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Abstract

Visual Question Answering (VQA) is a chal-
lenging task that has received increasing at-
tention from both the computer vision and
the natural language processing communities.
Current works in VQA focus on questions
which are answerable by direct analysis of
the question and image alone. We present
a concept-aware algorithm, ConceptBert, for
questions which require common sense, or
basic factual knowledge from external struc-
tured content. Given an image and a ques-
tion in natural language, ConceptBert requires
visual elements of the image and a Knowl-
edge Graph (KG) to infer the correct an-
swer. We introduce a multi-modal represen-
tation which learns a joint Concept-Vision-
Language embedding. We exploit ConceptNet
KG for encoding the common sense knowl-
edge and evaluate our methodology on the Out-
side Knowledge-VQA (OK-VQA) and VQA
datasets. Our code is available at https://
github.com/ZiaMaryam/ConceptBERT

1 Introduction

Visual Question Answering (VQA) was firstly in-
troduced to bridge the gap between natural lan-
guage processing and image understanding appli-
cations in the joint space of vision and language
(Malinowski and Fritz, 2014).

Most VQA benchmarks compute a question rep-
resentation using word embedding techniques and
Recurrent Neural Networks (RNNs), and a set of
object descriptors comprising bounding box coordi-
nates and image features vectors. Word and image
representations are then fused and fed to a network
to train a VQA model. However, these approaches
are practical when no knowledge beyond the visual
content is required.
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Incorporating the external knowledge introduces
several advantages. External knowledge and sup-
porting facts can improve the relational representa-
tion between the objects detected in the image, or
between entities in the question and objects in the
image. It also provides information on how the an-
swer can be derived from the question. Therefore,
the complexity of the questions can be increased
based on the supporting knowledge base.

Organizing the world’s facts and storing them
in a structured database, large scale Knowledge
Bases (KB), have become important resources for
representing the external knowledge. A typical
KB consists of a collection of subject-predicate-
object triplets also known as a fact. A KB in
this form is often called a Knowledge Graph
(KG) (Bollacker et al.) due to its graphical rep-
resentation. The entities are nodes and the rela-
tions are the directed edges that link the nodes.
The triples specify that two entities are connected
by a particular relation, e.g., (Shakespeare,
writerOf, Hamlet).

A VQA system that exploits KGs is an emerg-
ing research topic, and is not well-studied. Recent
research has started integrating knowledge-based
methods into VQA models (Wang et al., 2017,
2016; Narasimhan et al., 2018; Narasimhan and
Schwing, 2018; Zhu et al., 2015; Marino et al.,
2019). These methods incorporate the external
knowledge through two approaches: i) they ex-
ploit a set of associated facts for each question pro-
vided in VQA datasets (Narasimhan et al., 2018;
Narasimhan and Schwing, 2018), or ii) they collect
possible search queries for each question-image
pair and use a search API to retrieve the answers
(Wang et al., 2017, 2016; Zhu et al., 2015; Marino
et al., 2019). However, we go one step further and
implement an end-to-end VQA model that is fully
trainable. Our model does not require knowledge
annotations in VQA datasets or search queries.

https://github.com/ZiaMaryam/ConceptBERT
https://github.com/ZiaMaryam/ConceptBERT
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Figure 1: Model architecture of the proposed ConceptBert.

Most of the recent works are still based on the
idea of context-free word embeddings rather than
the pre-trained language representation (LR) model.
While the pre-trained LR model such as BERT
(Devlin et al., 2018) is an emerging direction, there
is little work on its fusion with KG and image
representation in VQA tasks. Liu et al. propose a
knowledge-based language representation and use
BERT as the token embedding method. However,
this model is also a query-based method. It collects
entity names involved in questions and queries their
corresponding triples from the KG. Then, it injects
queried entities into questions.

In this paper, we introduce a model which jointly
learns from visual, language, and KG embeddings
and captures image-question-knowledge specific
interactions. The pipeline of our approach is shown
in Figure 1. We compute a set of object, ques-
tion, and KG embeddings. The embedded inputs
are then passed through two main modules: i) the
vision-language representation, and ii) the concept-
language representation. The vision-language rep-
resentation module jointly enhances both the image
and question embeddings, each improving its con-
text representation with the other one. The concept-
language representation uses a KG embedding to in-
corporate relevant external information in the ques-
tion embedding. The outputs of these two modules
are then aggregated to represent concept-vision-
language embeddings and then fed to a classifier to
predict the answer.

