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Abstract
The current state-of-the-art task-oriented se-
mantic parsing models use BERT or RoBERTa
as pretrained encoders; these models have
huge memory footprints. This poses a chal-
lenge to their deployment for voice assis-
tants such as Amazon Alexa and Google As-
sistant on edge devices with limited mem-
ory budgets. We propose to learn compo-
sitional code embeddings to greatly reduce
the sizes of BERT-base and RoBERTa-base.
We also apply the technique to DistilBERT,
ALBERT-base, and ALBERT-large, three al-
ready compressed BERT variants which at-
tain similar state-of-the-art performances on
semantic parsing with much smaller model
sizes. We observe 95.15% ∼ 98.46% embed-
ding compression rates and 20.47% ∼ 34.22%
encoder compression rates, while preserving
>97.5% semantic parsing performances. We
provide the recipe for training and analyze the
trade-off between code embedding sizes and
downstream performances.

1 Introduction

Conversational virtual assistants, such as Amazon
Alexa, Google Home, and Apple Siri, have become
increasingly popular in recent times. These systems
can process queries from users and perform tasks
such as playing music and finding locations. A
core component in these systems is a task-oriented
semantic parsing model that maps natural language
expressions to structured representations contain-
ing intents and slots that describe the task to per-
form. For example, the expression Can you play
some songs by Coldplay? may be converted to
Intent: PlaySong, Artist: Coldplay, and the expres-
sion Turn off the bedroom light may be converted
to Intent: TurnOffLight, Device: bedroom.

Task-oriented semantic parsing is traditionally
approached as a joint intent classification and slot

∗Equal contribution, alphabetical order

filling task. Kamath and Das (2018) provide a
comprehensive survey of models proposed to solve
this task. Researchers have developed semantic
parsers based on Recurrent Neural Networks (Mes-
nil et al., 2013; Liu and Lane, 2016; Hakkani-Tür
et al., 2016), Convolutional Neural Networks (Xu
and Sarikaya, 2013; Kim, 2014), Recursive Neural
Networks (Guo et al., 2014), Capsule Networks
(Sabour et al., 2017; Zhang et al., 2019), and slot-
gated attention-based models (Goo et al., 2018).

The current state-of-the-art models on SNIPS
(Coucke et al., 2018), ATIS (Price, 1990), and Face-
book TOP (Gupta et al., 2018) datasets are all based
on BERT-style (Devlin et al., 2018; Liu et al., 2019)
encoders and transformer architectures (Chen et al.,
2019; Castellucci et al., 2019; Rongali et al., 2020).
It is challenging to deploy these large models on
edge devices and enable the voice assistants to op-
erate locally instead of relying on central cloud
services, due to the limited memory budgets on
these devices. However, there has been a growing
push towards the idea of TinyAI 1.

In this paper, we aim to build space-efficient
task-oriented semantic parsing models that produce
near state-of-the-art performances by compressing
existing large models. We propose to learn compo-
sitional code embeddings to significantly compress
BERT-base and RoBERTa-base encoders with lit-
tle performance loss. We further use ALBERT-
base/large (Lan et al., 2019) and DistilBERT (Sanh
et al., 2019) to establish light baselines that achieve
similar state-of-the-art performances, and apply the
same code embedding technique. We show that our
technique is complementary to the compression
techniques used in ALBERT and DistilBERT. With
all variants, we achieve 95.15% ∼ 98.46% em-
bedding compression rates and 20.47% ∼ 34.22%
encoder compression rates, with >97.5% semantic

1https://www.technologyreview.com/technology/tiny-ai/
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parsing performance preservation.

2 Related Compression Techniques

2.1 BERT Compression

Many techniques have been proposed to compress
BERT (Devlin et al., 2018). Ganesh et al. (2020)
provide a survey on these methods. Most exist-
ing methods focus on alternative architectures in
transformer layers or learning strategies.

