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Abstract

We look into the task of generalizing word em-
beddings: given a set of pre-trained word vec-
tors over a finite vocabulary, the goal is to pre-
dict embedding vectors for out-of-vocabulary
words, without extra contextual information.
We rely solely on the spellings of words and
propose a model, along with an efficient al-
gorithm, that simultaneously models subword
segmentation and computes subword-based
compositional word embedding. We call the
model probabilistic bag-of-subwords (PBoS),
as it applies bag-of-subwords for all possi-
ble segmentations based on their likelihood.
Inspections and affix prediction experiment
show that PBoS is able to produce meaning-
ful subword segmentations and subword rank-
ings without any source of explicit morpho-
logical knowledge. Word similarity and POS
tagging experiments show clear advantages
of PBoS over previous subword-level models
in the quality of generated word embeddings
across languages.

1 Introduction

Word embeddings pre-trained over large texts have
demonstrated benefits for many NLP tasks, espe-
cially when the task is label-deprived. However,
many popular pre-trained sets of word embeddings
assume fixed finite-size vocabularies 1, 2, which
hinders their ability to provide useful word repre-
sentations for out-of-vocabulary (OOV) words.

We look into the task of generalizing word em-
beddings: extrapolating a set of pre-trained word
embeddings to words out of its fixed vocabulary,
without extra access to contextual information (e.g.
example sentences or text corpus). In contrast,

1https://code.google.com/archive/p/
word2vec/, Mikolov et al. (2013).

2https://nlp.stanford.edu/projects/
glove/, Pennington et al. (2014).

the more common task of learning word embed-
dings, or often just word embedding, is to obtain
distributed representations of words directly from
large unlabeled text. The motivation here is to
extend the usefulness of pre-trained embeddings
without expensive retraining over large text.

There have been works showing that contextual
information can also help generalize word embed-
dings (for example, Khodak et al., 2018; Schick
and Schütze, 2019a,b). We here, however, focus
more on the research question of how much one can
achieve from just word compositions. In addition,
our proposed way of utilizing word composition
information can be combined with the contextual
embedding algorithms to further improve the per-
formance of generalized embeddings.

The hidden assumption here is that words are
made of meaningful parts (cf. morphemes) and that
the meaning of a word is related to the meaning
of their parts. This way, humans are often able
to guess the meaning of a word or term they have
never seen before. For example, “postEMNLP”
probably means “after EMNLP”.

Different models have been proposed for that
task of generalizing word embeddings using word
compositions, usually under the name of subword(-
level) models. Stratos (2017); Pinter et al. (2017);
Kim et al. (2018b) model words at the charac-
ter level. However, they have been surpassed by
later subword-level models, probably because of
putting too much burden on the models to form
and discover meaningful subwords from charac-
ters. Bag-of-subwords (BoS) is a simple yet effec-
tive model for learning (Bojanowski et al., 2017)
and generalizing (Zhao et al., 2018) word embed-
dings. BoS composes a word embedding vector
by taking the sum or average of the vectors of the
subwords (character n-grams) that appear in the
given word. However, it ignores the importance of
different subwords since all of them are given the

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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same weight. Intuitively, “farm” and “land” should
be more relevant in composing representation for
word “farmland” than some random subwords like
“armla”.

Even more favorable would be a model’s ability
to discover meaningful subword segmentations on
its own. Cotterell et al. (2016) bases their model
over morphemes but needs help from an external
morphological analyzer such as Morfessor (Virpi-
oja et al., 2013). Sasaki et al. (2019) use train-
able self-attention to combine subword vectors.
While the attention implicitly facilitates interac-
tions among subwords, there has been no explicit
enforcement of mutual exclusiveness from subword
segmentation, making it sometimes difficult to rule
out less relevant subwords. For example, “her” is
itself a likely subword, but is unlikely to be relevant
for “higher” as the remaining “hig” is unlikely.

We propose the probabilistic bag-of-subwords
(PBoS) model for generalizing word embedding.
PBoS simultaneously models subword segmenta-
tion and composition of word representations out
of subword representations. The subword segmen-
tation part is a probabilistic model capable of han-
dling ambiguity of subword boundaries and rank-
ing possible segmentations based on their overall
likelihood. For each segmentation, we compose a
word vector as the sum of all subwords that appear
in the segmentation. The final embedding vector is
the expectation of the word vectors from all possi-
ble segmentations. An alternative view is that the
model assigns word-specific weights to subwords
based on how likely they appear as meaningful
segments for the given word. Coupled with an ef-
ficient algorithm, our model is able to compose
better word embedding vectors with little computa-
tional overhead compared to BoS.

Manual inspections show that PBoS is able
to produce subword segmentations and subword
weights that align with human intuition. Affix pre-
diction experiment quantitatively shows that the
subword weights given by PBoS are able to recover
most eminent affixes of words with good accuracy.

To assess the quality of generated word embed-
dings, we evaluate with the intrinsic task of word
similarity which relates to the semantics; as well as
the extrinsic task of part-of-speech (POS) tagging
which requires rich information to determine each
word’s role in a sentence. English word similarity
experiment shows that PBoS improves the correla-
tion scores over previous best models under vari-

ous settings and is the only model that consistently
improves over the target pre-trained embeddings.
POS tagging experiment over 23 languages shows
that PBoS improves accuracy compared in all but
one language to the previous best models, often by
a big margin.

We summarize our contributions as follows:

• We propose PBoS, a subword-level word em-
bedding model that is based on probabilistic seg-
mentation of words into subwords, the first of its
kind (Section 2).
• We propose an efficient algorithm that leads to

an efficient implementation 3of PBoS with lit-
tle overhead over previous much simpler BoS.
(Section 3).
• Manual inspection and affix prediction experi-

ment show that PBoS is able to give reasonable
subword segmentations and subword weights
(Section 4.1 and 4.2).
• Word similarity and POS tagging experiments

show that word vectors generated by PBoS have
better quality compared to previously proposed
models across languages (Section 4.3 and 4.4).