Our model is different from the previous meth-
ods since we use pre-trained image and language
features and fuse them with KG embeddings to

incorporate the external knowledge into the VQA
task. Therefore, our model does not need additional
knowledge annotations or search queries and re-
duces computational costs. Furthermore, our work
represents an end-to-end pipeline that is fully train-
able.

In summary, the main contributions of our work
are:

1. Novel methodology to incorporate common
sense knowledge to VQA models (Figure 1)

2. Concept-aware representation to use knowl-
edge graph embeddings in VQA models (Fig-
ure 2-b)

3. Novel multimodal Concept-Visual-Language
embeddings (Section 3.4)

2 Problem formulation

Given a question q ∈ Q grounded in an image
I ∈ I and a knowledge graph G, the goal is to
predict a meaningful answer a ∈ A. Let Θ be the
parameters of the model p that needs to be trained.
Therefore, the predicted answer â of our model is:

â = arg max
a∈A

pΘ(a|I, q,G) (1)

In order to retrieve the correct answer, we aim to
learn a joint representation z ∈ Rdz of q, I , and G
such that:

a∗ = â = arg max
a∈A

pΘ(a|z) (2)

where a∗ is the ground-truth answer. dz is a hy-
perparameter that represents the dimension of the
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joint space z. dz is selected based on a trade-off
between the capability of the representation and
the computational cost.

3 Our approach

3.1 Input representations

The input to our model, ConceptBert, consists of
an image representation, a question representation,
and a knowledge graph representation module (cf.
the blue-dashed box in Figure 1) which are dis-
cussed in detail below.

Image representation: We use pre-trained
Faster R-CNN features (Anderson et al., 2017) to
extract a set of objects V = {vi | i = 1, ..., nv} per
image, where each object vi is associated with a
visual feature vector vi ∈ Rdv and bounding-box
coordinates bi ∈ Rdb .

Question representation: Given a question
consisting of nT tokens, we use BERT embeddings
(Devlin et al., 2018) to generate question represen-
tation q ∈ RnT×dq . BERT operates over sequences
of discrete tokens consisting of vocabulary words
and a small set of special tokens, i.e., SEP, CLS,
and MASK. The representation of each token is a
sum of a token-specific learned embedding and en-
codings for position and segment. Position refers
to the token’s index in the sequence and segment
shows the index of the token’s sentence if multiple
sentences exist.

Knowledge graph representation: We use
ConceptNet (Speer et al., 2016) as the source of
common sense knowledge. ConceptNet is a mul-
tilingual knowledge base, representing words and
phrases that people use and the common sense re-
lationships between them. ConceptNet is a knowl-
edge graph built from several different sources
(mostly from Wiktionary, Open Mind Common
Sense (Singh et al., 2002) and Games with a pur-
pose such as Ahn et al.). It contains over 21 million
edges and over 8 million nodes. In this work, we
focus on the English vocabulary which contains
approximately 1.5 million nodes. To avoid the step
of the query construction and take full advantage
of the large scale KG, we exploit ConceptNet em-
bedding proposed in (Malaviya et al., 2020) and
generate the KG representation k ∈ RnT×dk .

This method uses Graph Convolutional Net-
works (Kipf and Welling, 2016) to incorporate
information from the local neighborhood of a node
in the graph. It includes an encoder and a decoder.

A graph convolutional encoder takes a graph as in-
put, and encodes each node. The encoder operates
by sending messages from a node to its neighbors,
weighted by the relation type defined by the edge.
This operation occurs in multiple layers, incorpo-
rating information multiple hops away from a node.
The last layer’s representation is used as the graph
embedding of the node.

3.2 Vision-Language representation

To learn joint representations of language q and
visual content V , we generate vision-attended lan-
guage features V and language-attended visual fea-
tures Q (cf. the orange box in Figure 1) inspired
by VilBERT model (Lu et al., 2019).

Our vision-language module is mainly based on
two parallel BERT-style streams, which operate
over image regions and text segments (cf. Figure
2-a). Each stream is a succession of transformer
blocks and co-attentional transformer layers to en-
able information exchange between image and text
modalities. These exchanges are restricted between
specific layers and the text features go through
more processing than visual features. The final
set of image features represent high-level informa-
tion of language features, and final text features
include high-level vision features.

