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Abstract

This work proposes the use of a pretrained
sequence-to-sequence model for document
ranking. Our approach is fundamentally differ-
ent from a commonly adopted classification-
based formulation based on encoder-only
pretrained transformer architectures such as
BERT. We show how a sequence-to-sequence
model can be trained to generate relevance la-
bels as “target tokens”, and how the under-
lying logits of these target tokens can be in-
terpreted as relevance probabilities for rank-
ing. Experimental results on the MS MARCO
passage ranking task show that our rank-
ing approach is superior to strong encoder-
only models. On three other document re-
trieval test collections, we demonstrate a zero-
shot transfer-based approach that outperforms
previous state-of-the-art models requiring in-
domain cross-validation. Furthermore, we find
that our approach significantly outperforms an
encoder-only architecture in a data-poor set-
ting. We investigate this observation in more
detail by varying target tokens to probe the
model’s use of latent knowledge. Surprisingly,
we find that the choice of target tokens impacts
effectiveness, even for words that are closely
related semantically. This finding sheds some
light on why our sequence-to-sequence formu-
lation for document ranking is effective. Code
and models are available at pygaggle.ai.

1 Introduction

A simple, straightforward formulation of ranking is
to convert the task into a classification problem, and
then sort the candidate items to be ranked based on
the probability that each item belongs to the desired
class. Applied to the document ranking problem
in information retrieval—where given a query, the
system’s task is to return a ranked list of documents
from a large corpus that maximizes some ranking

∗∗Equal contribution.

metric such as average precision or nDCG—the
simplest formulation is to deploy a classifier that
estimates the probability each document belongs to
the “relevant” class, and then sort all the candidates
by these estimates.

Deep transformer models pretrained with
language modeling objectives, exemplified by
BERT (Devlin et al., 2019), have proven highly
effective in a variety of classification and sequence
labeling tasks in NLP; Nogueira and Cho (2019)
are the first to demonstrate their effectiveness in
ranking tasks. Since it is impractical to apply infer-
ence to every document in a corpus with respect to
a query, these techniques are typically applied to
rerank a list of candidates. In a typical end-to-end
system, these candidates are taken from the results
of a keyword search based on a “classic” IR scor-
ing function such as BM25 (Robertson et al., 1994).
This leads to the standard multi-stage pipeline ar-
chitecture where first-stage retrieval is followed by
reranking using one or more machine learning mod-
els (Asadi and Lin, 2013; Nogueira et al., 2019a).
This architecture underlies nearly all transformer-
based approaches to document retrieval today, for
example, CEDR (MacAvaney et al., 2019), BERT–
MaxP (Dai and Callan, 2019), Birch (Yilmaz et al.,
2019), and PARADE (Li et al., 2020).

Applying BERT (and its variants) to document
ranking can be characterized as a classification-
based encoder-only approach. In contrast, we ex-
plore the use of a sequence-to-sequence encoder–
decoder architecture—specifically, T5 (Raffel et al.,
2020)—to ranking, which requires a trick to coax
relevance probabilities out of model-generated “tar-
get tokens”. We show that in a data-rich setting,
with sufficient training examples, our approach
outperforms a classification-based encoder-only
model. However, our sequence-to-sequence model
appears to be far more data-efficient, significantly
outperforming BERT with few training examples

http://pygaggle.ai
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in a data-poor setting. The main advantage of our
approach is that by “connecting” fine-tuned latent
representations of relevance to output target tokens,
we can exploit the model’s latent knowledge (e.g.,
of semantics, linguistic relations, etc.) that has been
captured through pretraining. We describe probing
experiments that attempt to verify our intuitions
by deliberately altering the target tokens to capture
different aspects of “semantic relatedness”.

The contribution of this work is to present a
novel approach to document ranking using a pre-
trained sequence-to-sequence model. While rank-
ing with classification-based encoder-only architec-
tures (BERT and variants) is commonplace today,
we are the first to describe ranking with encoder–
decoder architectures and articulate its advantages.
Additional ablation and contrastive experiments
reveal new insights on fundamental differences be-
tween these two approaches, and our technique to
probe model behavior by manipulating the output
target tokens is also methodologically novel.