In our work, we use DistilBERT and ALBERT-
base as light pretrained language model encoders
for semantic parsing. DistilBERT (Sanh et al.,
2019) uses distillation to pretrain a model that is
40% smaller and 60% faster than BERT-base, while
retaining 97% of its downstream performances.
ALBERT (Lan et al., 2019) factorizes the embed-
ding and shares parameters among the transformer
layers in BERT and results in better scalability than
BERT. ALBERT-xxlarge outperforms BERT-large
on GLUE (Wang et al., 2018), RACE (Lai et al.,
2017), and SQUAD (Rajpurkar et al., 2016) while
using less parameters.

We use compositional code learning (Shu and
Nakayama, 2017) to compress the model embed-
dings, which contain a substantial amount of model
parameters. Previously ALBERT uses factorization
to compress the embeddings. We find more com-
pression possible with code embeddings.

2.2 Embedding Compression

Varied techniques have been proposed to learn com-
pressed versions of non-contextualized word em-
beddings, such as, Word2Vec (Mikolov et al., 2013)
and GLoVE (Pennington et al., 2014). Subrama-
nian et al. (2018) use denoising k-sparse autoen-
coders to achieve binary sparse intrepretable word
embeddings. Chen et al. (2016) achieve sparsity by
representing the embeddings of uncommon words
using sparse linear common combination of com-
mon words. Lam (2018) achieve compression by
quantization of the word embeddings by using 1-2
bits per parameter. Faruqui et al. (2015) use sparse
coding in a dictionary learning setting to obtain
sparse, non-negative word embeddings. Raunak
(2017) achieve dense compression of word embed-
dings using PCA combined with a post-processing
algorithm. Shu and Nakayama (2017) propose to
represent word embeddings using compositional
codes learnt directly in end-to-end fashion using
neural networks. Essentially few common basis
vectors are learnt and embeddings are reconstructed

using their composition via a discrete code vector
specific to each token embedding. This results in
98% compression rate in sentiment analysis and
94% - 99% in machine translation tasks without
performance loss with LSTM based models. All
the above techniques are applied to embeddings
such as WordVec and Glove, or LSTM models.

We aim to learn space-efficient embeddings for
transformer-based models. We focus on composi-
tional code embeddings (Shu and Nakayama, 2017)
since they maintain the vector dimensions, do not
require special kernels for calculating in a sparse or
quantized space, can be finetuned with transformer-
based models end-to-end, and achieve extremely
high compression rate. Chen et al. (2018) explores
similar idea as Shu and Nakayama (2017) and ex-
periment with more complex composition func-
tions and guidances for training the discrete codes.
Chen and Sun (2019) further show that end-to-end
training from scratch of models with code embed-
dings is possible. Given various pretrained lan-
guage models, we find that the method proposed by
Shu and Nakayama (2017) is straightforward and
perform well in our semantic parsing experiments.

3 Method

3.1 Compositional Code Embeddings

Shu and Nakayama (2017) apply additive quan-
tization (Babenko and Lempitsky, 2014) to learn
compositional code embeddings to reconstruct pre-
trained word embeddings such as GloVe (Penning-
ton et al., 2014), or task-specific model embed-
dings such as those from an LSTM neural machine
translation model. Compositional code embed-
dings EC for vocabulary V consist of a set of M
codebooks EC

1 , EC
2 , ..., EC

M , each with K basis
vectors of the same dimensionality D as the ref-
erence embeddings E, and a discrete code vector
(C1

w, C2
w, ..., CM

w ) for each token w in the vocab-
ulary. The final embedding for w is composed by
summing up the Ci

wth vector from the ith code-
book as EC(Cw) =

∑M
i=1E

C
i (C

i
w). Codebooks

and discrete codes are jointly learned using the
mean squared distance objective: (C∗, EC∗) =
argminC,EC