3.3 Concept-Language representation

The vision-language module represents the interac-
tions between the image and the question. However,
this module alone is not able to answer questions
that require insights that are neither in the image,
nor in the question. To this end, we propose the
concept-language representation to produce lan-
guage features conditioned on knowledge graph
embeddings (cf. the red box in Figure 1). It per-
forms knowledge-conditioned language attention
in the concept stream (Figure 2-b). With this sys-
tem, the model is able to incorporate common sense
knowledge to the question, and enhance the ques-
tion comprehension with the information found in
the knowledge graph.

The entities in the knowledge graph have both
contextual and relational information that we desire
to integrate in the question embedding. To this
purpose, we use an attentional transformer layer
which is a multi-layer bidirectional Transformer
using the encoder part of the original Transformer
(Vaswani et al., 2017).

The concept-language module is a series of
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a) Vision-Language representation b) Concept-Language representation

Figure 2: Attention-based representation modules

Transformer blocks that attends to question tokens
based on KG embeddings. Given input question
tokens {w0, ..., wT } represented as q and their KG
embeddings represented as k, our model outputs a
final representation G.

The input consists of ”queries” from question
embeddings and ”keys” and ”values” of KG embed-
dings. We use Multi-Head Attention with scaled
dot-product. Therefore, we pack a set of q into a
matrix Qw, and k into a matrix KG and VG.

Att(Qw,KG, VG) = softmax

(
Qw ·Kᵀ

G√
dk

)
· VG

(3)
The output of the final Transformer block, G,

is a new representation of the question, enhanced
with common sense knowledge extracted from the
knowledge graph. Figure 2-b shows an intermedi-
ate representation HC .

3.4 Concept-Vision-Language embedding
module

We aggregate the outputs of the three streams to
create a joint concept-vision-language representa-
tion. The aggregator needs to detect high-level
interactions between the three streams to provide a
meaningful answer, without erasing the lower-level
interactions extracted in the previous steps.

We design the aggregator by applying the Com-
pact Trilinear Interaction (CTI) (Do et al., 2019) to
question, answer, and image features and generate
a vector to jointly represent the three features.

Given V ∈ Rnv×dv , Q ∈ RnT×dq , and G ∈
RnT×dk , we generate a joint representation z ∈
Rdz of the three embeddings. The joint repre-
sentation z is computed by applying CTI to each

(V,Q,G) :

z =

nv∑
i=1

nT∑
j=1

nT∑
k=1

Mijk

(
ViWzv ◦QjWzq ◦GkWzg

)
(4)

whereM is an attention mapM∈ Rnv×nT×nT :

M =
R∑

r=1

JGr;VWvr , QWqr , GWgrK (5)

where Wzv , Wzq , Wzg ,Wvr ,Wqr ,Wgr are learn-
able factor matrices, and ◦ is the Hadamard product.
R is a slicing parameter, establishing a trade-off be-
tween the decomposition rate and the performance,
and Gr ∈ Rdqr×dvr×dgr is a learnable Tucker ten-
sor.

The joint embedding computes more efficient
and more compact representations than simply con-
catenating the embeddings. It creates a joint rep-
resentation in a single space of the three different
embedding spaces. In addition, we overcome the
issue of dimensionality faced with concatenating
large matrices.

The outputs of the aggregator is a joint concept-
vision-language representation which is then fed to
a classifier to predict the answer.

4 Experiments

We evaluate the performance of our proposed
model using the standard evaluation metric rec-
ommended in the VQA challenge (Agrawal et al.,
2017):

Acc(ans) = min

(
1,

#{humans provided ans}
3

)
(6)



493

4.1 Datasets
All experiments have been performed on VQA 2.0
(Goyal et al., 2016) and Outside Knowledge-VQA
(OK-VQA) (Marino et al., 2019) datasets.

VQA 2.0 is a public dataset containing about
1.1 million questions and 204,721 images extracted
from the 265,016 images of the COCO dataset. At
least 3 questions (5.4 questions on average) are
provided per image, and each question is associ-
ated with 10 different answers obtained by crowd
sourcing. Since VQA 2.0 is a large dataset, we
only consider questions whose set of answers has
at least 9 identical ones. With this common prac-
tice, we can cast aside questions which have luke-
warm answers. The questions are divided in three
categories: Yes/No, Number, and Other. We are
especially interested in the ”Other” category, which
can require external knowledge to find the correct
answer.