2 Seq2Seq Ranking

The main idea behind the Text-to-Text Transfer
Transformer (T5) by Raffel et al. (2020) is to cast
every natural language processing task—for exam-
ple, machine translation, question answering, and
classification—as feeding a sequence-to-sequence
model some input text and training it to gener-
ate some output text. These include tasks that
can be naturally viewed as “sequence in, sequence
out” (e.g., machine translation) as well as tasks for
which a sequence-to-sequence formulation seems
unnatural (e.g., coreference resolution). The T5
architecture can be viewed as a natural progression
of “vanilla transformers” by Vaswani et al. (2017),
but with pretraining inspired by BERT’s masked
language model objective. Like BERT, a pretrained
T5 model is then fine-tuned on various downstream
tasks, where each task is associated with a specific
“input template”. For example, to translate text
from English to German, the sentence to be trans-
lated is prefixed with the literal phrase “translate
English to German:”.

We follow the same approach and formulate doc-
ument ranking as a relevance prediction problem,
i.e., the task is to estimate a relevance score that
quantifies the extent to which a candidate document
is relevant to a query. We devise the following input
template to capture this task:

Query: [Q] Document: [D] Relevant: (1)

where [Q] and [D] are replaced with the query
and document texts, respectively. The model is
fine-tuned to produce the tokens “true” or “false”
depending on whether the document is relevant or
not to the query. That is, “true” and “false” are the
target tokens (i.e., ground truth predictions in the
sequence-to-sequence transformation).

It is, however, not obvious exactly how, at in-
ference time, such a fine-tuned model can be used
for ranking. All the tasks that Raffel et al. (2020)
detail for T5 are, at a high-level, functions of a
single inference pass: for translation, there is only
a single sentence to be translated, and for natural
language entailment and related tasks, hypothesis
pairs are encoded into a single input template. For
ranking, the setup is different, as it is not feasible
to encode all the candidate documents (from first-
stage retrieval) into a single input template. Thus,
ranking necessitates multiple inference passes with
the model and somehow aggregating the outputs.

After some amount of empirical exploration we
arrived at an effective solution (see Section 5.3 for
more details). At inference time, to extract useful
probabilities from the model, we apply a softmax
only on the logits of the “true” and “false” tokens.
In other words, we compute Pr(relevant = 1|q, d),
as the probability assigned to the “true” token nor-
malized in this manner. This estimate is interpreted
as the relevance score for each query–document
pair. Each candidate document from first-stage re-
trieval is independently fed to the model, and the
final document ranking is simply a permutation
of the initial candidate documents based on these
estimated probabilities in descending order.

Although this trick may seem obvious in retro-
spect, we are quite certain of its novelty—a lead
author of the T5 paper (Raffel), in personal com-
munication, affirmed that the authors never tried
anything along these lines before because there was
no need for the tasks that they were tackling.

Note that T5 tokenizes sequences using the Sen-
tencePiece model (Kudo and Richardson, 2018),
which might split a word into subwords. We choose
target tokens (“true” and “false”) that are repre-
sented as single words; thus, each class is repre-
sented by a single logit. In the case where target
tokens are split in multiple subwords, we would
need a method to aggregate their logits into a single
score; we thought it best to avoid this complexity.

Our formulation naturally begs the question:
Why “true” and “false” as the target tokens? We
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discuss this question in Section 5.4. However, as
a preview, we find that the choice of target tokens
has a large impact on effectiveness in some circum-
stances, and these experiments shed light on why
T5 works well for document ranking.

True to the original motivation of Raffel et al.
(2020), we explore the transfer capabilities of T5
(recall, the model name stands for Text-to-Text
Transfer Transformer) by experimenting with zero-
shot document ranking on different datasets. To
summarize, we fine-tune the model on the MS
MARCO passage dataset and directly apply it on
three other test collections commonly used by the
information retrieval community. This requires a
modification to rank long documents at inference
time, which we describe below.

Finally, while our experiments only examine
T5, we note that our method can be used with
any other pretrained sequence-to-sequence model
such as BART (Lewis et al., 2020), MASS (Song
et al., 2019), UniLM (Dong et al., 2019), and Pega-
sus (Zhang et al., 2020). We leave explorations of
these models for future work.

