several simpli-
fications and modifications to improve coverage,
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Figure 1: Example dialogue from OneCommon Corpus with reference resolution annotation (left) and our spatial
expression annotation (right). We consider spatial expressions as predicates and annotate their arguments as well
as modifiers. For further details of the original dataset and our annotation schema, see Section 3.

efficiency and reliability. 1

As shown in Figure 1, we consider spatial ex-
pressions as predicates with existing markables
as their arguments. We distinguish the argument
roles based on subjects and objects 2 and annotate
modifications based on nuanced expressions (such
as slightly). By allowing the arguments to be in
previous utterances, our annotation also captures
argument ellipsis in a natural way.

In our experiments, we focus on reference reso-
lution to study the model’s comprehension of these
linguistic structures. Since we found the existing
baseline to perform relatively poorly, we propose
a simple method of incorporating numerical con-
straints in model predictions, which significantly
improved its prediction quality.

Based on our annotation, we conduct a series
of analyses to investigate whether the model pre-
dictions are consistent with the spatial expressions.
Our main finding is that the model is adept at rec-
ognizing entity-level attributes (such as color and
size), but mostly fails in capturing inter-entity re-
lations (especially placements): using the termi-
nologies from Landau and Jackendoff (1993), the
model can recognize the what but not the where in
spatial language. We also conduct further analyses
to investigate the effect of other linguistic factors.

Overall, we propose a novel framework and re-

1For instance, we define spatial expressions in a broad
sense and include spatial attributes (e.g. object size and color)
as well as their comparisons.

2Our subject-object distinction corresponds to other termi-
nologies such as trajector-landmark or figure-ground.

source for conducting fine-grained linguistic analy-
ses in visually grounded dialogues. All materials
in this work will be publicly available at https:
//github.com/Alab-NII/onecommon to facilitate
future model development and analyses.

2 Related Work

Linguistic structure plays a critical role in dialogue
research. From theoretical aspects, various dia-
logue structures have been studied, including dis-
course structure (Stent, 2000; Asher et al., 2003),
speech act (Austin, 1962; Searle, 1969) and com-
mon grounding (Clark, 1996; Lascarides and Asher,
2009). In dialogue system engineering, various
linguistic structures have been considered and ap-
plied, including syntactic dependency (Davidson
et al., 2019), predicate-argument structure (PAS)
(Yoshino et al., 2011), ellipsis (Quan et al., 2019;
Hansen and Søgaard, 2020), intent recognition
(Silva et al., 2011; Shi et al., 2016), semantic repre-
sentation/parsing (Mesnil et al., 2013; Gupta et al.,
2018) and frame-based dialogue state tracking
(Williams et al., 2016; El Asri et al., 2017). How-
ever, most prior work focus on dialogues where
information is not grounded in external, perceptual
modality such as vision. In this work, we propose
an effective method of analyzing linguistic struc-
tures in visually grounded dialogues.

Recent years have witnessed an increasing atten-
tion in visually grounded dialogues (Zarrieß et al.,
2016; de Vries et al., 2018; Alamri et al., 2019;
Narayan-Chen et al., 2019). Despite the impressive
progress on benchmark scores and model architec-

https://github.com/Alab-NII/onecommon
https://github.com/Alab-NII/onecommon
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tures (Das et al., 2017b; Wu et al., 2018; Kottur
et al., 2018; Gan et al., 2019; Shukla et al., 2019;
Niu et al., 2019; Zheng et al., 2019; Kang et al.,
2019; Murahari et al., 2019; Pang and Wang, 2020),
there have also been critical problems pointed out
in terms of dataset biases (Goyal et al., 2017; Chat-
topadhyay et al., 2017; Massiceti et al., 2018; Chen
et al., 2018; Kottur et al., 2019; Kim et al., 2020;
Agarwal et al., 2020) which obscure such contribu-
tions. For instance, Cirik et al. (2018) points out
that existing dataset of reference resolution may be
largely solvable without recognizing the full refer-
ring expressions (e.g. based on object categories
only). To circumvent these issues, we focus on
OneCommon Corpus where the visual contents are
simple (exploitable categories are removed) and
well-balanced (by sampling from uniform distribu-
tions) to minimize dataset biases.

Although various probing methods have been
proposed for models and datasets in NLP (Be-
linkov and Glass, 2019; Geva et al., 2019; Kaushik
et al., 2020; Gardner et al., 2020; Ribeiro et al.,
2020), fine-grained analyses of visually grounded
dialogues have been relatively limited. Instead,
Kottur et al. (2019) proposed a diagnostic dataset to
investigate model’s language understanding: how-
ever, their dialogues are generated artificially and
may not reflect the true nature of visual dialogues.
Shekhar et al. (2019) also acknowledges the im-
portance of linguistic analysis but only dealt with
coarse-level features that can be computed automat-
ically (such as dialogue topic and diversity). Most
similar and related to our research are Yu et al.
(2019); Udagawa and Aizawa (2020), where they
conducted additional annotation of reference res-
olution in visual dialogues: however, they still do
not capture more sophisticated linguistic structures
such as PAS, modification and ellipsis.