OK-VQA: To evaluate the performance of our
proposed model, we require questions which are
not answerable by direct analysis of the objects
detected in the image or the entities in the question.
Most of knowledge-based VQA datasets impose
hard constraints on their questions, such as being
generated by templates (KB-VQA (Wang et al.,
2015)) or directly obtained from existing knowl-
edge bases (FVQA (Wang et al., 2016)). We select
OK-VQA which is the only VQA dataset that re-
quires handling unstructured knowledge to answer
natural questions about images.

The OK-VQA dataset is composed of 14,031
images and 14,055 questions. For each question,
we select the unanimous answer as the ground-
truth answer. OK-VQA is divided into eleven cat-
egories: vehicles and transportation (VT); brands,
companies and products (BCP); objects, materials
and clothing (OMC); Sports and Recreation (SR);
Cooking and Food (CF); Geography, History, Lan-
guage and Culture (GHLC); People and Everyday
Life (PEL); plants and animals (PA); science and
technology (ST); weather and climate (WC). If a
question was classified as belonging to different
categories by different people, it was categorized
as ”Other”.

4.2 Implementation details
In this section, we provide the implementation de-
tails of our proposed model in different building
blocks.

Image embedding: Each image has a total of

36 image region features (nv = 36), each repre-
sented by a bounding box and an embedding vector
computed by pre-trained Faster R-CNN features
where dv = 2048. Each bounding box includes a
5-dimensional spatial coordinate (db = 5) corre-
sponding to the coordinates of the top-left point of
the bounding box, the coordinates of the bottom-
right point of the bounding box, and the covered
fraction of the image area.

Question embedding: The input questions are
embedded using BERT’s BASE model. Therefore,
each word is represented by a 768-D word embed-
ding (dq = 768). Each question is divided into
16-token blocks (nT = 16), starting with a [CLS]
token and ending with a [SEP] token. The an-
swers are transformed to one-hot encoding vectors.

Knowledge graph embedding: During our ex-
periments, we explored different node embeddings
for ConceptNet (e.g. GloVe (Pennington et al.,
2014), NumberBatch (Speer et al., 2016), and
(Malaviya et al., 2020)). We found that the embed-
ding generated by (Malaviya et al., 2020) works
best in our model.

Vision-Language representation: We initial-
ize our vision-language representation with pre-
trained ViLBERT features. The ViLBERT model
is built on the Conceptual Captions dataset (Sharma
et al., 2018), which is a collection of 3.3 million
image-caption pairs, to capture the diversity of vi-
sual content and learn some interactions between
images and text. Our vision-language module in-
cludes 6 layers of Transformer blocks with 8 and 12
attention heads in the visual stream and linguistic
streams, respectively.

Concept-Language representation: We train
the concept stream of our ConceptBert from
scratch. The module includes 6 layers of Trans-
former blocks with 12 attention heads.

Concept-Vision-Language embedding: We
have tested our concept-vision-language represen-
tation with dz = 512 and dz = 1024. The best
results were reached using dz = 1024. Our hypoth-
esis is that we can improve the capability of the
module by increasing dz . However, it leads to an
increase in the computational cost. We set R = 32
in Equation 5, the same value as in the CTI (Do
et al., 2019) for the slicing parameter.

Classifier: We use a binary cross-entropy loss
with a batch size of 1024 over a maximum of 20
epochs on 8 Tesla GPUs. We use the BertAdam
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Dataset L VL CL CVL
VQA 2.0 26.68 67.9 38.24 69.95
OK-VQA 14.93 31.35 22.12 33.66

Table 1: Evaluation results on VQA 2.0 and OK-VQA
validation sets for ablation study

Model Overall Yes/No Number Other
Up-Down 59.6 80.3 42.8 55.8
XNM Net 64.7 - - -
ReGAT 67.18 - - -

ViLBERT 67.9 82.56 54.27 67.15
SIMPLE 67.9 82.70 54.37 67.21
CONCAT 68.1 82.96 54.57 68.00

ConceptBert 69.95 83.99 55.29 70.59

Table 2: Evaluation results of our model compared with
existing algorithms on VQA 2.0 validation set.

optimizer with an initial learning rate of 4e-5. A
linear decay learning rate schedule with warm up
is used to train the model.