3 Experimental Setup

3.1 Datasets

We use the following datasets in our experiments:

MS MARCO passage (Bajaj et al., 2016) is a
ranking dataset with 8.8M passages obtained from
Bing search engine results with around 1M nat-
ural language questions. Note that for termino-
logical consistency, we refer to each “unit” in the
corpus as a document, even though they are in re-
ality paragraph-length passages. The training set
contains approximately 530K (query, relevant doc-
ument) pairs, with on average one relevant passage
per unique query; non-relevant documents are also
provided as part of the training set. The devel-
opment and test sets contain approximately 6,900
queries each, but relevance labels are only publicly
available for the development set. Effectiveness on
the test set requires submission to the leaderboard.

Robust04 (Voorhees, 2004) is the test collection
from the TREC 2004 Robust Track. It comprises
249 topics, with relevance judgments on a collec-
tion of ∼528K documents (TREC Disks 4 and 5).

Core17 (Allan et al., 2017) is the test collection
from the TREC 2017 Common Core Track, with
relevance judgments for 50 topics on ∼1.86M arti-
cles from the New York Times Annotated Corpus.

Core18 (Allan et al., 2018) is the test collection
from the TREC 2018 Common Core Track, with
relevance judgments for 50 topics on ∼600K arti-
cles from the TREC Washington Post Corpus.

For Robust04, Core17, and Core18, we use the
topic “titles” (short keyword phrases, much like the
input to a search engine) as queries to our bag-of-
words retrieval methods (see Section 3.3) and the
topic “descriptions” (sentence-length statements
of information needs) as input to our sequence-
to-sequence models. These topic descriptions are
more similar to MS MARCO’s natural language
questions, and others have found that using well-
formed questions improves the effectiveness of pre-
trained reranking models (Dai and Callan, 2019).

A point worth reemphasizing: our models are
not trained on Robust04, Core17, or Core18 data.
We use their queries and relevance judgments only
as held-out test sets; thus, for those collections, our
evaluation adopts a zero-shot transfer setting.

3.2 Training and Inference

We fine-tune our T5 models (base, large, and 3B)
with a constant learning rate of 10−3 for 100K it-
erations (approx. ten epochs) with class-balanced
batches of size 128. We are not able to conduct
experiments with T5-11B due to its computational
cost. To simplify our training procedure (and re-
lated hyperparameters) as well as to eliminate the
need for convergence checks, we simply train for
a fixed number of iterations, selected based on the
computational demands of our largest model and
the (self-allotted) time for running experiments.
We report results using the model state at the final
checkpoint. This procedure is consistent with the
advice of Kaplan et al. (2020) and recommenda-
tions by Dodge et al. (2019), since we quantify
effectiveness for a particular computational bud-
get. We use a maximum of 512 input tokens and
two output tokens (one for the target token and an-
other for the end-of-sequence token). In the MS
MARCO passage dataset, none of the inputs ex-
ceed this length limitation. Training T5 base, large,
and 3B take approximately 12, 48, and 160 hours
overall, respectively, on a single Google TPU v3-8.

For inference, we adopt greedy decoding. Since
we only use the logits of the first decoding step,
beam search and top-k random sampling (Fan et al.,
2018) would give the same results.

Because Robust04, Core17, and Core18 contain
full-length documents, during inference it is not
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possible to directly feed the entire text at once to
our model due to length restrictions. To address
this issue, we first segment each document into
passages by applying a sliding window of 10 sen-
tences with a stride of 5. We then obtain a rele-
vance probability for each passage by classifying
it independently. We select the highest probability
among these passages as the relevance probability
of the document; that is, we do not use the orig-
inal (BM25) retrieval scores.1 This procedure is
the same as the MaxP technique of Dai and Callan
(2019) although our definition of passages differs.

3.3 Baselines

We compare against the following baselines:

BM25: For a baseline bag-of-words retrieval
method, we use the BM25 implementation in
the Anserini open-source IR toolkit (Yang et al.,
2017),2 which is based on Lucene. We adopt all
the default settings. At inference time, we retrieve
the top 1000 documents per query.

BM25+RM3: To examine the effects of query ex-
pansion, we apply the BM25+RM3 model as de-
scribed in Yang et al. (2019), where it is shown
to be a competitive baseline for pre-BERT neural
ranking models. We use the implementation in
Anserini, with all default settings.