Finally, spatial language and cognition have a
long history of research (Talmy, 1983; Herskovits,
1987). In computational linguistics, (Kordjamshidi
et al., 2010; Pustejovsky et al., 2015) developed
the task of spatial role labeling to capture spatial
information in text: however, they do not fully
address the problem of annotation reliability nor
grounding in external visual modality. In com-
puter vision, the VisualGenome dataset (Krishna
et al., 2017) provides rich annotation of spatial
scene graphs constructed from raw images, but not
from raw dialogues. Ramisa et al. (2015); Platonov
and Schubert (2018) also worked on modelling spa-

tial prepositions in single sentences. To the best
of our knowledge, our work is the first to apply,
model and analyze spatial expressions in visually
grounded dialogues at full scale.

3 Annotation

3.1 Dataset
Our work extends OneCommon Corpus originally
proposed in Udagawa and Aizawa (2019). In this
task, two players A and B are given slightly differ-
ent, overlapping perspectives of a 2-dimensional
grid with 7 entities in each view (Figure 1, left).
Since only some (4, 5 or 6) of them are in common,
this setting is partially-observable where complex
misunderstandings and partial understandings are
introduced. In addition, each entity only has con-
tinuous attributes (x-value, y-value, color and size),
which introduce various nuanced and pragmatic
expressions. Note that all entity attributes are gen-
erated randomly to enhance linguistic diversity and
reduce dataset biases. Under this setting, two play-
ers were instructed to converse freely in natural lan-
guage to coordinate attention on one of the same,
common entities. Basic statistics of the dialogues
are shown at the top of Table 1 and the frequency
of nuanced expressions estimated in Table 2.

Total dialogues 6,760
Avg. utterances per dialogue 4.76

Avg. tokens per utterance 12.37

Successful dialogues 5,191
Annotated markables 40,172

% markables with 1 referent 71.81
% markables with 2 referents 14.85
% markables with ≥3 referents 12.03
% markables with 0 referent 1.31

Table 1: OneCommon Corpus statistics.

Nuance Type % Utterance Example Usage

Approximation 3.98 almost in the middle
Exactness 2.71 exactly horizontal
Subtlety 9.37 slightly to the right
Extremity 9.35 very light dot
Uncertainty 5.79 Maybe it’s different

Table 2: Estimated frequency of nuanced expressions
from Udagawa and Aizawa (2019).

More recently, Udagawa and Aizawa (2020) cu-
rated all successful dialogues from the corpus and
additionally conducted reference resolution anno-
tation. Specifically, they detected all referring
expressions (markables) based on minimal noun
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phrases by trained annotators and identified their
referents by multiple crowdworkers (Figure 1 left,
highlighted). Both annotations were shown to be
reliable with high overall agreement. We show
their dataset statistics at the bottom of Table 1.

In this work, we randomly sample 600 dialogues
from the latest corpus (5,191 dialogues annotated
with reference resolution) to conduct further anno-
tation of spatial expressions.

3.2 Annotation Schema

Our annotation procedure consists of three steps:
spatial expression detection, argument identifica-
tion and canonicalization. Based on these anno-
tation, we conduct fine-grained analyses of the
dataset (Subsection 3.3) as well as the baseline
models (Subsection 4.2). For further details and
examples of our annotation, see Appendix A.

3.2.1 Spatial Expression Detection

Based on the definition from Pustejovsky et al.
(2011a,b), spatial expressions are “constructions
that make explicit reference to the spatial attributes
of an object or spatial relations between objects”.
3 We generally follow this definition and detect
all spans of spatial attributes and relations in the
dialogue. To make the distinction clear, we con-
sider entity-level information like color and size
as spatial attributes, and other information such as
location and explicit attribute comparison as spatial
relations. Spatial attributes could be annotated as
adjectives (“dark”), prepositional phrases (“of light
color”) or noun phrases (“a black dot”), while spa-
tial relations could be adjectives (“lighter”), prepo-
sitions (“near”), and so on. We also detect mod-
ifiers of spatial expressions based on nuanced ex-
pressions (c.f. Table 2).

Although we allow certain flexibility in deter-
mining their spans, holistic/dependent expressions
(such as “all shades of gray”, “sloping up to the
right”, “very slightly”) were instructed to be anno-
tated as a single span. Independent expressions (e.g.
connected by conjunctions) could be annotated sep-
arately or jointly if they had the same structure (e.g.
same arguments and modifiers).

For the sake of efficiency, we do not annotate
spatial attributes and their modifiers inside mark-
ables (see Figure 1), since their spans and argu-
ments are easy to be detected automatically.

3Note that their term object corresponds to our term entity.

3.2.2 Argument Identification
Secondly, we consider the detected spatial expres-
sions as predicates and annotate referring expres-
sions (markables) as their arguments. This ap-
proach has several advantages: first, it has broad
coverage since referring expressions are prevalent
in visual dialogues. In addition, by leveraging ex-
ophoric references which directly bridge natural
language and the visual context, we can conduct es-
sential analyses related to symbol grounding across
the two modalities (Subsection 4.2).