1
|V |

∑
w∈V ||EC(Cw)−E(w)||2. For

learning compositional codes, the Gumbel-softmax
reparameterization trick (Jang et al., 2016; Maddi-
son et al., 2016) is used for one-hot vectors corre-
sponding to each discrete code.
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Encoder EncoderParam# / Size EmbParam# / Size SizeRatio CCEmbSize CCEncoderSize EmbComp EncoderComp
RoBERTa-base 125.29M / 477.94MB 38.60M / 147.25MB 30.81% 2.27MB 332.96MB 98.46% 30.33%
BERT-base-uncased 110.10M / 420.00MB 23.44M / 89.42MB 21.29% 1.97MB 332.55MB 97.80% 20.82%
DistilBERT-base-uncased 66.99M / 255.55MB 23.44M / 89.42MB 34.99% 1.97MB 168.10MB 97.80% 34.22%
ALBERT-large-v2 17.85M / 68.09MB 3.84M / 14.65MB 21.52% 0.71MB 54.15MB 95.15% 20.47%
ALBERT-base-v2 11.81M / 45.05MB 3.84M / 14.65MB 32.52% 0.71MB 31.11MB 95.15% 30.94%

Table 1: Model compression with compositional code (“cc”) embeddings. The embedding layers are compressed
by more than 95% with compositional code embeddings in all of the BERT variants.

3.2 Transformer-Based Models with
Compositional Code Embeddings

In this work, we learn compositional code em-
beddings to reduce the size of the embeddings in
pretrained contextualized language models. We
extract the embedding tables from pretrained
RoBERTa-base (Liu et al., 2019), BERT-base (De-
vlin et al., 2018), DistilBERT-base (Sanh et al.,
2019), ALBERT-large-v2 and ALBERT-base-v2
(Lan et al., 2019) from the huggingface transform-
ers library (Wolf et al., 2019) and follow the ap-
proach presented by Shu and Nakayama (2017) to
learn the code embeddings. We then replace the
embedding tables in the transformer models with
the compositional code approximations and evalu-
ate the compressed language models by finetuning
on downstream tasks. When Shu and Nakayama
(2017) feed compositional code embeddings into
the LSTM neural machine translation model, they
fix the embedding parameters and train the rest of
the model from random initial values. In our ex-
periments, we fix the discrete codes, initialize the
transformer layers with those from the pretrained
language models, initialize the task-specific output
layers randomly, and finetune the codebook basis
vectors with the rest of the non-discrete parameters.

3.3 Size Advantage of Compositional Code
Embeddings

An embedding matrix E ∈ R|V |×D stored as 32-bit
float point numbers, where |V | is the vocabulary
size and D is the embedding dimension, requires
32|V |D bits. Its compositional code reconstruc-
tion requires 32MKD bits for MK basis vectors,
and M log2K bits for codes of each of |V | tokens.
Since each discrete code takes an integer value in
[1,K], it can be represented using log2K bits.

Table 1 illustrates the size advantage of composi-
tional code embeddings for various pretrained trans-
former models (Wolf et al., 2019) used in our exper-
iments. While the technique focuses on compress-
ing the embedding table, it is compatible with other
compression techniques for transformer models, in-

Dataset Train Valid Test #Intent #Slot
ATIS 4,478 500 893 26 83
SNIPS 13,084 700 700 7 39
Facebook TOP 31,279 4,462 9,042 25 36

Table 2: Statistics for semantic parsing datasets.

cluding parameter sharing among transformer lay-
ers and embedding factorization used in ALBERT
and distillation for learning DistilBERT. In our ex-
periments, we apply the code learning technique
to compress embeddings in five pretrained BERT
variants by 95.15% ∼ 98.46% to build competitive
but significantly lighter semantic parsing models.

4 Datasets

Following Rongali et al. (2020), we evaluate our
models on SNIPS (Coucke et al., 2018), Air-
line Travel Information System (ATIS) (Price,
1990), and Facebook TOP (Gupta et al., 2018)
datasets for task-oriented semantic parsing (Ta-
ble 2). For SNIPS and ATIS, we use the same
train/validation/test split as Goo et al. (2018).