2 PBoS Model

Following the above intuition, in this section we
describe the PBoS model in detail.

We first develop a model that segments a word
into subword and associates each subword segmen-
tation with a likelihood based on the meaningful-
ness of each subword segment. We then apply
BoS over each segmentation to compose a “seg-
mentation vector”. The final word embedding vec-
tor is then the probabilistic expectation of all the
segmentation vectors. The subword segmentation
and likelihood association part require no explicit
source of morphological knowledge and are tightly
integrated with the word vector composition part,
which in turn gives rise to an efficient algorithm
that considers all possible segmentations simulta-
neously (Section 3). The model can be trained by
fitting a set of pre-trained word embeddings.

2.1 Terminology

For a given language, let Γ be its alphabet. A word
w of length l = |w| is a string made of l letters
in Γ, i.e. w = c1c2 . . . cl ∈ Γl where w[i] = ci is

3Code used for this work can be found at https://
github.com/jmzhao/pbos.

https://github.com/jmzhao/pbos
https://github.com/jmzhao/pbos
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the i-th letter. Let pw ∈ [0, 1] be the probability
that w appears in the language. Empirically, this is
proportional to the unigram frequency of word w
observed in large text in that language.

Note that we do not assume a vocabulary. That is,
we do not distinguish words from arbitrary strings
made out of the alphabet. The implicit assump-
tion here is that a “word” in common sense is just
a string associated with high probability. In this
sense, pw can also be seen as the likelihood of
string w being a “legit word”. This blurs the bound-
ary between words and non-words, and automati-
cally enables us to handle unseen words, alternative
spellings, typos, and nonce words as normal cases.

We say a string s ∈ Γ+ is a subword of word
w, denoted as s ⊆ w, if s = w[i : j] = ci . . . cj
for some 1 ≤ i ≤ j ≤ |w|, i.e. s is a substring of
w. The probability that subword s appears in the
language can then be defined as

ps ∝
∑
w∈Γ+

pw
∑

1≤i≤j≤|w|

1(s = w[i : j]) (1)

where 1(pred) gives 1 and otherwise 0 only if pred
holds. Note that a subword s may occur more than
once in the same word w. For example, subword
“ana” occurs twice in the word “banana”.

A subword segmentation g of word w of length
k = |g| is a tuple (s1, s2, . . . , sk) of subwords of
w, so that w is the concatenation of s1, . . . , sk.

2.2 Probabilistic Subword Segmentation

A subword transition graph for wordw is a directed
acyclic graph Gw = (Nw, Ew). Let l = |w|. The
vertices Nw = {0, . . . , l} correspond to the posi-
tions between w[i] and w[i+ 1] for all i ∈ [l − 1],
as well as to the beginning (vertiex 0) and the
end (vertex l) of w. Each edge (i, j) ∈ Ew =
{(i, j) : 0 ≤ i < j ≤ l} corresponds to subword
w[i : j]. We use Gw as a useful image for de-
veloping our model.

Proposition 1. Paths from 0 to |w| in Gw are in
one-to-one correspondence to segmentations of w.

Proposition 2. There are 2|w|−1 different possible
segmentations for word w.

Each edge (i, j) is associated with a weight
pw[i:j] — how likely w[i : j] itself is a meaningful
subword. We model the likelihood of segmentation
g being a segmentation of w as being proportional
to the product of all its subword likelihood – the
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Figure 1: Diagram of probabilistic subwords transitions for
word “higher”. Some edges are omitted to reduce clutter. Each
edge is labeled by a subword s of the word, associated with ps.
Bold edges constituent a path from node 0 to 6, corresponding
to the segmentation of the word into “high” and “er”.

transition along a path from 0 to |w| in Gw:

pg|w ∝
∏
s∈g

ps. (2)

Example. Figure 1 illustrates Gw for word w =
“higher” of length 6. Bold edges (0, 4) and (4, 6)
form a path from 0 to 6, which corresponds to
the segmentation (“high”, “er”). The likelihood
p(“high”,“er”)|w of this particular segmentation is pro-
portional to p“high”p“er” – the product of weights
along the path.

2.3 Probabilistic Bag-of-Subwords
Based on the above modeling of subword seg-
mentations, we propose the Probabilistic Bag-of-
Subword (PBoS) model for composing word em-
beddings.

The embedding vector w for word w is the ex-
pectation of all its segmentation-based word em-
bedding:

w =
∑

g∈Segw

pg|wg (3)

where g is the embedding for segmentation g.
Given a subword segmentation g, we adopt the

Bag-of-Subwords (BoS) model (Bojanowski et al.,
2017; Zhao et al., 2018) for composing word em-
bedding from subwords. Specifically, we apply
BoS 4 over the subword segments in g:

g =
∑
s∈g

s, (4)

where s is the vector representation for subword
s, as if the current segmentation g is the “golden”

4Zhao et al. (2018) used averaging instead of summation.
However, both give uniform weights to all subwords and re-
sult in vectors only differ by a scalar factor. We thus do not
distinguish the two and refer to either of them as BoS.
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segmentation of the word. In such case, we assume
the meaning of the word is the combination of the
meaning of all its subword segments. We maintain
a look-up table S : Γ+ → Rd for all subword
vectors (i.e. s = S(s)) as trainable parameters of
the model, where d is the embedding dimension.