BM25+BERT-large: We additionally compare
our method against the BERT-large condition
from Nogueira et al. (2019a), which is a two-stage
pipeline with bag-of-words retrieval (BM25) fol-
lowed by a BERT reranker. Architecturally, it is
the same as our method, the only difference being
BERT vs. T5 as the reranking model. Nogueira
et al. (2019a) can be characterized as the baseline
of the best methods from the official MS MARCO
passage leaderboard; all higher-ranked submissions
can be described as improvements upon this basic
approach, and thus it represents a competitive com-
parison point. Note that we do not apply reranking
on top of BM25+RM3 because RM3 is known to
reduce effectiveness when evaluated using these
relevance judgments (Nogueira et al., 2019b).

Our T5 rerankers are applied directly to the output
of BM25 (and BM25+RM3) from Anserini (1000
hits), thus providing a contrastive setup that isolates
the impact of our method.

1We also examined the alternative of interpolating model
scores with retrieval scores, but this did not improve effective-
ness and additionally introduces an extra parameter to tune.

2http://anserini.io/

MS MARCO Passage

# Params Dev Test

BM25 - 0.184 0.186
+ BERT-large 340 M 0.372 0.365
+ T5-base 220 M 0.381 -
+ T5-large 770 M 0.393 -
+ T5-3B 3 B 0.398 0.388

Table 1: MRR@10 figures on the MS MARCO pas-
sage, with BERT-large figures from Nogueira et al.
(2019a). Model sizes are also shown.

4 Results

Main results on the MS MARCO passage re-
trieval task are shown in Table 1, comparing BERT-
large (Nogueira et al., 2019a) to T5 models of dif-
ferent sizes. MRR@10 is the official metric for the
task. Based on the Student’s paired t-test, the ef-
fectiveness of T5-3B (bolded) on the development
set is significantly better (p < 0.01) than T5-large.
Effectiveness increasing with larger models is an
expected trend, and with T5-11B we might obtain
an even higher MRR@10; unfortunately, we are
not able to run these experiments due to their high
computational costs.

Results on Robust04, Core17, and Core18
are shown in Table 2, where we apply our T5
reranker on top of retrieval results from BM25
and BM25+RM3 (see Section 3.2). The T5-3B
results in bold are significantly better (p < 0.05)
than T5-large, T5-base, and the corresponding base-
line (BM25 or BM25+RM3), based on the Stu-
dent’s paired t-test with Bonferroni corrections.
We compare our model with Birch (Yilmaz et al.,
2019), BERT–MaxP (Dai and Callan, 2019), and
PARADE (Li et al., 2020), which are BERT-based
models that represent the state of the art. BERT–
MaxP and PARADE results are from fine-tuning on
the MS MARCO data and then fine-tuning again
on Robust04 (via cross-validation).3 Birch uses Ro-
bust04, Core17, and Core18 for tuning weighting
parameters. In contrast, we apply inference directly
using our model trained on the MS MARCO pas-
sage data; Robust04, Core17, and Core18 relevance
judgments are only used as a test set, which makes
our results zero-shot. To our knowledge, our T5-3B
model produces the highest known scores reported
on these test collections.

3MaxP numbers are from the reimplementation by Li et al.
(2020), which are higher than the original paper due to addi-
tional fine-tuning on MS MARCO.

http://anserini.io/
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Robust04 Core17 Core18

Model AP nDCG@20 Jdg@20 AP nDCG@20 Jdg@20 AP nDCG@20 Jdg@20

Birch 0.3697 0.5325 - 0.3323 0.5092 - 0.3522 0.4953 -
BERT–MaxP - 0.5453 - - - - - - -
PARADE - 0.5713 - - - - - - -

BM25 0.2531 0.4240 0.9770 0.2087 0.3877 0.9550 0.2495 0.4100 0.9620
+ T5-base 0.3279 0.5298 0.9158 0.2758 0.5180 0.8840 0.3125 0.4741 0.8020
+ T5-large 0.3288 0.5345 0.8906 0.2799 0.5356 0.9090 0.3330 0.5057 0.8200
+ T5-3B 0.3876 0.6091 0.9632 0.3193 0.5629 0.9260 0.3749 0.5493 0.8600

BM25 + RM3 0.2903 0.4407 0.9764 0.2823 0.4467 0.9620 0.3135 0.4604 0.9390
+ T5-base 0.3340 0.5532 0.9058 0.3067 0.5203 0.8840 0.3364 0.4698 0.7990
+ T5-large 0.3382 0.5287 0.8840 0.3109 0.5299 0.8880 0.3557 0.5007 0.8070
+ T5-3B 0.4062 0.6122 0.9588 0.3564 0.5612 0.9100 0.3998 0.5492 0.8540

Table 2: Results on Robust04, Core17, and Core18. The T5 models are trained only on MS MARCO passage data
and thus represent zero-shot transfer. Jdg@20 is the percentage of top-20 retrieved documents that were judged.

