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Abstract

We present BRIDGE, a powerful sequential
architecture for modeling dependencies be-
tween natural language questions and rela-
tional databases in cross-DB semantic pars-
ing. BRIDGE represents the question and DB
schema in a tagged sequence where a sub-
set of the fields are augmented with cell val-
ues mentioned in the question. The hybrid
sequence is encoded by BERT with minimal
subsequent layers and the text-DB contextu-
alization is realized via the fine-tuned deep
attention in BERT. Combined with a pointer-
generator decoder with schema-consistency
driven search space pruning, BRIDGE at-
tained state-of-the-art performance on the
well-studied Spider benchmark (65.5% dev,
59.2% test), despite being much simpler than
most recently proposed models for this task.
Our analysis shows that BRIDGE effectively
captures the desired cross-modal dependen-
cies and has the potential to generalize to
more text-DB related tasks. Our implemen-
tation is available at https://github.com/
salesforce/TabularSemanticParsing.

1 Introduction

Text-to-SQL semantic parsing addresses the prob-
lem of mapping natural language utterances to exe-
cutable relational DB queries. Early work in this
area focus on training and testing the semantic
parser on a single DB (Hemphill et al., 1990; Dahl
et al., 1994; Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Dong and Lapata, 2016). How-
ever, DBs are widely used in many domains and
developing a semantic parser for each individual
DB is unlikely to scale in practice.

More recently, large-scale datasets consisting of
hundreds of DBs and the corresponding question-
SQL pairs have been released (Yu et al., 2018;
Zhong et al., 2017; Yu et al., 2019b,a) to encourage
the development of semantic parsers that can work

User IDFollows Follower ID

User_Profiles UID Name Email Partition ID
… …

List the name and number of followers for each user

SQL SELECT name, followers FROM User_Profiles

Followers

SQL SELECT COUNT(DISTINCT t2.title)  
FROM Publication AS T2 JOIN Journal AS T1 
ON T2.JID = T1.JID WHERE T1.name = “PVLDB”

JIDJournal Homepage Name

Publication PID Abstract Title … JID Year

Return me the number of papers on PVLDB

… …

Domain Academic

Domain Twitter

Figure 1: Two questions from the Spider dataset with
similar intent resulted in completely different SQL log-
ical forms on two DBs. In cross-DB text-to-SQL se-
mantic parsing, the interpretation of a natural language
question is strictly grounded in the underlying rela-
tional DB schema.

well across different DBs (Guo et al., 2019; Bogin
et al., 2019b; Zhang et al., 2019; Wang et al., 2019;
Suhr et al., 2020; Choi et al., 2020). The setup
is challenging as it requires the model to interpret
a question conditioned on a relational DB unseen
during training and accurately express the question
intent via SQL logic. Consider the two examples
shown in Figure 1, both questions have the intent
to count, but the corresponding SQL queries are
drastically different due to differences in the target
DB schema. As a result, cross-DB text-to-SQL se-
mantic parsers cannot trivially memorize seen SQL
patterns, but instead has to accurately model the
natural language question, the target DB structure,
and the contextualization of both.

State-of-the-art cross-DB text-to-SQL semantic
parsers adopt the following design principles to

https://github.com/salesforce/TabularSemanticParsing
https://github.com/salesforce/TabularSemanticParsing
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address the aforementioned challenges. First, the
question and schema representation should be con-
textualized with each other (Hwang et al., 2019;
Guo et al., 2019; Wang et al., 2019; Yin et al.,
2020). Second, large-scale pre-trained language
models (LMs) such as BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019c) can significantly
boost parsing accuracy by providing better rep-
resentations of text and capturing long-term de-
pendencies. Third, under data privacy constraints,
leveraging available DB content can resolve am-
biguities in the DB schema (Bogin et al., 2019b;
Wang et al., 2019; Yin et al., 2020). Consider the
second example in Figure 1, knowing “PLVDB” is
a value of the field Journal.Name helps the model
to generate the WHERE condition.

We present BRIDGE, a powerful sequential text-
DB encoding framework assembling the three de-
sign principles mentioned above. BRIDGE rep-
resents the relational DB schema as a tagged
sequence concatenated to the question. Differ-
ent from previous work which proposed special-
purpose layers for modeling the DB schema (Bo-
gin et al., 2019a,b; Zhang et al., 2019; Choi et al.,
2020) and cross text-DB linking (Guo et al., 2019;
Wang et al., 2019), BRIDGE encodes the tagged
hybrid sequence with BERT and lightweight sub-
sequent layers – two single-layer bi-directional
LSTMs (Hochreiter and Schmidhuber, 1997). Each
schema component (table or field) is simply repre-
sented using the hidden state of its special token
in the hybrid sequence. To better align the schema
components with the question, BRIDGE augments
the hybrid sequence with anchor texts, which are
automatically extracted DB cell values mentioned
in the question. Anchor texts are appended to their
corresponding fields in the hybrid sequence (Fig-
ure 2). The text-DB alignment is then implicitly
achieved via fine-tuned BERT attention between
overlapped lexical tokens.

Combined with a pointer-generator decoder (See
et al., 2017) and schema-consistency driven search
space pruning, BRIDGE performs competitively on
the well studied Spider benchmark (Structure Acc:
65.6% dev, 59.2% test, top-4 rank; Execution Acc:
59.9% test, top-1 rank), outperforming most of re-
cently proposed models with more sophisticated
neural architectures. Our analysis shows that when
applied to Spider, the BERT-encoded hybrid repre-
sentation can effectively capture useful cross-modal

dependencies and the anchor text augmentation re-
sulted in significant performance improvement.

2 Model

In this section, we present the BRIDGE model that
combines a BERT-based encoder with a sequential
pointer-generator to perform end-to-end cross-DB
text-to-SQL semantic parsing.