To be specific, we distinguish the argument roles
based on subjects and objects. We allow arguments
to be in previous utterances only if they are unavail-
able in the present utterance. Multiple markables
can be annotated for the subject/object roles, and
no object need to be annotated in cases of spatial
attributes, nominal/verbal expressions (“triangle”,
“clustered”) or implicit global objects as in superla-
tives (“darkest (of all)”). If the arguments are inde-
terminable based on these roles (as in enumeration,
e.g. “From left to right, there are ...”), they were
marked as unannotatable. Modificands of the mod-
ifiers (which could be either spatial attributes or
relations) were also identified in this step.

3.2.3 Canonicalization
Finally, we conduct canonicalization of the spa-
tial expressions and modifiers. Since developing
a complete ontology for this domain is infeasible
or too expensive, we focus on canonicalizing the
central spatial relations in this work: we do not
canonicalize spatial attributes manually, since we
can canonicalize the central spatial attributes auto-
matically (c.f. Subsubsection 4.2.1).

According to Landau (2017), there are 2 classes
of relations in spatial language: functional class
whose core meanings engage force-dynamic re-
lationship (such as on, in) and geometric class
whose core meanings engage geometry (such as
left, above). Since functional relations are less
common in this dataset and more difficult to de-
fine due to their vagueness and context dependence
(Platonov and Schubert, 2018), we focus on the
following 5 categories of geometric relations and
attribute comparisons, including a total of 24 canon-
ical relations which can be defined explicitly.

Direction requires the subjects and objects to
be placed in certain orientation: left, right, above,
below, horizontal, vertical, diagonal.

Proximity is related to distance between sub-
jects, objects or other entities: near, far, alone.
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Region restricts the subjects to be in a certain
region specified by the objects: interior, exterior.

Color comparison is related to comparison of
color between subjects and objects: lighter, lightest,
darker, darkest, same color, different color.

Size comparison is related to comparison of
size between subjects and objects: smaller, small-
est, larger, largest, same size, different size.

To be specific, we annotate whether each de-
tected spatial relation implies any of the 24 canoni-
cal relations. Each spatial relation can imply mul-
tiple canonical relations (e.g. “on the upper right”
implies right and above) or none (e.g. “triangle”
does not imply any of the above relations).

In addition, we define 6 modification types (sub-
tlety, extremity, uncertainty, certainty, neutrality
and negation) and canonicalize each modifier into
one type. For example, “very slightly” is consid-
ered to have the overall type of subtlety.

3.3 Results
3.3.1 Annotation Reliability

Annotation % Agreement Cohen’s κ

Attribute Span 98.5 0.88
Relation Span 95.1 0.87
Modifier Span 99.2 0.86

Subject Ident. 98.8 0.96
Object Ident. 95.9 0.79
Modificand Ident. 99.6 0.98

Relation Canon. 99.7 0.96
Modifier Canon. 87.5 0.83

Table 3: Results of our reliability analysis.

To test the reliability of our annotation, two
trained annotators (the authors) independently de-
tected the spatial expressions and modifiers in 50
dialogues. Then, using the 50 dialogues from one
of the annotators, two annotators independently
conducted argument identification and canonical-
ization. We show the observed agreement and Co-
hen’s κ (Cohen, 1968) in Table 3.

For span detection, we computed the token level
agreement of spatial expressions and modifiers. De-
spite having certain freedom for determining their
spans, we observed very high agreement (including
their starting positions, see Appendix B).

For argument identification, we computed the
exact match rate of the arguments and modificands.
As a result, we observed near perfect agreement
for subject/modificand identification. For object
identification, the result seems relatively worse:

however, upon further inspection, we verified that
73.5% of the disagreements were essentially based
on the same markables (e.g. coreferences).

Finally, we observed reasonably high agree-
ment for relation/modifier canonicalization as well.
Overall, we conclude that all steps of our annota-
tion can be conducted with high reliability.

3.3.2 Annotation Statistics

Attribute Relation

Total 378 4,300
Unique 121 1,139

Avg. per dialogue 0.63 7.17
% inter-utterance subject 1.59 1.37
% inter-utterance object - 14.65

% no object - 30.84
% modified 36.51 16.86

% unannotatable 0.79 0.79

Table 4: Statistics of our spatial expression annotation
in 600 randomly sampled dialogues.

The basic statistics of our annotation are sum-
marized in Table 4. Note that there are relatively
few spatial attributes annotated, since most of them
appeared inside the markables (hence not detected
manually). However, a large number of spatial rela-
tions with non-obvious structures were identified.

In both expressions, we found over 1% of the
subjects and 14% of the objects to be present only
in previous utterances, which indicates that argu-
ment level ellipses are common and need to be
resolved in visual dialogues. For spatial relations,
about 30% did not have any explicit objects.

Our annotation also verified that a large portion
of the spatial expressions (37% for spatial attributes
and 17% for relations) accompanied modifiers.

Finally, less than 1% of spatial expressions were
unannotatable based on our schema, which verifies
its broad coverage. Overall, our annotation can
capture important linguistic structures of visually
grounded dialogues, and it is straightforward to
conduct even further analyses (e.g. by focusing on
specific canonical relations or modifications).