5 Experiments and Analyses

For transformer model training, we base our imple-
mentation on the huggingface transformers library
v2.6.0 (Wolf et al., 2019). We use the AdamW
optimizer (Loshchilov and Hutter, 2017) with 10%
warmup steps and linear learning rate decay to 0.
Forr code embedding learning, we base our imple-
mentation on that of Shu and Nakayama (2017). By
default we learn code embeddings with 32 code-
books and 16 basis vectors per codebook. Unless
otherwise specified, hyperparameters are found ac-
cording to validation performances from one ran-
dom run. We conduct our experiments on a mix-
ture of Tesla M40, TITAN X, 1080 Ti, and 2080
Ti GPUs. We use exact match (EM) and intent
accuracy as evaluation metrics. Exact match re-
quires correct predictions for all intents and slots
in a query, and is our primary metric.
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Model EM Intent
Joint BiRNN (Hakkani-Tür et al., 2016) 73.2 96.9
Attention BiRNN (Liu and Lane, 2016) 74.1 96.7
Slot Gated Full Attention (Goo et al., 2018) 75.5 97.0
CapsuleNLU (Zhang et al., 2019) 80.9 97.3
BERT-Seq2Seq-Ptr (Rongali et al., 2020) 86.3 98.3
RoBERTa-Seq2Seq-Ptr (Rongali et al., 2020) 87.1 98.0
BERT-Joint (Castellucci et al., 2019) 91.6 99.0
Joint BERT (Chen et al., 2019) 92.8 98.6
Ours epo lr wd EM-v EM Intent
ALBERT-base 5e-5 0.05 90.71 91.29 98.86
ALBERT-base cc 1100 5e-5 0.01 90.00 89.14 98.14
ALBERT-large 3e-5 0.05 91.29 92.43 98.14
ALBERT-large cc 1100 2e-5 0.05 91.14 92.43 98.71
DistilBERT-base 3e-5 0.05 90.29 91.14 98.57
DistilBERT-base cc 900 6e-5 0.01 90.14 91.24 98.43
BERT-base 3e-5 0.05 92.14 92.29 99.14
BERT-base cc 900 6e-5 0.05 91.29 90.71 98.71

Table 3: Results on SNIPS. “cc” indicate models with
code embeddings. “epo” is the epoch number for of-
fline code embedding learning. “lr” and “wd” are the
peak learning rate and weight decay for whole model
finetuning. “EM-v”, “EM”, “Intent” indicate validation
exact match, test exact match, and test intent accuracy.

5.1 SNIPS and ATIS

We implement a joint sequence-level and token-
level classification layer for pretrained transformer
models. The intent probabilities are predicted
as yi = softmax(Wih0 + bi), where h0 is the
hidden state of the [CLS] token. The slot
probabilities for each token j are predicted as
ysj = softmax(Wshj + bs). We use the cross en-
tropy loss to maximize p(yi|x)

∏
p(ysj |x) where j

is the first piece-wise token for each word in the
query. We learn code embeddings for {500, 700,
900, 1100, 1300} epochs. We train transformer
models with original and code embeddings all for
40 epochs with batch size 16 and sequence length
128. Uncased BERT and DistilBERT perform bet-
ter than the cased versions. We experiment with
peak learning rate {2e-5, 3e-5, ..., 6e-5} and weight
decay {0.01, 0.05, 0.1}. As shown in Table 3 and 4,
we use different transformer encoders to establish
strong baselines which achieve EM values that are
within 1.5% of the state-of-the-art.

On both datasets, models based on our
compressed ALBERT-large-v2 encoder (54MB)
perserves >99.6% EM of the previous state-of-
the-art model (Chen et al., 2019) which uses a
BERT encoder (420MB). In all settings, our com-
pressed encoders perserve >97.5% EM of the un-
compressed counterparts under the same training
settings. We show that our technique is effective
on a variety of pretrained transformer encoders.