2.1 Problem Definition

We formally defined the cross-DB text-to-SQL
task as the following. Given a natural language
question Q and the schema S = 〈T ,C〉 for a
relational database, the parser needs to generate
the corresponding SQL query Y . The schema
consists of tables T = {t1, . . . , tN} and fields
C = {c11, . . . , c1|T1 |, . . . , cn1, . . . , cN|TN |}. Each ta-
ble ti and each field ci j has a textual name. Some
fields are primary keys, used for uniquely index-
ing eachEar data record, and some are foreign
keys, used to reference a primary key in a differ-
ent table. In addition, each field has a data type,
τ ∈ {number, text, time, boolean, etc.}.

Most existing solutions for this task do not
consider DB content (Zhong et al., 2017; Yu
et al., 2018). Recent approaches show accessing
DB content significantly improves system perfor-
mance (Liang et al., 2018; Wang et al., 2019; Yin
et al., 2020). We consider the setting adopted
by Wang et al. (2019) where the model has ac-
cess to the value set of each field instead of full DB
content. For example, the field Property_Type_Code
in Figure 2 can take one of the following values:
{“Apartment”, “Field”, “House”, “Shop”, “Other”}.
We call such value sets picklists. This setting pro-
tects individual data record and sensitive fields such
as user IDs or credit numbers can be hidden.

2.2 Question-Schema Serialization and
Encoding

As shown in Figure 2, we represent each table with
its table name followed by its fields. Each table
name is preceded by the special token [T] and each
field name is preceded by [C]. The representations
of multiple tables are concatenated to form a se-
rialization of the schema, which is surrounded by
two [SEP] tokens and concatenated to the question.
Finally, following the input format of BERT, the
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question is preceded by [CLS] to form the hybrid
question-schema serialization

X =[CLS],Q, [SEP], [T], t1, [C], c11 . . . , c1|T1 |,

[T], t2, [C], c21, . . . , [C], cN|TN |, [SEP].

X is encoded with BERT, followed by a bi-
directional LSTM to form the base encoding hX ∈

R|X|×n. The question segment of hX is passed
through another bi-LSTM to obtain the question en-
coding hQ ∈ R

|Q|×n. Each table/field is represented
using the slice of hX corresponding to its special
token [T]/[C].

Meta-data Features We train dense look-up fea-
tures to represent meta-data of the schema. This
includes whether a field is a primary key ( f pri ∈

R2×n), whether the field appears in a foreign key
pair ( f for ∈ R

2×n) and the data type of the field
( f type ∈ R

|τ|×n). These meta-data features are fused
with the base encoding of the schema component
via a projection layer g to obtain the following en-
coding output:

hti
S = g([hp

X; 0; 0; 0]), (1)

hci j
S = g([hq

X; f u
pri; f v

for; f w
type]) (2)

= ReLU(Wg[hm
X; f u

pri; f v
for; f w

type] + bg)

hS = [ht1 , . . . , ht|T | , hc11 , . . . , hcN |TN |] ∈ R|S|×n,

(3)

where p is the index of [T] associated with table ti
in X and q is the index of [C] associated with field
ci j in X. u, v and w are feature indices indicating the
properties of ci j. [hm

X; f u
pri; f v

for; f w
type] ∈ R4n is the

concatenation of the four vectors. The meta-data
features are specific to fields and the table represen-
tations are fused with place-holder 0 vectors.

2.3 Bridging
Modeling only the table/field names and their rela-
tions is not always enough to capture the semantics
of the schema and its dependencies with the ques-
tion. Consider the example in Figure 2, Property_-
Type_Code is a general expression not explicitly
mentioned in the question and without access to
the set of possible field values, it is difficult to
associate “houses” and “apartments” with it. To
resolve this problem, we make use of anchor text
to link value mentions in the question with the cor-
responding DB fields. We perform fuzzy string
match between Q and the picklist of each field in
the DB. The matched field values (anchor texts)

are inserted into the question-schema representa-
tion X, succeeding the corresponding field names
and separated by the special token [V]. If multiple
values were matched for one field, we concatenate
all of them in matching order (Figure 2). If a ques-
tion mention is matched with values in multiple
fields. We add all matches and let the model learn
to resolve ambiguity1.

The anchor texts provide additional lexical clues
for BERT to identify the corresponding mention in
Q. And we name this mechanism “bridging”.

2.4 Decoder
We use an LSTM-based pointer-generator (See
et al., 2017) with multi-head attention (Vaswani
et al., 2017) as the decoder. The decoder starts
from the final state of the question encoder. At
each step, the decoder performs one of the follow-
ing actions: generating a token from the vocabulary
V, copying a token from the question Q or copying
a schema component from S.

Mathematically, at each step t, given the decoder
state st and the encoder representation [hQ; hS ] ∈
R(|Q|+|S|)×n, we compute the multi-head attention as
defined in Vaswani et al. (2017):

e(h)
t j =

stW
(h)
U (h jW

(h)
V )>

√
n/H

; α(h)
t j = softmax

j

{
e(h)

t j

}
(4)

z(h)
t =

|Q|+|S|∑
j=1

α(h)
t j (h jW

(h)
V ); zt =

[
z(1)

t ; · · · ; z(H)
t

]
, (5)

where h ∈ [1, . . . ,H] is the head number and H is
the total number of heads.

The scalar probability of generating fromV and
the output distribution are

pt
gen = sigmoid(stW s

gen + ztWz
gen + bgen) (6)

pt
out = pt

genPV(yt) + (1 − pt
gen)

∑
j:X̃ j=yt

α(H)
t j , (7)

where PV(yt) is the softmax LSTM output distri-
bution and X̃ is the length-(|Q| + |S|) sequence that
consists of only the question words and special
tokens [T] and [C] from X. We use the attention
weights of the last head to compute the pointing
distribution2.