Note that results from our T5 models have lower
proportions of judged documents in the top-20
(Jdg@20) than BM25 and BM25+RM3. In other
words, our models are retrieving documents that
have never been evaluated, for which we have no
relevance labels. Since standard evaluation tools
such as trec_eval treat “unknown” as not rele-
vant, the results for our models represent a lower
bound on true effectiveness. This finding confirms
recent observations that test collections built be-
fore the advent of BERT-based rerankers place
transformer-based models at a disadvantage (Yil-
maz et al., 2020).

As we expect, effectiveness increases with larger
models, but in all cases T5 improves over both a
bag-of-words as well as a query expansion base-
line. Note that the latter is considered to be a strong
baseline, even for pre-BERT neural ranking mod-
els (Yang et al., 2019). In many cases, we notice
that the effectiveness improvement of T5-large over
T5-base is small; we investigate this curious finding
further in Section 5.2.

5 Analysis

5.1 Effect of Model Size and Training Data

Results from the MS MARCO passage ranking task
(Table 1) represent a direct comparison between
BERT and T5 since the retrieval pipeline is other-
wise the same. For Robust04, Core17, and Core18
(Table 2), we adopt a different architecture than
PARADE, BERT–MaxP, and Birch, but effective-
ness clearly improves as the size of the T5 model
increases. While T5 achieves better results, it is
possible that the improvements come from simply
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Figure 1: Comparisons between T5-base and BERT-
base trained with different numbers of training in-
stances (note the log scale in the x-axis). Results report
means and 95% confidence intervals over five trials.

having a bigger model, as opposed to any intrin-
sic advantages over an encoder-only architecture.
Since we do not have pretrained T5 and BERT mod-
els of comparable sizes, it is difficult to conduct a
fair empirical comparison. However, we do note
from Table 1 that T5-base outperforms the larger
BERT-large model.

Another important dimension of size is the
amount of training data available, as it is often
expensive to annotate high-quality data for infor-
mation retrieval. In Figure 1, we report the results
of experiments fine-tuning BERT-base and T5-base
with 1K, 2.5K, and 10K positive instances (and an
equal number of negative instances) sampled from
the full MS MARCO passage dataset. We select
these two “base” models due to their more modest
computational demands for fine-tuning. We train
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Figure 2: (a) MRR@10 vs. number of training epochs on MS MARCO. (b) MAP on Robust04 vs. number of
training epochs on MS MARCO.

them using a batch size of 32 for three epochs. For
BERT, we use a learning rate 10−6 and no warm-up
step. For T5, we use a learning rate of 10−3. Note
that these differences in experimental methodology
render the results not directly comparable to those
in Table 1. For all conditions (2K, 5K, and 20K
samples in total), we repeat the experiment five
times, drawing different samples each time; the
95% confidence intervals are shown in Figure 1.
We run the setting with 530K training instances
only once due to its high computational cost.

As we expect, effectiveness improves as we fine-
tune both models with more data. Interestingly, in
a data-poor setting with only a modest amount of
training data, T5 can learn far more effectively than
BERT. We see clearly that with the same amount of
limited training data (10K positive instances is only
about 2% of the entire dataset), T5 is significantly
more effective than BM25. In fact, with only 1K
positive and 1K negative training instances, BERT
performs worse than the BM25 baseline (i.e., worse
than just exact term matching), while T5 is 7 points
better than the BM25 baseline. With 10K training
instances, BERT is able to modestly improve upon
BM25, but remains nine points behind T5 fine-
tuned on the same amount of data. Interestingly,
T5 is able to achieve roughly 10 points above the
BM25 baseline, which accounts for nearly 60% of
its total gain, with only 2% of the training data.

5.2 Effect of Checkpoint Selection
The application of our T5 approach to Robust04,
Core17, and Core18 is zero shot since the model is
never exposed to labeled training data from those
collections.4 We apply the fine-tuning procedure

4It is possible, however, that during pretraining the model
was exposed to documents from the target corpus.

described in Section 3.2 and directly evaluate on
those test collections. Results in Table 2, however,
revealed an oddity: the effectiveness of T5-large is
not substantially better than T5-base, contrary to
our expectations. Further investigation reveal this
to be an issue of “how much to fine-tune”.