4 Experiments

4.1 Reference Resolution
Reference resolution is an important subtask of vi-
sual dialogue that can be used for probing model’s
understanding of intermediate dialogue process
(Udagawa and Aizawa, 2020). As illustrated in Fig-
ure 1 (left), this is a simple task of predicting the
referents for each markable based on the speaker’s
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perspective. To collect model predictions for all
dialogues, we split the whole dataset into 10 equal-
sized bins and use each bin as the test set in 10
rounds of the experiments. For a more detailed
setup of our experiments, see Appendix C.

4.1.1 Models

YOU: I see

Dialogue Encoder

Entity Encoders

three black dots lined up <eou> <eod>lets choose it

Reference ResolutionNumber Prediction

Choose Top k

0

k = 

1 2 3 4 5 6 7

Figure 2: Our model architecture. REF prediction flow
is shown in blue and NUMREF prediction flow in red.

As a baseline, we use the REFmodel proposed in
Udagawa and Aizawa (2020). As shown in Figure
2, this model has two encoders: dialogue encoder
based on a simple GRU (Cho et al., 2014) and entity
encoder which outputs entity-level representation
of the observation based on MLP and relational
network (Santoro et al., 2017). To predict the ref-
erents, REF takes the GRU’s start position of the
markable, end position of the markable and end
position of the utterance to compute entity-level
scores and judge whether each entity is a referent
based on logistic regression.

However, since the predictions are made inde-
pendently for each entity, this model often predicts
the wrong number of referents, leading to low per-
formance in terms of exact match rate. To address
this issue, we trained a separate module to track
the number of referents in each markable. We for-
mulate this as a simple classification task between
0, 1, ..., 7, which can be predicted reliably with an
average accuracy of 92%. Based on this module’s
prediction k, we simply take the top k entities with
the highest scores as the referents. We refer to this
numerically constrained model as NUMREF.

Furthermore, we conduct feature level ablations
to study the importance of each feature: for in-

stance, we remove the xy-values from the struc-
tured input to ablate the location feature.

4.1.2 Results

Entity-Level Markable-Level
Accuracy Exact Match

REF 85.71±0.23 33.15±1.00
REF−location 84.28±0.27 30.53±0.84
REF−color 83.08±0.32 17.09±1.04
REF−size 83.50±0.22 19.41±0.98

NUMREF 86.03±0.33 54.94±0.76
NUMREF−location 83.35±0.26 49.77±0.64
NUMREF−color 81.19±0.41 39.74±1.31
NUMREF−size 82.39±0.20 43.40±0.67

Human 96.26 86.90

Table 5: Reference resolution results.

We report the mean and standard deviation of
the entity-level accuracy and markable-level ex-
act match rate in Table 5. Compared to REF, our
NUMREF model slightly improves the entity-level
accuracy and significantly outperforms it in terms
of exact match rate, which validates our motiva-
tion. From the ablation studies, we can see that all
features contribute to the overall performance, but
color and size seem to have the largest impact.

However, it is difficult to see how and where
these models struggle based on mere accuracy. For
further investigation, we need more sophisticated
behavioral testing (namely black-box testing) to
verify whether each model has the capability of
recognizing certain concepts or linguistic structures
(Ribeiro et al., 2020).

4.2 Model Analysis

To study the current model’s strengths and weak-
nesses in detail, we investigate whether their pre-
dictions are consistent with the central spatial ex-
pressions.

4.2.1 Spatial Attributes
First, we analyze whether the model predictions
are consistent with the entity-level spatial attributes.
Since most of them were confirmed to appear inside
the markables (Subsection 3.3), we automatically
detect all expressions of color in the markables,
plot the distributions of the actual referent color,
and compare the results between gold human anno-
tation and model predictions (Figure 3).

From the figure, we can verify that the two dis-
tributions look almost identical for the common
color expressions, and our NUMREF model seems
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Figure 3: Referent color distributions. Top is human,
bottom is NUMREF (smaller is darker in color axis).

to capture important characteristics of pragmatic
expressions (same expression being used for wide
range of colors) and modifications such as neutral-
ity (medium) and extremity (very dark, very light).
4 We observed very similar result with the size
distributions, which is available in Appendix D.

Based on these results, we argue that the current
model can capture entity-level attributes very well,
including basic modification.

4.2.2 Spatial Relations
Next, we investigate whether the model predic-
tions are consistent with the central spatial relations.
Based on our annotation (Subsection 3.2), we con-
duct simple tests to check whether the predicted
referents satisfy each canonical relation. To be spe-
cific, our tests check for two conditions: whether
the predictions are valid (satisfy the minimal re-
quirements, e.g. at least 2 referents predicted for
near relation), and if they are valid, whether the
predictions actually satisfy the canonical relation
(e.g. referents are closer than a certain threshold).

Algorithm 1 shows our test for the canonical left
4Spatial attributes with nuances of subtlety (such as slightly

dark) were relatively rare and omitted in the figure.

relation. Note that if no objects are annotated, we
simply test whether the referents are on the left side
of the player’s view. For further details/examples
of our canonical relation tests, see Appendix E.