Combining Eq. (3) and (4), we can compose
vector representation for any word w ∈ Γ+ as

w =
∑

g∈Segw

pg|w
∑
s∈g

s. (5)

Given a set of target pre-trained word vectors
w∗ defined for words within a finite vocabulary W ,
our model can be trained by minimizing the mean
square loss:

minimize
S

1

|W |
∑
w∈W

‖w −w∗‖22. (6)

3 Efficient Algorithm

PBoS simultaneously considers all possible sub-
word segmentations and their contributions in com-
posing word representations. However, summing
over embeddings of all possible segmentations can
be awfully inefficient, as simply enumerating all
possible segmentations of w takes number of steps
exponential to the length of w (Proposition 2). We
therefore need an efficient way to compute Eq. (5).

3.1 Alternative View: Weighted Subwords
Exchanging the order of summations in Eq. (5)
from segmentation first to subword first, we get

w =
∑
s⊆w

as|ws (7)

where
as|w ∝

∑
g∈Segw, g3s

pg|w (8)

is the weight accumulated over subword s, sum-
ming over all segmentations of w that contain s. 5

Eq. (7) provides an alternative view of the word
vector composed by our model: a weighted sum
of all the word’s subword vectors. Comparing to
BoS, we assign different importance as|w, instead
of a uniform weight, to each subword. as|w can
be viewed as the likelihood of subword s being
a meaningful segment of the particular word w,

5For simplicity, here we assume all subwords are unique
in w. A more careful index-based summation would model
the general case but the idea remains the same. We take care
of this in Algorithm 1.

considering both the likelihood of s itself being
meaningful, and at the same time how likely the rest
of the word can still be segmented into meaningful
subwords.

Example. Consider the contribution of subword
s = “gher” in word w = “higher”. Possible con-
tributions only come from segmentations that con-
tain “higher”: g1 = (“h”, “i”, “gher”) and g2 =
(“hi”, “gher”). Each segmentation g adds weight
pg|w to as|w. In this case, a“gher”|w will be smaller
than a“er”|w because both pg1|w and pg2|w would be
rather small.

3.2 Computing Subword Weights

Now we can efficiently compute Eq. (7) if we can
efficiently compute as|w. Here we present an algo-
rithm that computes as|w for all s ⊆ w in O(|w|2)
time.

The specific structure of the subword transition
graph means that edges only go from left to right.
Thus, we can split every path going through e into
three parts: edges left to e, e itself and edges right
to e. In terms of subwords, that is, for s = w[i : j],
l = |w|, each segmentation g that contains s can
be divided into three parts: segmentation gw[1:i−1]

over w[1 : i− 1], subword s itself, and segmenta-
tion gw[j+1:l] over w[j + 1 : l]. Based on this, we
can rewrite Eq. (8) as

as|w ∝
∑

g∈Segw
g3s

ps
∏

s′∈gw[1:i−1]

ps′
∏

s′∈gw[j+1:l]

ps′ (9)

= psb1,i−1bj+1,l, (10)

where bi′,j′ =
∑

g′∈Segw[i′:j′]

∏
s′∈g′ ps′ .

Now we can efficiently compute as|w if we can
efficiently compute b1,i−1 and bj+1,l for all 1 ≤
i, j ≤ l. Fortunately, we can do so for b1,i using
the following recursive relation

b1,i =
i−1∑
k=0

b1,kpw[k+1:i] (11)

for i = 1, . . . , l with b1,0 = 1. Similar formulas
hold for bj,l, j = 1, . . . , l with bl+1,l = 1.

Based on this, we devise Algorithm 1 for com-
puting as|w for all s ⊆ w. Here we take the alterna-
tive view of our model as a weighted average of all
possible subwords (thus the normalization in Line
12), and an extension to the unweighted averaging
of subwords as used in Zhao et al. (2018).
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Algorithm 1 Computing as|w.

1: Input: Word w, ps for all s ⊆ w. l = |w|.
2: b1,0 ← 1; bl+1,l ← 1;
3: for i← 1 . . . l do
4: b1,i ←

∑i−1
k=0 pw[k+1:i] b1,k

5: bl−i+1,l ←
∑l

k=l−i+1 pw[l−i+1:k] bk+1,l

6: end for
7: ãs|w ← 0 for all s ⊆ w
8: for i← 1 . . . l , j ← i . . . l do
9: ã′ ← pw[i:j] b1,i−1 bj+1,l

10: ãw[i:j]|w ← ãw[i:j]|w + ã′

11: end for
12: as|w ← ãs|w/

∑
s′⊆w ãs′|w for all s ⊆ w

13: return a·|w

Time complexity As we only access each sub-
word once in each for-statement, the number of
multiplications and additions involved is bounded
by the number of subword locations of w. Each of
Line 4 and Line 5 take i multiplications and i− 1
additions respectively. So Line 3 to Line 6 in total
takes 2l2 computations. Line 8 to Line 11 takes
3l(l+1)

2 computations. Thus, the time complexity
of Algorithm 1 is O(l2). Given a word of length
20, O(l2) (202 = 400) is much better than enumer-
ating all O(2l) (220 = 1, 048, 576) segmentations.

Using the setting in Section 4.3, PBoS only takes
30% more time (590 µs vs 454 µs) in average than
BoS (by disabling as|w computation) to compose a
300-dimensional word embedding vector.

4 Experiments

We design experiments to answer two questions:
Do the segmentation likelihood and subword
weights computed by PBoS align with their mean-
ingfulness? Are the word embedding vectors gen-
erated by PBoS of good quality?

For the former, we inspect segmentation re-
sults and subword weights (Section 4.1), and see
how good they are at predicting word affixes (Sec-
tion 4.2). For the latter, we evaluate the word em-
beddings composed by PBoS at word similarity
task (Section 4.3) and part-of-speech (POS) tag-
ging task (Section 4.4).