We extend the input state to the LSTM decoder
using selective read proposed by Gu et al. (2016).

1This approach may over-match anchor texts from fields
other than those in the correct SQL query. Yet keeping the
additional matches in X may provide useful information rather
than noise. We plan to verify this in future work.

2In practice we find this approach better than using just
one head or using the average of multiple head weights.
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Show   names   of   properties   that   are   either   houses   or   apartments
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Figure 2: The BRIDGE encoder. The two phrases “houses” and “apartments” in the input question both matched
to two DB fields. The matched values are appended to the corresponding field names in the hybrid sequence.

The technical details of this extension can be found
in §A.2.

2.5 Schema-Consistency Guided Decoding
We propose a simple pruning strategy for sequence
decoders, based on the fact that the DB fields ap-
peared in each SQL clause must only come from
the tables in the FROM clause.

Generating SQL Clauses in Execution Order
To this end we rearrange the clauses of each SQL
query in the training set into the standard DB ex-
ecution order (Rob and Coronel, 1995) shown in
table 1. For example, the SQL SELECT COUNT(*)
FROM Properties is converted to FROM Properties
SELECT COUNT(*)3. We can show that all SQL
queries with clauses in execution order satisfy the
following lemma

Lemma 1 Let Yexec be a SQL query with clauses
arranged in execution order, then any table field in
Yexec must appear after the table.

As a result, we adopt a binary attention mask ξ

α̃(H)
t = α(H)

t · ξ (8)

which initially has entries corresponding to all
fields set to 0. Once a table ti is decoded, we set
all entries in ξ corresponding to {ci1, . . . , ci|Ti |} to 1.
This allows the decoder to only search in the space
specified by the condition in Lemma 1 with little
overhead in decoding speed.

3More complex examples can be found in Table A1.

Written: SELECT FROM WHERE GROUPBY HAVING ORDERBY LIMIT

Exec: FROM WHERE GROUPBY HAVING SELECT ORDERBY LIMIT

Table 1: The written order vs. execution order of all
SQL clauses appeared in Spider.

3 Related Work

Text-to-SQL Semantic Parsing Recently the
field has witnessed a re-surge of interest for text-
to-SQL semantic parsing (Androutsopoulos et al.,
1995), by virtue of the newly released large-scale
datasets (Zhong et al., 2017; Yu et al., 2018; Zhang
et al., 2019) and matured neural network modeling
tools (Vaswani et al., 2017; Shaw et al., 2018; De-
vlin et al., 2019). While existing models have sur-
passed human performance on benchmarks consist-
ing of single-table and simple SQL queries (Hwang
et al., 2019; Lyu et al., 2020; He et al., 2019a),
ample space of improvement still remains for the
Spider benchmark which consists of relational DBs
and complex SQL queries4.

Recent architectures proposed for this problem
show increasing complexity in both the encoder
and the decoder (Guo et al., 2019; Wang et al.,
2019; Choi et al., 2020). Bogin et al. (2019a,b) pro-
posed to encode relational DB schema as a graph
and also use the graph structure to guide decod-
ing. Guo et al. (2019) proposes schema-linking and
SemQL, an intermediate SQL representation cus-
tomized for questions in the Spider dataset which

4https://yale-lily.github.io/spider

https://yale-lily.github.io/spider


4874

was synthesized via a tree-based decoder. Wang
et al. (2019) proposes RAT-SQL, a unified graph
encoding mechanism which effectively covers rela-
tions in the schema graph and its linking with the
question. The overall architecture of RAT-SQL is
deep, consisting of 8 relational self-attention layers
on top of BERT-large.

In comparison, BRIDGE uses BERT combined
with minimal subsequent layers. It uses a sim-
ple sequence decoder with search space-pruning
heuristics and applies little abstraction to the SQL
surface form. Its encoding architecture took inspira-
tion from the table-aware BERT encoder proposed
by Hwang et al. (2019), which is very effective for
WikiSQL but has not been successful adapted to
Spider. Yavuz et al. (2018) uses question-value
matches to achieve high-precision condition predic-
tions on WikiSQL. Shaw et al. (2019) also shows
that value information is critical to the cross-DB
semantic parsing tasks, yet the paper reported neg-
ative results augmenting an GNN encoder with
BERT and the overall model performance is much
below state-of-the-art. While previous work such
as (Guo et al., 2019; Wang et al., 2019; Yin et al.,
2020) use feature embeddings or relational atten-
tion layers to explicitly model schema linking,
BRIDGE models the linking implicitly with BERT
and lexical anchors.

An earlier version of this model is implemented
within the Photon NLIDB model (Zeng et al.,
2020), with up to one anchor text per field and
an inferior anchor text matching algorithm.

Joint Text-Table Representation and Pre-
training BRIDGE is a general framework for
jointly representing question, relational DB schema
and DB values, and has the potential to be applied
to a wide range of problems that requires joint
textual-tabular data understanding. Recently, Yin
et al. (2020) proposes TaBERT, an LM for jointly
representing textual and tabular data pre-trained
over millions of web tables. Similarly, Herzig et al.
(2020) proposes TaPas, a pretrained text-table LM
that supports arithmetic operations for weakly su-
pervised table QA. Both TaBERT and TaPaSand
supports arit focus on representing text with a
single table. TaBERT was applied to Spider by en-
coding each table individually and modeling cross-
table correlation through hierarchical attention. In
comparison, BRIDGE serialized the relational DB
schema and uses BERT to model cross-table de-
pendencies. TaBERT adopts the “content snapshot”

# Q # SQL #DB

Train 8,695 4,730 140
Dev 1,034 564 20
Test 2,147 – 40

Table 2: Spider Dataset Statistics

mechanism which retrieves rows from a table most
similar to the input question and jointly encodes
them with the table header. Compared to BRIDGE
which uses the anchor texts, table rows are not al-
ways available if DB content access is restricted.
Furthermore, anchor texts provide more focused
signals that link the text and the DB schema.