Model EM Intent
Joint-BiRNN (Hakkani-Tür et al., 2016) 80.7 92.6
Attention-BiRNN (Liu and Lane, 2016) 78.9 91.1
Slot-Gated (Goo et al., 2018) 82.2 93.6
CapsuleNLU (Zhang et al., 2019) 83.4 95.0
BERT-Seq2Seq-Ptr (Rongali et al., 2020) 86.4 97.4
RoBERTa-Seq2Seq-Ptr (Rongali et al., 2020) 87.1 97.4
BERT-Joint (Castellucci et al., 2019) 88.2 97.8
Joint-BERT (Chen et al., 2019) 88.2 97.5
Ours epo lr wd EM-v EM Intent
ALBERT-base 5e-5 0.05 93.4 86.90 97.42
ALBERT-base cc 900 6e-5 0.1 94.2 87.23 96.75
ALBERT-large 5e-5 0.05 93.8 88.02 97.54
ALBERT-large cc 1100 5e-5 0.1 94.0 87.91 97.54
DistilBERT-base 4e-5 0.05 93.6 88.13 97.42
DistilBERT-base cc 1100 6e-5 0.05 93.2 87.12 97.54
BERT-base 4e-5 0.01 93.4 88.13 97.54
BERT-base cc 700 6e-5 0.1 93.0 87.35 97.20

Table 4: Results on ATIS. Refer to the caption of Table
3 for abbreviation explanations.

Model EM Intent
RNNG (Gupta et al., 2018) 78.51 -
Shift Reduce (SR) Parser 80.86 -
SR with ELMo embeddings 83.93 -
SR ensemble + ELMo + SVMRank 87.25 -
BERT-Seq2Seq-Ptr (Rongali et al., 2020) 83.13 97.91
RoBERTa-Seq2Seq-Ptr (Rongali et al., 2020) 86.67 98.13
Ours EM-v EM Intent
ALBERT-Seq2Seq-Ptr 84.56 85.41 98.47
ALBERT-Seq2Seq-Ptr cc 83.48 84.42 98.05
DistilBERT-Seq2Seq-Ptr 84.25 85.12 98.50
DistilBERT-Seq2Seq-Ptr cc 82.76 83.42 98.09
BERT-Seq2Seq-Ptr 83.83 85.01 98.59
BERT-Seq2Seq-Ptr cc 82.36 83.34 98.25
RoBERTa-Seq2Seq-Ptr 85.00 85.67 98.59
RoBERTa-Seq2Seq-Ptr cc 83.51 83.78 98.17

Table 5: Results on Facebook TOP. The SR models
are by Einolghozati et al. (2019). Refer to the caption
of Table 3 for abbreviation explanations.

5.2 Facebook TOP

Table 5 presents results on Facebook TOP. We fol-
low Rongali et al. (2020) and experiment with
Seq2Seq models. We use different pretrained
BERT-variants as the encoder, transformer decoder
layers with dmodel = 768 (Vaswani et al., 2017),
and a pointer generator network (Vinyals et al.,
2015) which uses scaled dot-product attention to
score tokens. The model is trained using the cross-
entropy loss with label smoothing of 0.1. For sim-
plicity, we always train code embeddings for 900
epochs offline. Learning rate 2e-5 and weight de-
cay 0.01 are used for transformer training. BERT
and DistilBERT are cased in these experiments.
During inference, we employ beam decoding with
width 5. Our greatly compressed models present
98∼99% performances of the original models.
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Epoch MeanEucDist NN-cos NN-Euc SNIPS ATIS TOP
100 0.3677±0.25% 0.66±1.90% 0.65±2.00% 79.29 82.31 78.09
200 0.3254±0.08% 2.20±0.69% 2.30±0.84% 85.43 84.99 81.59
300 0.3023±0.09% 3.66±0.92% 3.96±0.55% 86.86 86.11 83.17
400 0.2841±0.23% 4.84±0.58% 5.26±0.83% 89.71 87.01 83.45
500 0.2685±0.26% 5.72±0.48% 6.21±0.78% 87.71 87.23 83.82
600 0.2573±0.12% 6.20±0.39% 6.72±0.18% 88.14 85.69 83.41
700 0.2499±0.20% 6.42±0.49% 6.94±0.33% 88.00 87.35 84.27
800 0.2444±0.07% 6.54±0.39% 7.07±0.15% 88.57 86.90 84.09
900 0.2407±0.10% 6.62±0.31% 7.14±0.14% 88.57 86.56 84.42