Due to the page limit, we only report the most
relevant settings and results in this section. Other
details, including hardware, running time and de-
tailed list of hyperparameters, can be found in Ap-
pendix A.

4.1 Subword Segmentation

In this subsection, we provide anecdotal evidence
that PBoS is able to assign meaningful segmenta-
tion likelihood and subword weights.

Table 1 shows top subword segmentations and
subsequent top subwords calculated by PBoS for
some example word, ranked by their likelihood and
weights respectively. The calculation is based on
the word frequency derived from the Google Web
Trillion Word Corpus 6. We use the same list for
word probability pw throughout our experiments if
not otherwise mentioned. All other settings are the
same as described for PBoS in Section 4.3.

We can see the segmentation likelihood and sub-
word weight favors the whole words as subword
segments if the word appears in the word list, e.g.
“higher”, “farmland”. This allows the model to
closely mimic the word embeddings for frequent
words that are probably part of the target vectors.

Second to the whole-word segmentation, or
when the word is rare, e.g. “penpineanpplepie”,
“paradichlorobenzene”, we see that PBoS gives
higher likelihood to meaningful segmentations
such as “high/er”, “farm/land”, “pen/pineapple/pie”
and “para/dichlorobenzene”against other possible
segmentations. 7 Subsequently, respective subword
segments get higher weights among all possible
subwords for the word, often by a good amount.
This behavior would help PBoS to focus on mean-
ingful subwords when composing word embedding.
The fact that this can be achieved without any ex-
plicit source of morphological knowledge is itself
interesting.

4.2 Affix Prediction

We quantitatively evaluate the quality of subword
segmentations and subsequent subword weights by
testing if our PBoS model is able to discover the
most eminent word affixes. Note this has nothing
to do with embeddings, so no training is involved
in this experiment.

The affix prediction task is to predict the most
eminent affix for a given word. For example, “-able”
for “replaceable” and “re-” for “rename”.

Models We get affix prediction from our PBoS
by taking the top-ranked subword that is one of
the possible affixes. To show our advantage, we

6https://www.kaggle.com/rtatman/
english-word-frequency

7A slight exception is “farmlan/d”, probably because “-d”
is a frequent suffix.

https://www.kaggle.com/rtatman/english-word-frequency
https://www.kaggle.com/rtatman/english-word-frequency
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Word w Top segmentation g (and their pg|w) Top subword s (and their as|w)
higher higher (0.924), high/er (0.030), highe/r (0.027), h/igher

(0.007), hig/her (0.004).
higher (0.852), high (0.031), er (0.029), r
(0.029), highe (0.025).

farmland farmland (0.971), farmlan/d (0.010), farm/land (0.006),
f/armland (0.005).

farmland (0.941), d (0.010), farmlan (0.009),
farm (0.008), land (0.007).

penpineap-
plepie

pen/pineapple/pie (0.359), pen/pineapple/pi/e (0.157),
pen/pineapple/p/ie (0.101).

pineapple (0.238), pen (0.186), pie (0.131), p
(0.101), e (0.099).

paradichlo-
robenzene

para/dichlorobenzene (0.611), par/a/dichlorobenzene
(0.110), paradi/chlorobenzene (0.083).

dichlorobenzene (0.344), para (0.283), a
(0.061), par (0.054), ichlorobenzene (0.042).

Table 1: Top segmentations and subword weights by PBoS for some example words

Model Precision Recall F1
BoS 0.493 0.465 0.425
PBoS 0.861 0.874 0.829

Table 2: Affix prediction results based on subword weights.
All metrics are macro.

compare it with a BoS-style baseline affix predictor.
Because BoS gives same weight to all subwords
in a given word, we randomly choose one of the
possible affixes that appear as subword of the word.

Benchmark We use the derivational morphology
dataset 8 from Lazaridou et al. (2013). The dataset
contains 7449 English words in total along with
their most eminent affixes. Because no training is
needed in this experiment, we use all the words
for evaluation. To make the task more challenging,
we drop trivial instances where there is only one
possible affix appears as a subword in the given
word. For example, “rename” is dropped because
only prefix “re-” is present; on the other hand, “re-
placeable” is kept because both “re-” and “-able”
are present. Besides excluding the trivial cases de-
scribed above, we also exclude instances labeled
with suffix “-y”, because it is always included by
“-ly” and “-ity”. Altogether, we acquire 3546 words
with 17 possible affixes for this evaluation.

Results Affix prediction results in terms of
macro precision, recall, and F1 score are shown
in Table 2. We can see a definite advantage of
PBoS at predicting most word affixes, where all
the metrics boost about 0.4 and F1 almost doubles
compared to BoS, providing evidence that PBoS is
able to assign meaningful subword weights.

4.3 Word Similarity

Given that PBoS is able to produce sensible seg-
mentation likelihood and subword weights, we now
turn our focus onto the quality of the generated

8http://marcobaroni.org/PublicData/
affix_complete_set.txt.gz

word embeddings. In this section, we evaluate the
word vectors’ ability to capture word senses using
the intrinsic task of word similarity.

Word similarity aims to test how well word em-
beddings capture words’ semantic similarity. The
task is given as pairs of words, along with their sim-
ilarity scores labeled by language speakers. Given
a set of word embeddings, we compute the similar-
ity scores induced by the cosine distance between
the embedding vectors of each pair of words. The
performance is then measured in Spearman’s corre-
lation ρ for all pairs.

Benchmarks We use WordSim353 (WS) from
Finkelstein et al. (2001) which mainly consists of
common words. To better access models’ ability to
generalize word embeddings towards OOV words,
we include the rare word datasets RareWord (RW)
from Luong et al. (2013) and the newer Card-660
(Card) from Pilehvar et al. (2018).