4 Experiment Setup

4.1 Dataset
We evaluate BRIDGE using Spider (Yu et al.,
2018), a large-scale, human annotated, cross-
database text-to-SQL benchmark5. Table 2 shows
the statistics of its train/dev/test splits. The test
set is hidden. We run hyperparameter search and
analysis on the dev set and report the test set per-
formance only using our best approach.

4.2 Evaluation Metrics
We report the official evaluation metrics proposed
by the Spider team.

Exact Set Match (E-SM) This metrics evaluates
the structural correctness of the predicted SQL
by checking the orderless set match of each SQL
clause in the predicted query w.r.t. the ground truth.
It ignores errors in the predicted values.

Execution Accuracy (EA) This metrics checks
if the predicted SQL is executable on the target
DB and if the execution results of match those of
the ground truth. It is a performance upper bound
as two SQL queries with different semantics can
execute to the same results on a DB.

4.3 Implementation Details
Anchor Text Selection Given a DB, we compute
the pickist of each field using the official DB files.
We designed a fuzzy matching algorithm to match
a question to possible value mentions in the DB
(described in detail in §A.3). We include up to
k matches per field, and break ties by taking the
longer match. We exclude all number matches as

5To show model generalization we also repport the evalua-
tion results on WikiSQL (Zhong et al., 2017) in § A.5.
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Figure 3: Distribution of # non-numeric values in the
ground truth SQL queries on Spider dev set.

a number mention in the question often does not
correspond to a DB cell (e.g. “shoes lower than
$50”) or cannot effectively discriminate between
different fields. Figure 3 shows the distribution
of non-numeric values in the ground truth SQL
queries on Spider dev set. 33% of the examples
contain one or more non-numeric values in the
ground truth queries and can potentially benefit
from the bridging mechanism.

Data Repair The original Spider dataset con-
tains errors in both the example files and database
files. We manually corrected some errors in the
train and dev examples. For comparison with oth-
ers in §5.1, we report metrics using the official
dev/test sets. For our own ablation study and analy-
sis, we report metrics using the corrected dev files.
We also use a high-precision heuristics to identify
missing foreign key pairs in the databases and com-
bine them with the released ones during training
and inference: if two fields of different tables have
identical name and one of them is a primary key,
we count them as a foreign key pair6.

Training We train our model using cross-entropy
loss. We use Adam-SGD (Kingma and Ba, 2015)
with default parameters and a mini-batch size of
32. We use the uncased BERT-base model from
the Huggingface’s transformer library (Wolf et al.,
2019). We set all LSTMs to 1-layer and set the hid-
den state dimension n = 512. We train a maximum
of 50,000 steps and set the learning rate to 5e − 4
in the first 5,000 iterations and linearly shrink it
to 0. We fine-tune BERT with a fine-tuning rate
linearly increasing from 3e − 5 to 8e − 5 in the first
5,000 iterations and linearly decaying to 0. We
randomly permute the table order in a DB schema
and drop one table which does not appear in the
ground truth with probability 0.3 in every training
step. The training time of our model on a Tesla

6We exclude common field names such as “name”, “id”
and “code” in this procedure.

Model Dev Test

Global-GNN (Bogin et al., 2019b) ♠ 52.7 47.4
EditSQL + BERT (Zhang et al., 2019) 57.6 53.4
GNN + Bertrand-DR (Kelkar et al., 2020) 57.9 54.6
IRNet + BERT (Guo et al., 2019) 61.9 54.7
RAT-SQL v2 ♠ (Wang et al., 2019) 62.7 57.2
RYANSQL + BERTL (Choi et al., 2020) 66.6 58.2
RYANSQL v2 + BERTL � 70.6 60.6
RAT-SQL v3 + BERTL ♠ (Wang et al., 2019) 69.7 65.6

BRIDGE (k = 1) (ours) ♠ ♥ 65.3 –
BRIDGE (k = 2) (ours) ♠ ♥ 65.5 59.2

Table 3: Exact set match on the Spider dev and test
sets, compared to the other top-performing approaches
on the leaderboard as of June 1st, 2020. The test set
results were issued by the Spider team. BERTL denotes
BERTLARGE. � denotes approaches without publication
reference. ♠ denotes approaches using DB content. ♥
denote approaches that output executable SQL queries.

V100-SXM2-16GB GPU is approximately 33h (in-
cluding intermediate results verification time).

Decoding The decoder uses a generation vocab-
ulary consisting of 70 SQL keywords and reserved
tokens, plus the 10 digits to generate numbers not
explicitly mentioned in the question (e.g. “first”,
”second”, “youngest” etc.). We use a beam size of
256 for leaderboard evaluation. All other exper-
iments uses a beam size of 16. We use schema-
consistency guided decoding during inference only.
It cannot guarantee schema consistency7 and we
run a static SQL correctness check on the beam
search output to eliminate predictions that are ei-
ther syntactically incorrect or violates schema con-
sistency8 If no predictions in the beam satisfy the
two criteria, we output a default SQL query which
count the number of entries in the first table.

5 Results

5.1 End-to-end Performance Evaluation

Table 3 shows the E-SM accuracy of BRIDGE
compared to other approaches ranking at the
top of the Spider leaderboard. BRIDGE per-

7Consider the example SQL query shown in Table A2
which satisfies the condition of Lemma 1, the table VOTING_-
RECORD only appears in the first sub-query, and the field
VOTING_RECORD.PRESIDENT_Vote in the second sub-query is out
of scope.