Algorithm 1: Test for left relation
Input: subject referents S, object referents O,

boolean no object
Output: boolean satisfy, boolean valid
if no object then

valid← |S|>0
satisfy ← valid ∧ mean(S.x)<0

else
valid← |S|>0 ∧ |O|>0
satisfy ← valid ∧ mean(S.x)<mean(O.x)

return satisfy, valid

The results of our tests are summarized in Table
6. We also compare with the feature ablated mod-
els to estimate the test cases which can be satisfied
without using the corresponding features, i.e. loca-
tion for direction/proximity/region categories, color
for color comparison, and size for size comparison.

First, we can verify that human annotation passes
most of our tests, which is an important evidence
of the validity of our annotations and tests. We
also confirmed that REF models often make invalid
predictions with overall poor performance, which
is consistent with our expectation.

In direction, proximity and region categories, we
found that NUMREF model performs on par or only
marginally better than its ablated version (and even
underperforms it for simple relations like right and
above): these results indicate that current model is
still incapable of leveraging locational features to
make more consistent predictions. 5

In color/size comparison, NUMREF performs rea-
sonably well, outperforming all other models: this
indicates that the model can not only capture but
also compare entity-level attributes to a certain ex-
tent. However, there is still room left for improve-
ment in almost all relations. It is also worth noting
that size comparison may be easier, as the range of
size is limited (only 6 compared to 150 for color).

Overall, we conclude that current models still
struggle in capturing most of the inter-entity rela-
tions, especially those related to placements.

4.2.3 Further Analyses
Finally, we conduct further analyses to study other
linguistic factors that affect model performance.

5For relations like far and different color, ablated model
may be better simply because referents tend to be more dis-
tant/dissimilar when predictions are closer to random.
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Models REF REF-abl NUMREF NUMREF-abl Human

Category Relation # Cases satisfy valid satisfy valid satisfy valid satisfy valid satisfy valid

Direction

left 412 23.5 32.3 21.1 28.9 67.0 99.5 62.4 99.5 95.9 97.6
right 468 28.0 35.5 24.6 30.8 67.3 98.7 68.2 98.7 95.3 96.4
above 514 28.6 37.4 24.7 33.1 65.2 99.2 66.5 99.4 96.7 98.6
below 444 25.2 34.5 21.6 27.9 66.0 99.1 62.2 99.1 96.4 96.8

horizontal 37 54.1 70.3 27.0 59.5 59.5 100.0 51.4 97.3 91.9 100.0
vertical 46 37.0 73.9 23.9 54.3 43.5 95.7 45.7 95.7 82.6 100.0
diagonal 50 48.0 74.0 30.0 50.0 60.0 98.0 60.0 98.0 90.0 100.0

All 1,971 27.8 37.6 23.4 31.9 65.5 99.0 64.1 99.0 95.5 97.6

Proximity

near 271 49.4 61.3 29.9 49.1 77.1 94.5 56.1 95.2 95.2 96.7
far 27 29.6 40.7 33.3 40.7 77.8 100.0 92.6 100.0 96.3 96.3

alone 111 36.9 44.1 45.0 54.1 68.5 94.6 67.6 94.6 91.9 94.6
All 409 44.7 55.3 34.2 49.9 74.8 94.9 61.6 95.4 94.4 96.1

Region
interior 135 38.5 52.6 27.4 39.3 62.2 93.3 58.5 94.1 96.3 100.0
exterior 62 40.3 48.4 40.3 53.2 80.6 98.4 87.1 98.4 98.4 98.4

All 197 39.1 51.3 31.5 43.7 68.0 94.9 67.5 95.4 97.0 99.5

Color

lighter 147 23.1 25.9 6.8 8.2 84.4 100.0 57.1 99.3 97.3 98.0
lightest 42 45.2 66.7 14.3 33.3 61.9 100.0 31.0 100.0 83.3 100.0
darker 171 24.0 26.3 7.0 10.5 83.0 99.4 53.2 99.4 95.9 98.8
darkest 48 56.2 64.6 14.6 33.3 66.7 100.0 35.4 100.0 89.6 97.9
same 50 12.0 30.0 8.0 30.0 40.0 88.0 32.0 86.0 92.0 96.0

different 14 64.3 71.4 71.4 71.4 64.3 100.0 78.6 92.9 92.9 100.0
All 472 28.8 35.4 10.4 18.0 74.8 98.5 49.2 97.9 94.1 98.3

Size

smaller 213 27.7 31.5 7.5 9.9 80.8 100.0 59.6 100.0 98.6 99.5
smallest 52 71.2 73.1 21.2 34.6 86.5 98.1 48.1 98.1 92.3 98.1
larger 238 23.1 28.6 9.7 16.0 73.5 99.6 48.7 99.6 98.3 98.3
largest 61 52.5 60.7 11.5 24.6 73.8 100.0 39.3 100.0 96.7 100.0
same 103 34.0 42.7 18.4 27.2 80.6 88.3 65.0 91.3 98.1 100.0

different 12 75.0 75.0 66.7 66.7 91.7 91.7 83.3 83.3 91.7 91.7
All 679 33.4 38.7 12.4 18.9 78.2 97.8 54.3 98.1 97.6 99.0

Table 6: Canonical relation test results. We compute the satisfy and valid rate of the predictions for each canonical
relation. Best scores of the models are in bold (-abl shows the corresponding feature ablated results).