Model Setup PBoS composes word embeddings
out of subword vectors exactly as described in Sec-
tion 3. Unlike some of previous models, we do not
add special characters to indicate word boundaries
and do not set any constraint on subword lengths.
PBoS is trained 50 epochs using vanilla SGD with
initial learning rate 1 and inverse square root decay.

For baselines, we compare against the bag-of-
subword model (BoS) from Zhao et al. (2018), and
the best attention-based model (KVQ-FH) from
Sasaki et al. (2019). For BoS, we use our imple-
mentation by disabling subword weight computa-
tion. For KVQ-FH, we use the implementation
given in the paper. All the hyperparameters are set
the same as described in the original papers. We
choose to not include the character-RNN model
(MIMICK) from Pinter et al. (2017), as it has been
shown clearly outperformed by the two.

http://marcobaroni.org/PublicData/affix_complete_set.txt.gz
http://marcobaroni.org/PublicData/affix_complete_set.txt.gz
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WS RW Card
Polyglot: 100k tokens × 64 dim
IV pairs 45 41 10
All pairs 36 10 5
OOV % 5% 58% 90%
Google: 160k tokens × 300 dim
IV pairs 69 53 34
All pairs 68 45 10
OOV % 1% 11% 79%

Table 3: Target vectors statistics and word similarity perfor-
mance measured in Spearman’s ρ× 100.

Model # Param WS RW Card
Target: Polyglot
BoS 29.8M 34 34 6
KVQ-FH 7.8M 31 32 12
PBoS 37.8M 41 25 15
Target: Google News
BoS 162.7M 61 48 11
KVQ-FH 36.2M 64 49 21
PBoS 315.7M 68 49 25

Table 4: Word similarity performance of subword-level mod-
els measured in Spearman’s ρ× 100.

Target Vectors We train all the subword models
over English Polyglot vectors 9 and English Google
News vectors 10. Following the protocol of Zhao
et al. (2018) and Sasaki et al. (2019), we clean and
filter the words in Google vectors. Dimension of
word vectors, number of words in target vectors are
summarized in Table 3, along with their word sim-
ilarity scores and OOV rate over the benchmarks.
As we can see, both pre-trained embeddings yield
decent correlations with human-labeled word sim-
ilarity. However, the scores drop significantly as
the OOV rate goes up. Polyglot vectors yield lower
scores probably due to their smaller dimension and
smaller token coverage.

Results Word similarity results of the three
subword-level models are summarized in Ta-
ble 4. 11 PBoS achieves scores better than or at least
comparable to BoS and KVQ-FH in all but one of
the six combinations of target vectors and word
similarity benchmarks. Viewed as an extension to
BoS, PBoS is in majority cases better than BoS, of-
ten by a good margin, suggesting the effectiveness
of the subword weighting scheme. Compared to

9https://polyglot.readthedocs.io/en/
latest/Download.html

10https://code.google.com/archive/p/
word2vec/

11We regard training and prediction time as less of a concern
here as all the three models are able to finish a training epoch
in under a minute. Details and discussions can be found in
Appendix A.2.

KVQ-FH, PBoS can often match and sometimes
surpass it even though PBoS is a much simpler
model with better explainability. Compared to the
scores by using just the target embeddings (Table 3,
All pairs), PBoS is the only model that demon-
strates improvement across all cases.

The only case where PBoS is not doing well
is with Polyglot vectors and RW benchmark. Af-
ter many manual inspections, we conjecture that
it may be related to the vector norm. Sometimes
the vector of a relevant subword can be of a small
norm, prone to be overwhelmed by less relevant
subword vectors. To counter this, we tried to nor-
malize subword vectors before summing them up
into a word vector (PBoS-n). PBoS-n showed good
improvement for the Polyglot RW case (25 to 32),
matching the performance of the other two.

One may argue that PBoS has an advantage for
using the most number of parameters. However,
this is largely because we do not constrain the
length of subwords as in BoS or use hashing as
in KVQ-FH. In fact, restricting subword length and
using hashing helped them for the word similarity
task. We found that PBoS is insensitive to subword
length constraints and decide to keep the setting
simple. Despite being an interesting direction, we
decide to not involve hashing in this work to focus
on the effect of our unique weighting scheme.

FaxtText Comparison Albeit targeted for a dif-
ferent task (training word embedding) which have
access to contextual information, the popular fast-
Text (Bojanowski et al., 2017) also uses a subword-
level model. We train fastText 12 over the same
English corpus on which the Polyglot target vec-
tors are trained, in order to understand the quan-
titative impact of contextual information. To en-
sure a fair comparison, we restrict the vocabulary
sizes and embedding dimensions to match those
of Polyglot vectors. The word similarity scores
we get for the trained fastText model are 65/40/14
for WS/RW/Card. We note the great gain for WS
and RW, suggesting the helpfulness of contextual
information in learning and generalizing word em-
beddings in the setting of small to moderate OOV
rates. Surprisingly, we find that for the case of
extremely high OOV rate (Card), PBoS slightly
surpasses fastText, suggesting PBoS’ effectiveness
in generalizing embeddings to OOV words even
without any help from contexts.

12https://github.com/facebookresearch/
fastText/

https://polyglot.readthedocs.io/en/latest/Download.html
https://polyglot.readthedocs.io/en/latest/Download.html
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://github.com/facebookresearch/fastText/
https://github.com/facebookresearch/fastText/
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Multilingual Results To evaluate and compare
the effectiveness of PBoS across languages, we
further train the models targeting multilingual
Wikipedia2Vec vectors (Yamada et al., 2020) and
evaluate them on multilingual WordSim353 and
SemLex999 from Leviant and Reichart (2015)
which are available in English, German, Italian
and Russian. To better access the models’ ability
to generalize, we only take the top 10k words from
the target vectors for training, which yields decent
OOV rates, ranging from 23% to 84%. Detailed
results can be found in Appendix Section A.3. In
summary, we find 1) that PBoS surpasses KVQ-
FH for English and German and is comparable to
KVQ-FH for Italian; 2) that PBoS and KVQ-FH
surpasses BoS for English, German and Italian; and
3) no definitive trend among the three models for
Russian.