4.3 Experimental results
This sub-section provides experimental results on
the VQA 2.0 and OK-VQA datasets.

Ablation Study: In Table 1, we compare two
ablated instances of ConceptBert with its complete
form. Specifically, we validate the importance of
incorporating the external knowledge into VQA
pipelines on top of the vision and language em-
beddings. Table 1 reports the overall accuracy on
the VQA 2.0 and OK-VQA validation sets in the
following setting:
• L: Only questions features q are fed to the

classifier.
• VL: Only the outputs of the Vision-Language

representation module [V ;Q] are concate-
nated and fed to the classifier.
• CL: Only the output of the Concept-Language

representation module G is fed to the classi-
fier.
• CVL: ConceptBert complete form; the out-

puts of both Vision-Language and Concept-
Language modules are fused (cf. Section 3.4)
and fed to the classifier.

Comparison between L and CL instances shows
the importance of incorporating the external knowl-
edge to accurately predict answers. Adding the
KG embeddings to the model leads to a gain of
11.56% and 7.19% in VQA and OK-VQA datasets,
respectively.

We also note that the VL model outperforms the
CL model. The reason is that most of the ques-

tions in both VQA 2.0 and OK-VQA datasets are
related to objects found in the images. Therefore,
the accuracy drops without providing the detected
object features. Compared to the VL and CL, the
CVL model gives the highest accuracy which indi-
cates the effectiveness of the joint concept-vision-
language representation.

Results on VQA 2.0 dataset: The performance
of our complete model on VQA 2.0 validation set is
compared with the existing models in Table 2. Up-
Down model (Anderson et al., 2017) combines the
bottom-up and top-down attention mechanism that
enables attention to be calculated at the level of ob-
jects. XNM Net (Shi et al., 2018) and ReGAT (Li
et al., 2019) are designed to answer semantically-
complicated questions. In addition to the exist-
ing approaches we elaborated two other baselines:
(i) SIMPLE: First, we create the embedding G,
which is the output of the concept-language mod-
ule. Then, we use G and the image embedding,
feed them to the vision-language module, and send
its output to a classifier and check the answer. (ii)
CONCAT: we concatenate the embeddings from
the question and ConceptNet to form a mixed em-
bedding QKB . Then, we send QKB and the im-
age embedding to the vision-language module, and
feed its output to a classifier and check the answer.
It is worthy to note that SIMPLE and CONCAT do
not have CTI involved. The results show that our
model outperforms the existing models. Since we
report our results on the validation set, we removed
the validation set from the training phase, so that
the model only relies on the training set.

Results on OK-VQA dataset: Table 3 shows
the performance of our complete model on OK-
VQA validation set. Since there exists only one
work on OK-VQA dataset in the literature, we
apply a few state-of-the-art models on OK-VQA
and report their performance. We also performed
SIMPLE and CONCAT baselines on OK-VQA
dataset. In the OK-VQA study (Marino et al.,
2019), the best results are obtained by fusing
MUTAN and ArticleNet (MUTAN + AN) as a
knowledge-based baseline. AN retrieves some arti-
cles from Wikipedia for each question-image pair
and then train a network to predict whether and
where the ground-truth answers appear in the arti-
cle and in each sentence.

From the table, we observe that our model sur-
passes the baselines and SOTA models in almost
every category which indicates the usefulness of
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Model Overall VT BCP OMC SR CF GHLC PEL PA ST WC Other
XNM Net 25.61 26.84 21.86 18.22 33.02 23.93 23.83 20.79 24.81 21.43 42.64 24.39
MUTAN+AN 27.58 25.56 23.95 26.87 33.44 29.94 20.71 25.05 29.70 24.76 39.84 23.62
ViLBERT 31.35 27.92 26.74 29.72 35.24 31.93 34.04 26.54 30.49 27.38 46.2 28.72
SIMPLE 31.37 28.12 26.84 29.77 35.77 31.99 29.09 26.99 31.09 27.66 46.28 28.81
CONCAT 31.95 28.66 27.01 29.81 35.88 32.89 31.04 26.94 31.99 28.01 46.33 29.01
ConceptBert 33.66 30.38 28.02 30.65 37.85 35.08 32.91 28.55 35.88 32.38 47.13 31.47

Table 3: Evaluation results of our model compared with the SOTA algorithms on OK-VQA validation set.