Linguistic Factors # Cases NUMREF Human

strong modification 149 76.51 95.97
neutral 3,094 70.46 95.77
weak modification 490 66.12 95.10

inter-utterance subject 14 57.14 92.86
inter-utterance object 265 72.08 94.72
no object 1,127 74.45 92.99
ignorable object 1,805 69.64 97.23
unignorable object 796 65.33 96.11

All 3,728 70.17 95.71

Table 7: Satisfy rate classified by linguistic factors.

Table 7 shows the results of our relation tests clas-
sified by notable linguistic structures.

In terms of modification, we can confirm that
human performance is consistently high, while
the model performs best for strong modification

(modification types of extremity or certainty), de-
cently for neutrals (neutrality or no modification),
and worst on weak modification (subtlety or un-
certainty). This indicates that large, conspicuous
features are easier for the model to capture com-
pared to small or more ambiguous features.

In terms of subject/object properties, human per-
formance is also consistently high. In contrast,
model performance is significantly worse for sub-
ject ellipsis (inter-utterance subject), while remain-
ing high for object ellipsis and no object cases.

We also hypothesize that a large portion of the
relations can actually be satisfied without consider-
ing the objects, e.g. by simply predicting very dark
dots as the subjects when the relation is darker or
darkest. To distinguish such easy cases, we con-
sider a relation as ignorable object if the relation
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can be satisfied even if we ignore the objects (i.e.
remove all object relations) based on gold referents.
Our result verifies that there are indeed many cases
of ignorable object, and they seem slightly easier
for the model to satisfy.

Models NUMREF Human

value mod-type diff. # valid diff. # valid

xy-value
strong 86.06 39 89.15 37
neutral 80.92 1,586 73.52 1,558
weak 80.35 200 53.53 198

color
strong 66.23 15 91.80 15
neutral 56.98 234 60.14 232
weak 37.73 68 28.55 66

size
strong 3.60 8 4.29 8
neutral 2.67 337 2.70 320
weak 1.95 105 1.58 104

Table 8: Absolute difference in comparative relations
(number of valid predictions shown in shade).

In Table 8, we study the effect of modification
based on the absolute difference between subject
and object features in comparative relations. 6

In human annotation, the absolute difference nat-
urally increases as the modification gets stronger.
While model predictions also show this tendency,
their results seem less sensitive to modification
(particularly for locational features, i.e. xy-value)
and may not be reflecting their full effect.

5 Discussion and Conclusion

In this work, we focused on the recently pro-
posed OneCommon Corpus as a suitable testbed
for fine-grained language understanding in visu-
ally grounded dialogues. To analyze its linguis-
tic structures, we proposed a novel framework of
annotating spatial expressions in visual dialogues.
We showed that our annotation can be conducted
reliably and efficiently by leveraging referring ex-
pressions prevalent in visual dialogues, while cap-
turing important linguistic structures such as PAS,
modification and ellipsis. Although our current
analysis is limited to this domain, we expect that
upon appropriate definition of spatial expressions,
argument roles and canonicalization, the general
approach can be applied to a wider variety of do-
mains: adapting and validating our approach in
different domains (especially with more realistic
visual contexts) are left as future work.

6Left/right for x-value, above/below for y-value,
lighter/darker for color and smaller/larger for size.

Secondly, we proposed a simple idea of incorpo-
rating numerical constraints to improve exophoric
reference resolution. We expect that a similar ap-
proach of identifying and incorporating seman-
tic constraints (e.g. coreferences and spatial con-
straints) is a promising direction to improve the
model’s performance even further.

Finally, we demonstrated the advantages of our
annotation for investigating the model’s understand-
ing of visually grounded dialogues. Our tests are
completely agnostic to the models and only re-
quire referent predictions made by each model.
By designing simple tests like ours (Subsubsec-
tion 4.2.1/4.2.2), we can diagnose the model’s
performance at the granularity of canonical at-
tributes/relations under consideration: such analy-
ses are easy to extend (by adding more tests) and
critical for verifying what capabilities current mod-
els have (or do not have). Based on further analyses
(Subsubsection 4.2.3), we also revealed various lin-
guistic structures that affect model performance:
we expect that capturing and studying such effects
will be essential for advanced model probing in
visual dialogue research.

Overall, we expect our framework and resource
to be fundamental for conducting sophisticated lin-
guistic analyses of visually grounded dialogues.
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A Annotation Examples and Details

Figure 4: Example with spatial attributes.

Here, we show additional examples of our spa-
tial expression annotation. In Figure 4, we show an
example dialogue annotated with spatial attributes
(colored in red). Since our goal is not to achieve
strict inter-annotator agreement but to conduct ef-
ficient and useful analysis, we allow certain flex-
ibility in determining the spans of spatial expres-
sions: for instance, the coordinated spatial expres-
sion (“small and light”) can be annotated as a sin-
gle expression or as different expressions (“small
and light”). Copulas (is, being), articles (a, the),
particles (to, with) and modifiers were allowed to
be either omitted or included in spatial expressions.
Spans were allowed to be non-contiguous, but must

be annotated at the token level and restricted to
be within a single utterance. Note that spatial at-
tributes (tiny, light) in the first markable (“a lonely
tiny light dot”) are not annotated, since they are
inside the markable and their spans and subjects
are relatively obvious.