In Figure 2(a), we show MRR@10 vs. number
of training epochs on MS MARCO, and in Fig-
ure 2(b), a similar graph for MAP on Robust04
(reranking BM25 results). On MS MARCO, ef-
fectiveness increases overall as we fine-tune the
model for more epochs, with the exception of T5-
base, which exhibits signs of over-training. These
findings are expected. On Robust04, however, ex-
hibits signs of over-training for all model sizes. It
makes sense that fine-tuning more and more on a
specific dataset would reduce the model’s ability
to generalize to other domains. This observation
also suggests that we can obtain even better results
than those in Table 2 if we apply our model on an
earlier checkpoint.

Proper checkpoint selection, however, requires
in-domain validation data, which no longer quali-
fies as zero shot. We emphasize that this diagnostic
experiment was conducted after obtaining the zero-
shot results reported in Table 2 and thus does not
invalidate our zero-shot claims. We are unsure if
our observations are merely idiosyncrasies of doc-
ument ranking, or a more general problem with
transfer learning using transformers. Nevertheless,
this is an issue deserving further exploration.

5.3 Effect of Logit Normalization
There does not appear to be a principled reason
why normalizing only “true” and “false” logits via
a softmax would be more effective than a num-
ber of equally sensical alternatives. For example,
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Logit Normalization Technique MRR@10

(1) None (“true” logit only) 0.026
(2) Softmax on all logits 0.379
(3) Softmax on “true”/“false” logits only 0.381

Table 3: T5-base results on the development set of the
MS MARCO passage dataset comparing different logit
normalization techniques.

we could rerank documents according to the logit
of the “true” token only or using logits of all to-
kens to compute the softmax. Here, we investigate
the effectiveness of these alternative normalization
techniques.

In Table 3, we show T5-base results on the de-
velopment set of the MS MARCO passage dataset.
In the first row, we simply use the logit of the “true”
token as the score of the document. This method
performs poorly, with an MRR@10 close to zero.
Normalizing with a softmax over either all logits
(row 2) or only the “true” and “false” logits (row
3) yields similarly high MRR@10 figures. These
results demonstrate that the logits of a particular
token (in this case, the “true” token) are not com-
parable across different examples, but they become
comparable once normalized appropriately. The
method in row 3 is the default method throughout
the paper because it gives slightly better results.

5.4 Target Token Probing Experiments
The experimental results above immediately raise
two questions:

1. Why is our approach more data-efficient than
BERT? That is, why does T5 significantly out-
perform BERT when fine-tuned with far fewer
training examples?

2. How is our approach fundamentally different
from classification with an encoder-only model,
given that the softmax in our case reduces the
model to a binary classifier?

We believe these two issues are closely related.
Specifically addressing the second question: At a
high level, both neural models are learning latent
representations important to the task at hand (in
this case, relevance classification), starting from a
pretrained model, and then mapping these latent
representations into task-specific decisions. Thus,
end-to-end effectiveness depends on a combina-
tion of the knowledge imparted via pretraining
(already present at the start) and the knowledge

gained via fine-tuning on task-specific data. In
the classification-based approach using BERT pro-
posed by Nogueira and Cho (2019), the model re-
lies on a single fully-connected layer to map the
latent representation (i.e., the [CLS] token) into
this binary decision. While the approach can ex-
ploit pretrained knowledge when fine-tuning the
latent representations, the final mapping (i.e., the
fully-connected layer) needs to be learned from
scratch (since it is randomly initialized).5

In contrast, T5 can exploit both pretrained knowl-
edge and knowledge gleaned from fine-tuning in
learning task-specific latent representations as well
as the mapping to relevance decisions; specifically,
we note that T5 is pretrained with tasks whose
outputs are “true” and “false”. Unlike the fully-
connected layer in the encoder-only approach, T5
can exploit the part of the network used for gen-
erating output tokens. Embedded in that neural
machinery is latent knowledge about semantics,
linguistic relations, and lexical features that are
necessary to generate fluent text. In other words,
T5 has access to an additional source of knowledge
that BERT does not.