1000 0.2380±0.07% 6.65±0.39% 7.16±0.10% 89.14 87.12 83.86

Table 6: Analyses for the code embedding learning process (M=32, K=16). MeanEucDist, NN-cos, and NN-Euc
are averaged across 5 runs. “SNIPS”, “ATIS”, and “TOP” are the test exact match achieved on the three datasets.

5.3 Analysis for Code Convergence

We study the relationship among a few variables
during code learning for the embeddings from pre-
trained ALBERT-base (Table 6). During the first
1000 epochs, the mean Euclidean distance between
the original and reconstructed embeddings decrease
with a decreasing rate. The average number of
shared top-20 nearest neighbours according to co-
sine similarity and Euclidean distances between the
two embeddings increase with a decreasing rate.
We apply code embeddings trained for different
numbers of epochs to ALBERT-base-v2 and fine-
tune on semantic parsing. On SNIPS and ATIS, we
find the best validation setting among learning rate
{2,3,4,5,6}e-5 and weight decay {0.01, 0.05, 0.01}.
We observe that the test exact match plateaus for
code embeddings trained for more than 400 epochs.
On Facebook TOP, we use learning rate 2e-5 and
weight decay 0.01, and observe the similar trend.

5.4 Effects of M and K

We use embeddings from pretrained ALBERT-base-
v2 as reference to learn code embeddings with M
in {8, 16, 32, 64} and K in {16, 32, 64}. As
shown in Table 7, after 700 epochs, the MSE loss
for embeddings with larger M and K converges
to smaller values in general. With M=64, more
epochs are needed for convergence to smaller MSE
losses compared to those from smaller M. We apply
the embeddings to ALBERT-base-v2 and finetune
on SNIPS. In general, larger M yields better per-
formances. Effects of K are less clear when M is
large.

6 Conclusion

Current state-of-the-art task-oriented semantic pars-
ing models are based on pretrained RoBERTa-base
(478MB) or BERT-base (420MB). We apply Dis-
tilBERT (256MB), ALBERT-large (68MB), and

M K epo MSE EM
8 16 700 0.3155±0.05% 85.43
8 32 700 0.3032±0.04% 87.43
8 64 700 0.2944±0.04% 87.43

16 16 700 0.2855±0.05% 88.57
16 32 700 0.2727±0.09% 88.00
16 32 700 0.2669±0.08% 88.14
32 16 700 0.2499±0.20% 89.00
32 32 700 0.2421±0.20% 89.14
32 64 700 0.2396±0.27% 88.29
64 16 700 0.2543±0.47% 88.29
64 16 1000 0.2256±1.06% 89.71
64 32 700 0.2557±0.37% 89.86
64 32 1000 0.2159±0.43% 89.71

Table 7: Effects of M and K. Mean squared errors
(MSE) are averaged over 5 runs. Best validation ex-
act match (EM) is presented for compressed trans-
former models trained with 0.05 weight decay and
{3,4,5,6,7}e-5 peak learning rates on SNIPS.

ALBERT-base (45MB), and observe near state-of-
the-art performances. We learn compositional code
embeddings to compress the model embeddings
by 95.15% ∼ 98.46%, the pretrained encoders
by 20.47% ∼ 34.22%, and observe 97.5% perfor-
mance preservation on SNIPS, ATIS, and Facebook
TOP. Our compressed ALBERT-large is 54MB and
can achieve 99.6% performances of the previous
state-of-the-art models on SNIPS and ATIS. Our
technique has potential to be applied to more tasks
including machine translation in the future.
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