8Prior work such as (Wang et al., 2018) performs the more
aggressive execution-guided decoding. However, it is diffi-
cult to apply this approach to complex SQL queries (Zhong
et al., 2017). We build a static SQL analyzer on top of
the Mozilla SQL Parser (https://github.com/mozilla/
moz-sql-parser). Our static checking approach handles
complex SQL queries and avoids DB execution overhead.

https://github.com/mozilla/moz-sql-parser
https://github.com/mozilla/moz-sql-parser
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forms very competitively, significantly outperform-
ing most of recently proposed architectures with
more complicated, task-specific layers (Global-
GNN, EditSQL+BERT, IRNet+BERT, RAT-SQL
v2, RYANSQL+BERTL). We find changing k from
1 to 2 yield marginal performance improvement
since only 77 SQL queries in the dev set contains
more than one textual values (Figure 3). In addi-
tion, BRIDGE generates executable SQL queries
by copying values from the input question while
most existing models do not. As of June 1st, 2020,
BRIDGE ranks top-1 on the Spider leaderboard by
execution accuracy.

The two approaches significantly better than
BRIDGE by E-SM are RYANSQL v2+BERTL and
RAT-SQL v3+BERTL. We further look at the per-
formance comparison with RAT-SQL v3+BERTL

across different difficulty level in Table 4. Both
model achieves > 80% E-SM accuracy in the easy
category, but BRIDGE shows more significant over-
fitting. BRIDGE also underperforms RAT-SQL
v3+BERTL in the other three categories, with con-
siderable gaps in medium and hard.

As descirbed in §3, RAT-SQL v3 uses very differ-
ent encoder and decoder architectures compared to
BRIDGE and it is difficult to conduct a direct com-
parison without a model ablation9. We hypothesize
that the most critical difference that leads to the per-
formance gap is in their encoding schemes. RAT-
SQL v3 explicitly models the question-schema-
value matching via a graph and the matching condi-
tion (full-word match, partial match, etc.) are used
to label the graph edge. BRIDGE represents the
same information in a tagged sequence and uses
fine-tuned BERT to implicitly obtain such mapping.
While the anchor text selection algorithm (§4.3) has
taken into account string variations, BERT may not
be able to capture the linking when string varia-
tions exist – it has not seen tabular input during
pre-training. The tokenization scheme adopted by
BERT and other pre-trained LMs (e.g. GPT-2) can-
not effectively capture partial string matches in a
novel input (e.g. “cats” and “cat” are two different
words in the vocabularies of BERT and GPT-2). We
think recent works on text-table joint pretraining
have the potential to overcome this problem (Yin
et al., 2020; Herzig et al., 2020).

RAT-SQL v3 uses BERTLARGE which has a
significantly larger number of parameters than

9RAT-SQL v3 entered the leaderboard within a month of
EMNLP deadline and hasn’t released its source code.

Model Easy Medium Hard Ex-Hard All

count 250 440 174 170 1034

Dev
BRIDGE (k = 2) ♠ 88.4 68 51.7 39.4 65.5
RAT-SQL v3+BL ♠ 86.4 73.6 62.1 42.9 69.7
Test
BRIDGE (k = 2) ♠ 80 62 51 35.6 59.2
IRNet+B 77.2 58.7 48.1 25.3 54.7
RAT-SQL v3+BL ♠ 83.0 71.3 58.3 38.4 65.6

Table 4: E-SM broken by hardness level compared
to other top-performing approaches on Spider leader-
board.

Model Exact Set Match (%)
Mean Max

BRIDGE (k = 2) 65.8 ± 0.8 66.9
- SC-guided decoding 65.4 ± 0.7 66.3 (-0.6)
- static SQL check 64.8 ± 0.9 65.9 (-1.0)
- execution order 64.2 ± 0.1 64.3 (-2.6)
- table shuffle & drop 63.9 ± 0.3 64.3 (-2.6)
- anchor text 63.3 ± 0.6 63.9 (-3.0)
- BERT 17.7 ± 0.7 18.3 (-48.6)

Table 5: BRIDGE ablations on the dev set. We report
the exact set match accuracy of each model variations
averaged over 3 runs.

BRIDGE. While we hypothetically attribute some
of the performance gap to the difference in model
sizes, preliminary experiments of BRIDGE +

BERTLARGE offers only a small amount of improve-
ment (66.9→ 67.9 on the cleaned dev set).

5.2 Ablation Study

We perform a thorough ablation study to show the
contribution of each BRIDGE sub-component (Ta-
ble 5). Overall, all sub-components significantly
contributed to the model performance. The de-
coding search space pruning strategies we intro-
duced (including generation in execution order,
schema-consistency guided decoding and static
SQL correctness check) are effective, with absolute
E-SM improvements ranging from 0.6% to 2.6%.
However, encoding techniques for bridging tex-
tual and tabular input contribute more. Especially,
adding anchor texts results in an absolute E-SM im-
provement of 3%. A further comparison between
BRIDGE with and without anchor texts (Table A3)
shows that anchor text augmentation improves the
model performance at all hardness levels, espe-
cially in the hard and extra-hard categories. Shuf-
fling and randomly dropping non-ground-truth ta-
bles during training also significantly helps our ap-
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Figure 4: BRIDGE error type counts.

proach, as it increases the diversity of DB schema
seen by the model and reduces overfitting to a par-
ticular table arrangement.

Moreover, BERT is critical to the performance
of BRIDGE, magnifying performance of the base
model by more than three folds. This is con-
siderably larger than the improvement prior ap-
proaches have obtained from adding BERT. Con-
sider the performances of RAT-SQL v2 and RAT-
SQL v2+BERTL in Table 3, the improvement with
BERTL is 7%. This shows that simply adding
BERT to existing approaches results in significant
redundancy in the model architecture. We perform
a qualitative attention analysis in §A.6 to show that
after fine-tuning, the BERT layers effectively cap-
ture the linking between question mentions and the
anchor texts, as well as the relational DB structures.