4.4 POS Tagging
We further assess the quality of generated word em-
bedding via the extrinsic task of POS tagging. The
task is to categorize each word in a given context
into a particular part of speech, e.g. noun, verb,
and adjective.

POS Tagging Model We follow the evaluation
protocol for sequential labeling used by Kiros et al.
(2015) and Li et al. (2017), and use logistic re-
gression classifier 13 as the model for POS tagging.
When predicting the tag for the i-th word wi in a
sentence, the input to the classifier is the concate-
nation of the vectors wi−2,wi−1,wi,wi+1,wi+2

for the word itself and the words in its context. This
setup allows a more direct evaluation of the quality
of word vectors themselves, and thus gives better
discriminative power. 14

Dataset We train and evaluate the performance
of generated word embeddings over 23 languages
at the intersection of the Polyglot (Al-Rfou’ et al.,
2013) pre-trained embedding vectors 15 and the
Universal Dependency (UD, v1.4 16) dataset. Poly-
glot vectors contain 64-dimensional vectors over

13https://scikit-learn.org/0.19/
modules/generated/sklearn.linear_model.
LogisticRegression.html

14As a side note, in our early trials, we tried to evaluate
using an LSTM model following Pinter et al. (2017) and Zhao
et al. (2018), but found the numbers rather similar across
embedding models. One possible explanation is that LSTMs
are so good at picking up contextual features that the impact
of mild deviations of a single word vector is marginal.

15https://polyglot.readthedocs.io/
16https://universaldependencies.org/

Language KVQ-FH BoS PBoS
Arabic 0.813 0.754 0.905(+0.092)
Basque 0.749 0.829 0.866(+0.037)
Bulgarian 0.777 0.793 0.929(+0.136)
Chinese 0.633 0.330 0.833(+0.200)
Czech 0.799 0.823 0.917(+0.094)
Danish 0.801 0.757 0.904(+0.103)
English 0.770 0.770 0.896(+0.126)
Greek 0.866 0.888 0.941(+0.053)
Hebrew 0.775 0.703 0.915(+0.140)
Hindi 0.811 0.800 0.901(+0.090)
Hungarian 0.777 0.794 0.893(+0.099)
Indonesian 0.776 0.828 0.899(+0.071)
Italian 0.794 0.787 0.930(+0.135)
Kazakh 0.623 0.753 0.815(+0.062)
Latvian 0.722 0.756 0.848(+0.092)
Persian 0.869 0.782 0.924(+0.056)
Romanian 0.774 0.755 0.898(+0.123)
Russian 0.775 0.838 0.911(+0.073)
Spanish 0.818 0.769 0.920(+0.102)
Swedish 0.826 0.840 0.920(+0.080)
Tamil 0.702 0.758 0.755(-0.003)
Turkish 0.760 0.777 0.837(+0.060)
Vietnamese 0.663 0.712 0.832(+0.121)

Table 5: POS tagging accuracy over 23 languages. In paren-
theses are the gains to the best of BoS and KVQ-FH.

an 100k vocabulary for each language and are used
as target vectors for each of the subword-level em-
bedding models in this experiment. For PBoS, we
use the Polyglot word counts for each language as
the base for subword segmentation and subword
weights calculation. UD is used as the POS tagging
dataset to train and test the POS tagging model. We
use the default partition of training and testing set.
Statistics vary from language to language. See Ap-
pendix A.4 for more details.

Results Table 5 shows the POS tagging accuracy
over the 23 languages that appear in both Polyglot
and UD. All the subword-level embedding models
follow the same hyperparameters as in Section 4.3.
Following Sasaki et al. (2019), we tune the reg-
ularization term of the logistic regression model
when evaluating KVQ-FH. Even with that, PBoS
is able to achieve the best POS tagging accuracy
in all but one language regardless of morphologi-
cal types, OOV rates, and the number of training
instances (Appendix Table 12). Particularly, PBoS
improvement accuracy by greater than 0.1 for 9
languages. For the one language (Tamil) where
PBoS is not the most accurate, the difference to the
best is small (0.003). KVQ-FH gives no signifi-
cantly more accurate predictions than BoS despite
it is more complex and is the only one tuned with
hyperparameters.

Overall, Table 5 shows that the word embeddings

https://scikit-learn.org/0.19/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/0.19/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/0.19/modules/generated/sklearn.linear_model.LogisticRegression.html
https://polyglot.readthedocs.io/
https://universaldependencies.org/
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composed by our PBoS is effective at predicting
POS tags for a wide range of languages.

5 Related Work

Popular word embedding methods, such as
word2vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), often assume finite-size vocabu-
laries, giving rise to the problem of OOV words.

FastText (Bojanowski et al., 2017; Joulin et al.,
2017) attempted to alleviate the problem using
subword-level model, and was followed by inter-
ests of using subword information to improve word
embedding (Wieting et al., 2016; Cao and Lu, 2017;
Li et al., 2017; Athiwaratkun et al., 2018; Li et al.,
2018; Salle and Villavicencio, 2018; Xu et al.,
2019; Zhu et al., 2019). Among them are Chara-
gram by Wieting et al. (2016) which, albeit trained
on specific downstream tasks, is similar to BoS fol-
lowed by a non-linear activation, and the systematic
evaluation by Zhu et al. (2019) over various choices
of word composition functions and subword seg-
mentation methods. However, all works above ei-
ther pay little attention to the interaction among
subwords inside a given word, or treat subword
segmentation and composing word representation
as separate problems.