This explanation, we believe, also answers the
first question. With plenty of training data, BERT
has no trouble learning the final fully-connected
layer (mapping latent representations to decisions),
even from scratch (i.e., random initialization).
However, faced with few training examples, BERT
still must learn the classification layer, but without
any benefit from pretraining—and the experiments
in Figure 1 show that it is unable to do so effec-
tively. In contrast, in a low-data setting, T5 can
“fall back” on pretrained neural machinery for gen-
erating fluent textual output. In other words, the
pretraining objective in T5 seems to transfer well
to generating relevance labels.

To turn our intuition into testable hypotheses, we
can vary the target tokens used as the prediction tar-
gets and manipulate their “linguistic relatedness”—
to deliberately “disrupt” linguistic knowledge that
may be captured in the model. As Puri and Catan-
zaro (2019) show, the choice of target tokens im-
pacts effectiveness. Recall that in our baseline,
“true” indicates a relevant document and “false”, a
non-relevant document. We investigate the follow-
ing contrastive variants:

5While other models such as PARADE (Li et al., 2020)
layer additional neural components on top of BERT, our basic
argument still holds since these additional parts of the model
are also randomly initialized.
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Target Token Training Size (query-relevant doc pairs)

Type Relevant Non-Relevant 1K 10K 530K (all)

Baseline true false 0.254 ±0.014 0.294 ±0.002 0.374

Alternate yes no 0.218 ±0.040 0.301 ±0.004 0.378
Reverse false true 0.243 ±0.025 0.282 ±0.006 0.374
Antonyms hot cold 0.240 ±0.021 0.246 ±0.005 0.375
Related Words apple orange 0.206 ±0.026 0.260 ±0.003 0.376
Unrelated Words hot orange 0.194 ±0.018 0.242 ±0.005 0.377
Subwords _ab _de 0.179 ±0.014 0.228 ±0.005 0.377

Table 4: Results with T5-base on the development set of the MS MARCO passage dataset comparing different
target token manipulations.

• “Alternate”. Instead of “true” and “false”, we
use “yes” and “no”, respectively. Here we are
probing with an equally intuitive formulation of
the targets, except that these words have not been
used in pretraining, and thus the model is less
likely to have strong prior associations.

• “Reverse”. We swap the target tokens; that is,
“false” indicates a relevant document and “true”,
a non-relevant document. If the model is indeed
exploiting latent knowledge about linguistic re-
lations, then forcing the model to make opposite
associations on the same polarity scale should
lower effectiveness with respect to the baseline.

• “Antonyms”. We map a relevant document to
“hot” and a non-relevant document to “cold”.
This preserves the use of adjectives at opposite
ends of a polarity scale, but a scale that is com-
pletely unrelated to relevance. If the model is
exploiting latent knowledge, we would expect
effectiveness to be lower than the baseline.

• “Related Words”. We map a relevant document
to “apple” and a non-relevant document to a re-
lated word “orange”. These words are semanti-
cally related, but do not present a polarity con-
trast as before. We would expect effectiveness to
be lower than the baseline.

• “Unrelated Words”. We map a relevant docu-
ment to “hot” and a non-relevant document to a
completely unrelated word “orange”. Thus, we
force the model to build an arbitrary semantic
mapping. We would expect effectiveness to be
lower than the baseline and also lower than using
related words.

• “Subwords”. We map a relevant document to
the subword “_ab” and a non-relevant document

to the subword “_de”. Note that we carefully
select single tokens after tokenization by Senten-
cePiece. Here, we remove all “semantics” from
the input–output mapping and thus expect effec-
tiveness to be lower than the above conditions.

Using these target token configurations, we conduct
experiments on T5-base with either 1K (or 10K)
positive and 1K (or 10K) negative instances sam-
pled from the full MS MARCO passage dataset,
same as in Section 5.1. Once again, for each of
the conditions, we repeat the experiment five times,
drawing different samples every time. For refer-
ence, we also fine-tune with all available data. Note
that the effectiveness of T5-base is different from
the values in Table 1 because we use slightly differ-
ent (more computationally-efficient) hyperparam-
eters: here, we train for 40K steps using a batch
of size 256. Experimental results are shown in
Table 4, with means and 95% confidence intervals.

When fine-tuning with all available data, the
choice of target tokens has negligible impact on
effectiveness. These small differences can be ex-
plained by the stochastic nature of the training pro-
cess. This does appear consistent with our hypoth-
esis that with sufficient training data, T5 is able to
learn arbitrary mappings between document rele-
vance and target tokens.