Q: What is the likely relationship of these animals? Q: What is the lady looking at? Q: What metal do the minute hands are made of?
VL: friends; CVL: mother and child VL: phone; CVL: camera VL: metal; CVL: steel

Q: What condiment is hanging out of the sandwich? Q: What is laying on a banana? Q: What vegetable is on the lower most plate?
VL: mustard; CVL: onion VL: nothing; CVL: sticker VL: celery; CVL: carrot

Figure 3: VQA examples in the category ”Other”: ConceptBert complete form CVL outperforms the VL model on
the question Q.

external knowledge in predicting answers. Con-
ceptBert performs especially well in the ”Cooking
and Food” (CF), ”Plants and Animals” (PA), and
”Science and Technology” (ST) categories with a
gain larger than 3%. The answers to these type of
questions often are entities out of the main entities
in the question and the visual features in the im-
age. Therefore, the information extracted from the
knowledge graph plays an important role in deter-
mining the answer. ViLBERT performs better in
the category ”Geography, History, Language and
Culture” (GHLC) compared to ConceptBert, since
”dates” are not entities in ConceptNet.

4.4 Qualitative results

We illustrate some qualitative results of Concept-
Bert complete form CVL by comparing it with the
VL model. In particular, we aim at illustrating the
advantage of adding (i) the external knowledge ex-
tracted from the ConceptNet knowledge graph, and
(ii) concept-vision-language embedding represen-
tations.

Figure 3 and Figure 4 illustrate some qualitative

results on VQA 2.0 and OK-VQA validation sets,
respectively.

From the figures, we observed that the VL model
is influenced by the objects detected in the picture.
However, the CVL model is able to identify the
correct answer without only focusing on the visual
features. For example in the third row in Figure 4,
CVL model uses the facts that an elephant is herbiv-
orous, and black cat is associated with Halloween
to find the correct answers.

It is worthy to note that the CVL answers remain
consistent from a semantic perspective even in the
case of wrong answers. For example, How big is
the distance between the two players? exposes a
distance as opposed to the VL model which pro-
vides a Yes/No answer (cf. Figure 5). In another
example for the question Sparrows need to hide to
avoid being eaten by what?, the CVL model men-
tions an animal species that can eat sparrows, while
the VL model returns an object found in the im-
age. From these visualization results, we observe
that the knowledge strongly favours the capture
of interactions between objects, which contributes
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Q: What event is this? Q: Why does this animal have this object? Q: What is the red item used for?
VL: birthday; CVL: wedding VL: warmth; CVL: soccer VL: stop; CVL: water

Q: The box features the logo from which company? Q: What would you describe this place? Q: What type of tool is she using for her hair?
VL: delta; CVL: amazon VL: airport; CVL: market VL: clip; CVL: brush

Q: What holiday is associated with this animal? Q: What do these animals eat? Q: What is the red building called?
VL: sleep; CVL: halloween VL: water; CVL: plant VL: bell; CVL: lighthouse

Figure 4: OK-VQA examples: ConceptBert complete form CVL outperforms the VL model on the question Q.

Q: What is the company that designs the television? Q: How big is the distance between the two players? Q: What play is advertised on the side of the bus?
VL: table; CVL: lg VL: yes; CVL: 20ft VL: nothing; CVL: movie

GT: samsung GT: 10ft GT: smurfs

Q: Where can you buy contemporary furniture? Q: What kind of boat is this? Sparrows need to hide to avoid being eaten by what?
VL: couch; CVL: store VL: ship; CVL: freight VL: leaf; CVL: bird

GT: ikea GT: tug GT: hawks

Figure 5: ConceptBert complete form CVL identifies answers of the same type as the ground-truth answer (GT)
compared with the VL model on the question Q. VQA and OK-VQA examples are shown in the first and second
rows, respectively.
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to a better alignment between image regions and
questions.

5 Conclusions

In this paper, we present ConceptBert, a concept-
aware end-to-end pipeline for questions which re-
quire knowledge from external structured content.
We introduce a new representation of questions
enhanced with the external knowledge exploiting
Transformer blocks and knowledge graph embed-
dings. We then aggregate vision, language, and
concept embeddings to learn a joint concept-vision-
language embedding. The experimental results
have shown the performance of our proposed model
on VQA 2.0 and OK-VQA dataset.

For future work, we will investigate how to
integrate the explicit relations between entities
and objects. We believe that exploiting the pro-
vided relations in knowledge graphs and integrat-
ing them with relations found between objects in
questions/images can improve the predictions.
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