Another interesting thread of works (Oshikiri,
2017; Kim et al., 2018a, 2019) attempted to model
language solely at the subword level and learn sub-
word embeddings directly from text, providing evi-
dence to the power of subword-level models, espe-
cially as the notion of word is thought doubtful by
some linguistics (Haspelmath, 2011).

Besides the recent interest in subwords, there
have been long efforts of using morphology to im-
prove word embedding (Luong et al., 2013; Cot-
terell and Schütze, 2015; Cui et al., 2015; Soricut
and Och, 2015; Bhatia et al., 2016; Cao and Rei,
2016; Xu et al., 2018; Üstün et al., 2018; Edmiston
and Stratos, 2018; Chaudhary et al., 2018; Park and
Shin, 2018). However, most of them require an ex-
ternal oracle, such as Morfessor (Creutz and Lagus,
2002; Virpioja et al., 2013), for the morphological
segmentations of input words, limiting their power
to the quality and availability of such segmenters.
The only exception is the character LSTM model
by Cao and Rei (2016), which has shown some
ability to recover the morphological boundary as a
byproduct of learning word embedding.

The most related works in generalizing pre-
trained word embeddings have been discussed in

Section 1 and compared throughout the paper.

6 Conclusion and Future Work

We propose PBoS model for generalizing pre-
trained word embeddings without contextual in-
formation. PBoS simultaneously considers all pos-
sible subword segmentations of a word and derives
meaningful subword weights that lead to better
composed word embeddings. Experiments on seg-
mentation results, affix prediction, word similarity,
and POS tagging over 23 languages support the
claim.

In the future, it would be interesting to see if
PBoS can also help with the task of learning word
embedding, and how hashing would impact the
quality of composed embedding while facilitating
a more compact model.
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A Experimental Details

Here we list the details of our experiments that are
omitted in the main paper due to space constraints.

We run all our experiments on a machine with
an 8-core Intel i7-6700 CPU @ 3.40GHz, 32GB
Memory, and GeForce GTX 970 GPU.

A.1 Hyperparameters
The meaning of hyperparameters shown in Table 6,
Table 7 and Table 8 as explained as follows.

Subwords

• min len: The minimum length for a subword
to be considered.
• max len: The maximum length for a subword

to be considered.
• word boundary: Whether to add special char-

acters to annotate word boundaries.

Training

• epochs: The number of training epochs.
• lr: Learning rate.
• lr decay: Whether to set learning rate to be

inversely proportional to the square root of the
epoch number.
• normalize semb: Whether to normalize sub-

word embeddings before composing word em-
beddings.
• prob eps: Default likelihood for unknown

characters.

Evaluation

• C: The inverse regularization term used by the
logistic regression classifier.

A.2 Word Similarity
Table 6 and Table 8 show the hyperparameter
values used in the word similarity experiment
(Section 4.3). We transform all words in the
benchmarks into lowercase, following the conven-
tion in FastText (Bojanowski et al., 2017; Joulin
et al., 2017), BoS (Zhao et al., 2018), and KVQ-
FH (Sasaki et al., 2019).

During the evaluation, we use 0 as the similarity
score for a pair of words if we cannot get word
vector for one of the words, or the magnitude of the
word vector is too small. This is especially the case
when we evaluate the target vectors, where OOV
rates can be significant.

Table 9 lists experimental result for word simi-
larity in greater detail.

Regarding the training epoch time, note that
KVQ-FH uses GPU and is implemented using a
deep learning library 17 with underlying optimized
C code, whereas our PBoS is implemented using
pure Python and uses only single thread CPU. We
omit the prediction time for KVQ-FH, as we found
it hard to separate the actual inference time from
time used for other processes such as batching and
data transfer between CPU and GPU. However, we
believe the overall trend should be similar as for
the training time.

One may notice that the prediction time for BoS
in Table 9 is different from what was reported at the
end of Section 3. This is largely because the BoS
in Table 9 has a different (smaller) set of possible
subwords to consider due to the subword length
limits. In Section 3, to fairly access the impact
of subword weights computation, we ensure that
BoS and PBoS work with the same set of possible
subwords (that used by PBoS in Section 4.3), and
thus observe a slight longer prediction time for
BoS.

A.3 Multilingual Word Similarity

We use Wikipedia2Vec (Yamada et al., 2020) as tar-
get vectors, and keep the most frequent 10k words
to get decent OOV rates. The OOV rates and word
similarity scores can be found in Table 10.

We do not clean or filter words as we did for
the English word similarity, because we found it
difficult to have a consistent way of pre-processing
words across languages. For PBoS, we use the
word frequencies from Polyglot for subword seg-
mentation and subword weight calculation as the
same for the multilingual POS tagging experiment
(Section 4.4).

We evaluate all the models on multilingual Word-
Sim353 (mWS) and SemLex999 (mSL) from Le-
viant and Reichart (2015), which is available for
English, German, Italian and Russian. The dataset
also contains the relatedness (rel) and similarity
(sim) benchmarks derived from mWS.

We list the results for multilingual word similar-
ity in Table 11.

A.4 POS Tagging

Table 7 and Table 8 show the hyperparameter val-
ues used in the POS tagging experiment (Sec-
tion 4.4). For the prediction model, we use the lo-
gistic regression classifier from scikit-learn 0.19.1

17Chainer, https://chainer.org/

https://chainer.org/
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with the default settings.
Following the observation in Sasaki et al. (2019),

we tune the regularization parameter C for KVQ-
FH for all values a× 10b where a = 1, . . . , 9 and
b = −1, 0, . . . , 4. We use the POS tagging accu-
racy for English as criterion, and choose C = 70.