In terms of argument identification, we prioritize
markables in the following manner:

1. Markables in the present utterance (i.e. same
utterance as the spatial expression).

2. Markables in the closest previous utterance of
the same speaker.

3. Markables in the closest previous utterance of
different speakers.

As long as these priorities are satisfied, we did
not distinguish between coreferences. Furthermore,
for object identification, we did not distinguish
between markables which include/exclude subject
referents: for example, the object markable for
lighter in “I have [three dots], [two] dark and [one]
lighter” could be either three dots or two.

Figure 5: Example with subject ellipsis.

In Figure 5, we show an example dialogue where
the subject markable only appears in the previ-
ous utterance (“smaller?” in B’s utterance), which
demonstrates the case of subject ellipsis. Note that
since we only detect expressions that contain spe-
cific spatial information of the visual context, we
do not annotate black dots in the first interrogative
utterance (“how many black dots do u see?”).

In Figure 6, we show an example dialogue with
unannotatable relation (“going [small], [medium],
[large]”) which cannot be captured based on the
simple argument roles of subjects and objects. In
general, similar strategies of enumeration are dif-
ficult to be captured, as well as predications with
exceptions (such as “[All dots] are dark except [one

https://doi.org/10.18653/v1/D19-1516
https://doi.org/10.18653/v1/D19-1516
https://doi.org/10.18653/v1/D19-1516
https://www.aclweb.org/anthology/L16-1019
https://www.aclweb.org/anthology/L16-1019
https://www.aclweb.org/anthology/L16-1019
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Figure 6: Example with unannotatable relation.

dot]”) or cases with bundled subjects (“[Two dots]
are dark and darker”).

Finally, we only annotate explicit spatial at-
tributes and relations: therefore, we do not annotate
implicit relations such as darker in “One is dark
and the other is light gray”, although it is inferable.
When the spans are difficult to annotate, annota-
tors were encouraged to make the best effort to
capture the constructions which refer to specific
spatial information.

B Annotation Results

Annotation % Agreement Cohen’s κ

Attribute Start 98.5 0.84
Relation Start 95.1 0.77
Modifier Start 98.7 0.82

Table 9: Additional results of our reliability analysis.

In Table 9, we show the results of token level
agreement for the starting positions of spatial ex-
pressions and modifiers. Despite having certain
freedom as discussed in Appendix A, we can verify
that these also have reasonably high agreement.

Attribute Relation

% mod-subtlety 1.06 8.12
% mod-extremity 9.00 2.16
% mod-uncertainty 7.41 4.26
% mod-certainty 0.27 1.40
% mod-neutrality 19.31 0.67
% mod-negation 0.53 0.42

Table 10: Additional statistics of our spatial expression
annotation.

In Table 10, we show the frequency of each mod-
ification types. Based on these results, we can see
that neutrality is the most common type of modi-
fication for spatial attributes (as in medium gray,
medium sized), and subtlety and uncertainty to be

the most common types for spatial relations. It is
interesting to note that the frequencies of modifica-
tion types vary significantly with spatial attributes
and relations, except for negation.

In Table 11 and 12, we show the statistics and
examples of canonical relations and modification
types annotated for our analyses. Note that a sin-
gle expression can imply multiple canonical rela-
tions (e.g. “identical looking” implies same color
and same size) or no canonical relation at all (e.g.
“forms a triangle”). In contrast, a modifier can have
only one modification type: for instance, almost ex-
actly is considered to have the overall modification
type of certainty.

C Experiment Setup

We use the dataset, baselines, hyperparameters and
evaluation metrics publicly available at https://
github.com/Alab-NII/onecommon.

In order to collect model predictions for all
dialogues and markables, we randomly split
the whole dataset into 10 equal sized bins
zi (i ∈ {0, 1, 2, ..., 9}) and at each round r ∈
{0, 1, 2, ..., 9} we use zr (mod 10), zr+1 (mod 10), ...,
zr+7 (mod 10) for model training, zr+8 (mod 10) for
validation, and zr+9 (mod 10) for testing. We report
the mean and standard deviation of the entity-level
accuracy and markable-level exact match rate in
these 10 rounds of the experiments.

In our NUMREF model, we train a separate mod-
ule for predicting the number of referents based
on a simple MLP (single layer, 256 hidden units).
Reference resolution and number prediction are
trained jointly with the loss weighted by 32:1. We
conducted minimal hyperparameter tuning since
the results did not change dramatically.

D Size Distribution Plots

Figure 7 shows the referent size distributions based
on human annotation (top) and NUMREF predic-
tions (bottom). We can verify that the two dis-
tributions look almost identical for all common
expressions, as observed in the color distributions.