In the data-poor setting, the results are also con-
sistent with our hypotheses. With minimal amounts
of training data (the 1K condition), the confidence
intervals from different samples mostly overlap
(with the exception of subwords), so we do not
have the benefit of greater certainty that comes with
statistical significance. In the 10K condition, our
target token manipulations all significantly reduce
effectiveness, except for the “Alternate” condition,
which performs slightly better than the baseline
condition. This seems somewhat idiosyncratic, but
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we suspect that the prevalence of the target tokens
in the data used for pretraining might have an im-
pact: yes/no appear more often in the pretraining
corpus than true/false. Overall, it is clear that the se-
mantics of the target tokens, even small differences,
can affect the overall effectiveness of the model.
The “Unrelated Words” and “Subwords” conditions
are clearly less effective. Finally, we note that the
95% confidence intervals are smaller under the 10K
condition, which illustrates the greater instability
in effectiveness when training on smaller datasets
(which is expected).

These results support our hypothesis that T5 is
exploiting latent knowledge to aid in predicting rel-
evance. As the strongest piece of evidence, in the
1K condition, “Subwords” performs worse than the
BM25 baseline; i.e., it exhibits difficulty achieving
any predictive power at all. There are at least two
potential factors at play: we are removing semantic
associations, as the subwords are token fragments,
and furthermore, we are forcing the model to pro-
duce tokens in an order (and context) that it has not
encountered during pretraining. We are unable to
tease apart these effects currently, but either expla-
nation is consistent with our intuitions. For all other
target token manipulations, we are at least able to
beat the BM25 baseline under the 1K condition.

Finally, our experiments are inconclusive regard-
ing the importance of having a polarity scale in
the low-data setting. Quite clearly, reversing “true”
and “false” has a noticeable impact (especially in
the 10K condition), but T5 is more effective learn-
ing targets that are semantically related but do not
present a polarity contrast (“apple” and ”orange”)
than targets that encode an unrelated polarity con-
trast (“hot” and “cold”). Due to computational
limitations (primarily from the number of trials
necessary to obtain confidence intervals), we ex-
periment with only one target token pair for each
category; additional trials with different targets will
be required to draw firmer conclusions.

6 Related Work

As with natural language processing, the advent
of deep learning has transformed the informa-
tion retrieval community. Prior to deep learn-
ing, researchers and practitioners mostly adopt the
paradigm known as “learning to rank”, which is
heavily driven by manual feature engineering (Liu,
2009; Li, 2011). For example, commercial web
search engines are known to incorporate thousands

of features (or more) in their models. The introduc-
tion of continuous vector space representations cou-
pled with neural models was exciting as it provides
a potential path away from the need for handcrafted
features. Well-known early neural ranking models
include DRMM (Guo et al., 2016), DUET (Mitra
et al., 2017), KNRM (Xiong et al., 2017), and Co-
PACRR (Hui et al., 2018); the literature is too vast
for an exhaustive review here, and thus we refer
readers to past overviews (Onal et al., 2018; Mi-
tra and Craswell, 2019). Interestingly, however, a
meta-analysis by Yang et al. (2019) finds that with-
out sufficient training data, these neural models still
perform worse than well-tuned bag-of-words query
expansion baselines.

However, in the past year or so, we have wit-
nessed a dramatic shift to ranking models based on
BERT, starting with Nogueira and Cho (2019). The
current state of the art models (Yilmaz et al., 2019;
Dai and Callan, 2019; Li et al., 2020) serve as the
points of comparisons in Table 2. Our work be-
longs to this large family of models based on trans-
formers, although our exploration of a sequence-
to-sequence ranking formulation based on encoder–
decoder architectures sets us apart from previous
classification-based formulations using encoder-
only architectures.

7 Conclusion

The main contribution of this paper is to introduce a
novel generation-based approach to document rank-
ing using pretrained sequence-to-sequence mod-
els. Our models outperform a classification-based
encoder-only approach, especially in the data-poor
setting with limited training data. We attempt to
explain these observations in terms of hypotheses
about the knowledge that a model gains from pre-
training vs. fine-tuning on task-specific data. These
hypotheses are operationalized into target token
probing experiments, where we demonstrate that
the model appears to exploit knowledge from its
ability to generate fluent natural language text. Ex-
actly how remains an open research question and
the focus of ongoing work.
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