Table 12 lists some statistics of the datasets used
in the POS tagging experiment. PBoS is able to
achieve better accuracy over BoS and KVQ-FH
in all languages regardless of their morphological
type, OOV rate and number of training instances
for POS tagging.
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Settings Model
BoS PBoS PBoS-n

Subwords
min len 3 1 1
max len 6 None None
word boundary True False False

Training

epochs 50 50 50
lr 1.0 1.0 1.0
lr decay True True True
normalize semb False False True
prob eps 0.01 0.01 0.01

Table 6: Training settings used in word similarity experiment for BoS, PBoS, and PBoS-n

Settings Model
BoS PBoS

Subwords
min len 3 1
max len 6 None
word boundary True False

Training

epochs 20 20
lr 1.0 1.0
lr decay True True
prob eps 0.01 0.01

Evaluation C 1 1

Table 7: Training settings used in POS tagging experiment for BoS and PBoS

Settings Experiment
Word similarity POS tagging

Subwords
min len 3 3
max len 30 30
word boundary True True

Training
epochs 300 300
limit size 500,000 500,000
bucket size 40,000 40,000

Evaluation C N/A 70

Table 8: Training settings used in experiments for KVQ-FH.

Model # Param Dataset Training Time Prediction Time
WS RW Card Total Per epoch Total Per word

Target: Polyglot
BoS 29.8M 34 34 6 505s 10.1s 1.9s 161µs
KVQ-FH 7.8M 31 32 12 2,669s 8.9s – –
PBoS 37.8M 41 25 15 966s 19.3s 4.2s 365µs
Target: Google News
BoS 162.7M 61 48 11 1,110s 22.2s 4.8s 414µs
KVQ-FH 36.2M 64 49 21 10,638s 35.5s – –
PBoS 315.7M 68 49 25 2,065s 41.3s 6.8s 590µs

Table 9: Word similarity performance of subword-level models measured in Spearman’s ρ × 100, along with training and
prediction time.
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mWS mWS-rel mWS-sim mSL
English: 10k tokens × 300 dim
IV pairs 65 56 71 26
All pairs 29 36 24 7

OOV 27% 23% 30% 36%
Germen: 10k tokens × 300 dim
IV pairs 58 50 60 35
All pairs 8 14 7 7

OOV 54% 52% 55% 67%
Italian: 10k tokens × 300 dim
IV pairs 52 50 54 24
All pairs 11 20 8 2

OOV 48% 45% 50% 54%
Russian: 10k tokens × 300 dim
IV pairs 47 32 48 12
All pairs 1 4 2 9

OOV 73% 69% 75% 84%

Table 10: Multilingual target vectors statistics and word
similarity performance measured in Spearman’s ρ× 100.

Model # Param mWS mWS mWS mSLrel sim
English
BoS 20.2M 32 29 34 23
KVQ-FH 36.0M 36 41 34 13
PBoS 30.4M 53 44 61 22
Germen
BoS 21.3M 32 24 37 13
KVQ-FH 36.0M 18 19 19 14
PBoS 45.8M 38 30 38 12
Italian
BoS 18.8M 8 -2 17 25
KVQ-FH 36.0M 19 22 21 9
PBoS 35.7M 25 16 27 13
Russian
BoS 20.0M 20 15 21 14
KVQ-FH 36.0M 19 11 24 9
PBoS 35.6M 18 12 22 12

Table 11: Multilingual word similarity performance of
subword-level models measured in Spearman’s ρ× 100.

Language Morphological OOV % Ntrain
Model

Type KVQ-FH BoS PBoS
Arabic Fusional 27.1% 225,853 0.813 0.754 0.905
Basque Agglutinative 39.2% 72,974 0.749 0.829 0.866
Bulgarian Fusional 33.7% 50,000 0.777 0.793 0.929
Chinese Isolating 70.8% 98,608 0.633 0.330 0.833
Czech Fusional 58.5% 1,173,282 0.799 0.823 0.917
Danish Fusional 33.3% 88,980 0.801 0.757 0.904
English Analytic 26.2% 204,587 0.770 0.770 0.896
Greek Fusional 18.5% 47,449 0.866 0.888 0.941
Hebrew Fusional 20.3% 135,496 0.775 0.703 0.915
Hindi Fusional 27.1% 281,057 0.811 0.800 0.901
Hungarian Agglutinative 29.2% 33,017 0.777 0.794 0.893
Indonesian Agglutinative 20.0% 97,531 0.776 0.828 0.899
Italian Fusional 24.3% 289,440 0.794 0.787 0.930
Kazakh Agglutinative 22.8% 4,949 0.623 0.753 0.815
Latvian Fusional 23.7% 13,781 0.722 0.756 0.848
Persian Agglutinative 16.9% 121,064 0.869 0.782 0.924
Romanian Fusional 29.4% 163,262 0.774 0.755 0.898
Russian Fusional 31.3% 79,772 0.775 0.838 0.911
Spanish Fusional 29.1% 382,436 0.818 0.769 0.920
Swedish Analytic 37.4% 66,645 0.826 0.840 0.920
Tamil Agglutinative 28.4% 6,329 0.702 0.758 0.755
Turkish Agglutinative 37.8% 41,748 0.760 0.777 0.837
Vietnamese Analytic 63.8% 31,800 0.663 0.712 0.832

Table 12: Statistics for the languages used in POS tagging experiment.
Ntrain is the number of training instances for the POS tagging model. OOV % is the percentage of the words in the POS

tagging testing set that is out of the vocabulary of the Polyglot vectors in that language. Experimental results are included for
convenience.