5.3 Error Analysis

We randomly sampled 50 dev set examples for
which the best BRIDGE model failed to produce a
prediction that matches the ground truth and man-
ually categorized the errors. Each example is as-
signed to only the category it fits most.

Error Types Figure 4 shows the number of ex-
amples in each category. 24% of the examined
predictions are false negatives. Among them, 7
are semantically equivalent to the ground truths;
4 contain GROUP BY keys different but equivalent
to those of the ground truth (e.g. GROUY BY car_-
models.name vs. GROUP BY car_models.id); 1 has
the wrong ground truth annotation. Among the true
negatives, 11 have SQL structures completely devi-
ated from the ground truth. 22 have errors that can
be pinpointed to specific clauses: FROM (8), WHERE
(7), SELECT (5), GROUP BY (1), ORDER BY (1). 4 have
errors in the operators: 3 in the aggregation oper-
ator and 1 in the comparison operator. 1 example
has non-grammatical natural language question.

Error Causes A prominent cause of errors for
BRIDGE is irregular design and naming in the DB
schema. Table 6 shows 3 examples where BRIDGE
made a wrong prediction from the medium hard-
ness level in the dev set. In the second exam-
ple, the DB contains a field named “hand” which
stores information that indicates whether a tennis
player is right-handed or left-handed. While “hand”
is already a rarely seen field name (comparing
to “name”, “address” etc.), the problem is wors-
ened by the fact that the field values are acronyms
which bypassed the anchor text match. Similarly,
in the third example, BRIDGE fails to detect that
“highschooler”, normally written as “high schooler”
is a synonym of student. Occasionally, however,
BRIDGE still makes mistakes w.r.t. schema com-
ponents explicitly mentioned in the question, as
shown by the first example. Addressing such error
cases could further improve its performance.

Sample Error Cases Table 6 shows examples of
errors made by BRIDGE on the Spider dev set, all
selected from the medium hardness level. The first
example represents a type of errors that have a sur-
prisingly high occurrence in the dev set. In this case
the input question is unambiguous but the model
simply missed seemingly obvious information. In
the shown example while “released years” were ex-
plicitly mentioned in the question, the model still
predicts the “Age” field instead, which is related
to the tail of the question. The second example
illustrates a DB with a rare relation “left-handed”
represented with an obscure table name “hand”. In-
terpreting this column requires background knowl-
edge about the table. The example is made even
harder given that the corresponding value “left” is
denoted with only the first letter “L” in the table.
The third example shows a complex case where
the graph structure of the DB is critical for under-
standing the question. Here instead of predicting
the table storing all student records, BRIDGE pre-
dicted the table storing the “friendship” relation-
ship among students.

5.4 Performance by Database

We further compute the E-SM accuracy of
BRIDGE over different DBs in the Spider dev set.
Figure 5 shows drastic performance differences
across DBs. While BRIDGE achieves near per-
fect score on some, the performance is only 30%-
40% on the others. The performance does not al-
ways negatively correlates with the schema size.
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What are the names and release years for all the songs of the youngest singer? concert_singer

7 SELECT Song_Name, Age FROM singer ORDER BY Age LIMIT 1

3 SELECT song_name, song_release_year FROM singer ORDER BY age LIMIT 1

What are the full names of all left handed players, in order of birth date? WTA_1

7 SELECT first_name, last_name FROM players ORDER BY birth_date

3 SELECT first_name, last_name FROM players WHERE hand = ’L’ ORDER BY birth_date

What are the names of students who have 2 or more likes? network_1

7 SELECT Likes.student_id FROM Likes JOIN Friend ON Likes.student_id = Friend.student_id

GROUP BY Likes.student_id HAVING COUNT(*) >= 2

3 SELECT Highschooler.name FROM Likes JOIN Highschooler ON Likes.student_id =

Highschooler.id GROUP BY Likes.student_id HAVING count(*) >= 2

Table 6: Errors cases of BRIDGE on the Spider dev set. The samples were randomly selected from the medium
hardness level. 7denotes the wrong predictions made by BRIDGE and 3denotes the ground truths.

Figure 5: E-SM accuracy of BRIDGE by DB in Spider
dev set. From top to bottom, the DBs are sorted by their
schema sizes from small to large.

We hypothesize that the model scores better on
DB schema similar to those seen during training
and better characterization of the “similarity” here
could help transfer learning.

6 Discussion

Anchor Selection BRIDGE adopts simple string
matching for anchor text selection. In our exper-
iments, improving anchor text selection accuracy
significantly improves the end-to-end accuracy. Ex-
tending anchor text matching to cases beyond sim-
ple string match (e.g. “LA”→“Los Angeles”) is
a future direction. Furthermore, this step can be
learned either independently or jointly with the text-
to-SQL objective. Currently BRIDGE ignores num-
ber mentions. We may introduce features which in-
dicate a specific number in the question falls within
the value range of a specific column.

Input Size As BRIDGE serializes all inputs into
a sequence with special tags, a fair concern is that

the input would be too long for large relational
DBs. We believe this can be addressed with recent
architecture advancements in transformers (Beltagy
et al., 2020), which have scaled up the attention
mechanism to model very long sequences.

Relation Encoding BRIDGE fuses DB schema
meta data features to each individual table field
representations. This mechanism is not as strong
as directly modeling the original graph structure. It
works well in Spider, where the foreign key pairs of-
ten have exactly the same names. We consider regu-
larizing specific attention heads to capture DB con-
nections (Strubell et al., 2018) a promising way to
model the graph structure of relational DBs within
the BRIDGE framework without introducing (a lot
of) additional parameters.