E Canonical Relation Tests

For canonical relation tests, we only use relations
that are not negated and have all arguments in the
same speaker’s utterances (so that referent predic-
tions are based on the same player’s observation).
As illustrative examples, we show the algorithms
for testing the horizontal relation (Algorithm 2),

https://github.com/Alab-NII/onecommon
https://github.com/Alab-NII/onecommon
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Category Relation Unique Examples

Direction

left 150 to the left (78), on the left (35), left most (5), furthest left (2)
right 192 to the right (120), on the right (38), lower right (6), to the northeast (1)
above 190 above (118), top (92), on top (33), up (17), higher (10), just above (4)
below 179 below (88), bottom (56), lower (38), down (14), lowest (7), beneath (4)

horizontal 19 horizontal (12), in a horizontal line (4), side by side (3), across from (1)
vertical 29 vertical (7), on top of (5), on a vertical line (4), aligned vertically with (1)
diagonal 38 diagonal (5), in a diagonal line (5), sloping down to the right (1), slanted (1)

Proximity
near 59 close together (63), cluster (32), next to (28), close to (22), near (13)
far 21 far (5), away from (4), set apart from (1), a ways above (1), a distance from (1)

alone 13 by (38), lonely (30), alone (21), lonesome (1), isolated (1)

Region interior 47 middle (41), in the middle (19), between (9), in the center of (2)
exterior 46 close to the border (5), all around (1), on the outside of (1), surrounding (1)

Color

lighter 22 lighter (102), lighter than (10), lighter gray (8), larger lighter (4)
lightest 11 lightest (28), lightest shade (3), the lightest of (2), lightest and smallest (2)
darker 30 darker (130), darker than (16), smaller and darker (4), darker in color (3)
darkest 10 darkest (40), smallest darkest (2), the darkest of (1), darkest/largest of (1)
same 9 same color (9), identical looking (2), similar shades (1), equally black (1)

different 11 different shades (3), different sizes and shades (2), of varying shades (1)

Size

smaller 17 smaller (209), smaller than (5), smaller and lighter (4), tinier (1)
smallest 8 smallest (40), tiniest (4), smallest darkest (2), smallest of (1)
larger 32 larger (178), bigger than (7), larger in size (2), double the size of (1)
largest 10 largest (41), biggest (11), largest of (2), biggest one of (1)
same 32 same size (24), same sized (12), similar in size (5), identical in size (3)

different 8 different sizes (3), of different sizes (1), varying sizes (1), opposite in sizes (1)

Table 11: Unique numbers and examples of spatial relations which imply each canonical relation (frequencies
shown in parentheses).

Modification Unique Examples

Subtlety 27 slightly (235), a little (48), a bit (35), a tiny bit (8), very slightly (5)
Extremity 15 very (87), much (17), pretty (8), quite (3), really (2)
Uncertainty 36 almost (85), about (49), kind of (23), smallish (6), not completely (3)
Certainty 13 directly (28), exactly (2), perfect (2), almost exactly (2)
Neutrality 16 medium (59), med (9), fairly (4), mid-size (3), slightly medium (1)
Negation 4 not (17), isn’t (1), not perceptibly (1)

Table 12: Unique numbers and examples of modifiers with each modification type (frequencies in parentheses).

near relation (Algorithm 3), interior relation (Al-
gorithm 4) and same color relation (Algorithm 5).
Note that each algorithm can take a variety of in-
puts, such as all referents including both subjects
and objects (A) or all observable entities of the
player (E).

Algorithm 2: Test for horizontal relation
Input: all referents A
Output: boolean satisfy, boolean valid
valid← |A| > 1
if valid then

// Conduct linear regression and
check if coeficient is small

reg.fit(A)
satisfy ← reg.coef < 1

3

else
satisfy ← False

return satisfy, valid
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Figure 7: Referent size distributions (top is human, bot-
tom is NUMREF).

Algorithm 3: Test for near relation
Input: all referents A, observable entities E
Output: boolean satisfy, boolean valid
valid← |A| > 1
if valid then

// Compute distance for every
pair in the set

A dists← dist(x, y) for x, y in
combination(A)
E dists← dist(x, y) for x, y in
combination(E)

// Check if mean distance is
smaller

satisfy ← valid∧
mean(A dists) < mean(E dists)

else
satisfy ← False

return satisfy, valid

Algorithm 4: Test for interior relation
Input: subject referents S, object referents O,

boolean no object
Output: boolean satisfy, boolean valid
if no object then

// If any subject referent is
far from the center, satisfy
is False

valid← |S| > 0
satisfy ← valid
center ← (0, 0)
for s ∈ S do

if dist(s, center) > 120 then
satisfy ← False

else
// If any subject referent is

outside the region of
objects, satisfy is False

valid← |S| > 0 ∧ |O| > 1
satisfy ← valid
for s ∈ S do

if (s.x<min(O.x) ∨max(O.x)<s.x)∧
(s.y<min(O.y) ∨max(O.y)<s.y) then

satisfy ← False
return satisfy, valid

Algorithm 5: Test for same color relation
Input: all referents A
Output: boolean satisfy, boolean valid
valid← |A| > 1
// Check if range of color is

smaller than the threshold
satisfy ← valid∧
max(A.color)−min(A.color)<30

return satisfy, valid