7 Conclusion

We present BRIDGE, a powerful sequential archi-
tecture for modeling dependencies between natural
language question and relational DBs in cross-DB
semantic parsing. BRIDGE serializes the question
and DB schema into a tagged sequence and max-
imally utilizes pre-trained LMs such as BERT to
capture the linking between text mentions and the
DB schema components. It uses anchor texts to fur-
ther improve the alignment between the two cross-
modal inputs. Combined with a simple sequential
pointer-generator decoder with schema-consistency
driven search space pruning, BRIDGE attained
state-of-the-art performance on Spider. In the fu-
ture, we plan to study the application of BRIDGE
and its extensions to other text-table related tasks
such as fact checking and weakly supervised se-
mantic parsing.
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A Appendix

A.1 Examples of SQL queries with clauses
arranged in execution order

We show more examples of complex SQL queries
with their clauses arranged in written order vs. exe-
cution order in Table A1.

A.2 Selective read decoder extension
The selective read operation was introduced by Gu
et al. (2016). It extends the input state to the de-
coder LSTM with the corresponding encoder hid-
den states of the tokens being copied. This way the
decoder was provided information on which part
of the input has been copied.

Specically, we modified the input state of our
decoder LSTM to the following:

yt = [et−1; ζt−1] ∈ R2n, (9)

where et−1 ∈ R
n is either the embedding of a gener-

ated vocabulary token or a learned vector indicating
if a table, field or question token is copied in step
t − 1. ζt−1 ∈ R

n is the selective read vector, which
is a weighted sum of the encoder hidden states
corresponding to the tokens copied in step t − 1:

ζ(yt−1) =

|Q|+|S|∑
j=1

ρt−1, j h j; ρt−1, j =

 1
K
α(H)

t−1, j, X̃ j = yt−1

0 otherwise
(10)

Here K =
∑

j:X̃ j=yt−1
α(H)

t−1, j is a normalization term
considering there may be multiple positions equals
to yt−1 in X̃.

A.3 Anchor text selection
We convert the question and field values into lower
cased character sequences and compute the longest
sub-sequence match with heuristically determined
matching boundaries. For example, the sentence
“how many students keep cats as pets?” matches
with the cell value “cat” (sc) and the matched sub-
string is “cat” (sm). We further search the question
starting from the start and end character indices i, j
of sm in the question to make sure that word bound-
aries can be detected within i−2 to j + 2, otherwise
the match is invalidated. This excludes matches
which are sub-strings of the question words, e.g.
“cat” vs. “category”. Denoting matched whole-
word phrase in the question as sq, we define the
question match score and cell match score as

βq = |sm|/|sq| (11)

βc = |sc|/|sq| (12)
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Written: SELECT rid FROM routes WHERE dst_apid IN (SELECT apid FROM airports WHERE country =

’United States’) AND src_apid IN (SELECT apid FROM airports WHERE country = ’United States’)

Exec: FROM routes WHERE dst_apid IN (FROM airports WHERE country = ’United States’ SELECT

apid) AND src_apid IN (FROM airports WHERE country = ’United States’ SELECT apid) SELECT rid

Written: SELECT t3.name FROM publication_keyword AS t4 JOIN keyword AS t1 ON t4.kid = t1.kid

JOIN publication AS t2 ON t2.pid = t4.pid JOIN journal AS t3 ON t2.jid = t3.jid WHERE

t1.keyword = "Relational Database" GROUP BY t3.name HAVING COUNT(DISTINCT t2.title) = 60

Exec: FROM publication_keyword AS t4 JOIN keyword AS t1 ON t4.kid = t1.kid JOIN publication

AS t2 ON t2.pid = t4.pid JOIN journal AS t3 ON t2.jid = t3.jid WHERE t1.keyword =

"Relational Database" GROUP BY t3.name HAVING COUNT(DISTINCT t2.title) = 60 SELECT t3.name

Written: SELECT COUNT(DISTINCT state) FROM college WHERE enr < (SELECT AVG(enr) FROM college)
Exec: FROM college WHERE enr < (FROM college SELECT AVG(enr)) SELECT COUNT(DISTINCT state)

Written: SELECT DISTINCT T1.LName FROM STUDENT AS T1 JOIN VOTING_RECORD AS T2 ON T1.StuID =

PRESIDENT_Vote EXCEPT SELECT DISTINCT LName FROM STUDENT WHERE Advisor = "2192"

Exec: FROM STUDENT AS T1 JOIN VOTING_RECORD AS T2 ON T1.StuID = PRESIDENT_Vote SELECT

DISTINCT T1.LName EXCEPT FROM STUDENT WHERE Advisor = 2192 SELECT DISTINCT LName

Table A1: Examples of complex SQL queries with clauses in the normal order and the DB execution order.

FROM STUDENT JOIN VOTING_RECORD ON STUDENT.StuID = VOTING_RECORD.PRESIDENT_Vote SELECT

DISTINCT STUDENT.LName EXCEPTFROM STUDENT WHERE STUDENT.Advisor = 2192 SELECT DISTINCT

VOTING_RECORD.PRESIDENT_Vote

Table A2: An example sequence satisfies the condition of Lemma 1 but violates schema consistency. Here the field
VOTING_RECORD.PRESIDENT_Vote in the second sub-query is out of scope.

We define a coarse accuracy measurement to
tune the question match score threshold θq and the
cell match threshold θc. Namely, given the list of
matched anchor texts P obtained using the afore-
mentioned procedure and the list of textual values
G extracted from the ground truth SQL query, when
compute the percentage of anchor texts appeared
in G and the percentage of values in G that ap-
peared in P as approximated precision (p′) and
recall (r′). Note that this metrics does not evaluate
if the matched anchor texts are associated with the
correct field.

For k = 2, we set θq = 0.5 and θc = 0.8. On
the training set, the resulting p′ = 73.7, r′ = 74.9.
25.7% examples have at least one anchor text match
with 1.89 average number of matches per example
among them. On the dev set, the resulting p′ =

90.0, r′ = 92.2. 30.9% examples have at least one
match with 1.73 average number of matches per
example among them. The training set metrics are
lower as some training databases do not have DB
content files.

Model Easy Medium Hard Ex-Hard All

count 250 440 174 170 1034

BRIDGE (k = 2) 88.7 68.4 54 44 66.9
-value augmentation 85.5 66.6 49.4 39.8 63.9

Table A3: Comparison between BRIDGE and
BRIDGE without value augmentation on our manually
corrected dev set.

A.4 Anchor text ablation by hardness level

Table A3 shows the E-SM comparison between
models with and without anchor text augmentation
at different hardness level. Anchor text augmenta-
tion improves performance at all hardness levels,
with the improvement especially significant in the
hard and extra-hard categories.

A.5 WikiSQL Experiments

We test BRIDGE on WikiSQL and report the com-
parison to other top-performing entries on the
leaderboard in Table A4. BRIDGE achieves SOTA
performance on WikiSQL, surpassing the widely
cited SQLova model (Hwang et al., 2019) by a sig-
nificant margin. Among the baselines shown in
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Model Dev Test
EM EX EM EX

SQLova (Hwang et al., 2019) 81.6 87.2 80.7 86.2
X-SQL (He et al., 2019b) 83.8 89.5 83.3 88.7
HydraNet (Lyu et al., 2020) 83.6 89.1 83.8 89.2
BRIDGE +BL (k = 2) ♠ 85.1 91.1 84.8 90.4

SQLova+EG (Hwang et al., 2019) 84.2 90.2 83.6 89.6
BRIDGE +BL (k = 2)+EG ♠ 86.1 92.5 85.8 91.7
X-SQL+EG (He et al., 2019b) 86.2 92.3 86.0 91.8
HydraNet+EG (Lyu et al., 2020) 86.6 92.4 86.5 92.2

Table A4: Comparison between BRIDGE and other
top-performing models on the WikiSQL leaderboard
as of August 20, 2020. ♠ denotes approaches using
DB content. +EG denotes approaches using execution-
guided decoding.

Table A4, SQLova is the one that’s strictly compa-
rable to BRIDGE as both use BERT-large-uncased.
Hydra-Net uses RoBERTa-Large (Liu et al., 2019a)
and X-SQL uses MT-DNN (Liu et al., 2019b).
Leveraging table content (anchor texts) enables
BRIDGE to be the best-performing model with-
out execution-guided decoding (Wang et al., 2018).
However, it seems to also reduce the degree the
model can benefit from it (after adding execution-
guided decoding, the improvement from BRIDGE
is significantly less than the other models).

A.6 Visualizing fine-turned BERT attention
of BRIDGE

We visualize attention in the fine-tuned BERT lay-
ers of BRIDGE to qualitatively evaluate if the
model functions as an effective text-DB encoder as
we expect. We use the BERTViz library10 devel-
oped by Vig (2019).

We perform the analysis on the smallest DB in
the Spider dev set to ensure the attention graphs are
readable. This DB consists of two tables, Poker_-
Player and People that store information of poker
players and their match results. While the BERT
attention is a complicated computation graph con-
sisting of 12 layers and 12 heads, we were able
to identify prominent patterns in a subset of the
layers.

First, we examine if anchor texts indeed have the
effect of bridging information across the textual and
tabular segments. The example question we use is
“show names of people whose nationality is not Rus-
sia” and “Russia” in the field People.Nationality
is identified as the anchor text. As show in Fig-

10https://github.com/jessevig/bertviz

ure A1 and Figure A2, we find strong connection
between the anchor text and their corresponding
question mention in layer 2, 4, 5, 10 and 11.

We further notice that the layers effectively cap-
tures the relational DB structure. As shown in Fig-
ure A3 and Figure A4, we found attention patterns
in layer 5 that connect tables with their primary
keys and foreign key pairs.

We notice that all interpretable attention con-
nections are between lexical items in the input se-
quence, not including the special tokens ([T], [C],
[V]). This is somewhat counter-intuitive as the sub-
sequent layers of BRIDGE use the special tokens
to represent each schema component. We hence
examined attention over the special tokens (Fig-
ure A5) and found that they function as bindings
of tokens in the table names and field names. The
pattern is especially visible in layer 1. As shown
in Figure A5, each token in the table name “poker
player” has high attention to the corresponding
[T]. Similarly, each token in the field name “poker
player ID” has high attention to the corresponding
[C]. We hypothesize that this way the special to-
kens function similarly as the cell pooling layers
proposed in TaBERT (Yin et al., 2020).

https://github.com/jessevig/bertviz
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(a) Layer = 2 (b) Layer = 4 (c) Layer = 5

Figure A1: Visualization of attention to anchor text “Russia” from other words. In the shown layers, weights from
the textual mention “Russia” is significantly higher than the other tokens.
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(a) Layer = 10
(b) Layer = 11

Figure A2: Visualization of attention to anchor text “Russia” from other words. Continue from Figure A1.
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(a) Table Poker_Player
(b) Table People

Figure A3: Visualization of attention in layer 5 from tables to their primary keys. In Figure A3b, the table name
People has high attention weights to Poker_Player.People_ID, a foreign key referring to its primary key People.People_ID.
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(a) Poker_Player.People_ID→ People.People_ID (b) People.People_ID→ Poker_Player.People_ID

Figure A4: Visualization of attention in layer 5 between a pair of foreign keys.
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(a) (b)

Figure A5: Visualization of attention over special tokens [T] and [C] in layer 1.


