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Abstract

Referring expression comprehension, which is
the ability to locate language to an object in
an image, plays an important role in creat-
ing common ground. Many models that fuse
visual and linguistic features have been pro-
posed. However, few models consider the fu-
sion of linguistic features with multiple visual
features with different sizes of receptive fields,
though the proper size of the receptive field of
visual features intuitively varies depending on
expressions. In this paper, we introduce a neu-
ral network architecture that modulates visual
features with varying sizes of receptive field
by linguistic features. We evaluate our archi-
tecture on tasks related to referring expression
comprehension in two visual dialogue games.
The results show the advantages and broad ap-
plicability of our architecture. Source code is
available at https://github.com/Alab-NII/lcfp.

1 Introduction

Referring expressions are a ubiquitous part of hu-
man communication (Krahmer and Van Deemter,
2012) that must be studied in order to create ma-
chines that work smoothly with humans. Much ef-
fort has been taken to improve methods of creating
visual common ground between machines, which
have limited means of expression and knowledge
about the real world, and humans, from the per-
spectives of both referring expression comprehen-
sion and generation (Moratz et al., 2002; Tenbrink
and Moratz, 2003; Funakoshi et al., 2004, 2005,
2006; Fang et al., 2013). Even now, researchers are
exploring possible methods of designing more re-
alistic scenarios for applications, such as in visual
dialogue games (De Vries et al., 2017; Haber et al.,
2019; Udagawa and Aizawa, 2019).

Many models have been proposed for referring
expression comprehension so far. As image recog-
nition matured, Guadarrama et al. (2014) studied

Figure 1: Illustration of visual features with different
sizes of the receptive fields. Dots represent objects that
have color and size as their attributes. Grids in the right
three images represent the receptive fields of their vi-
sual features. Our architecture fuses linguistic features
with each visual feature.

object retrieval methods based on category labels
predicted by the recognition models. Hu et al.
(2016b) extended this approach to broader natu-
ral language expression including categories of
objects, their attributes, positional configurations,
and interactions. In recent years, models that fuse
linguistic features with visual features using deep
learning have been studied (Hu et al., 2016b,a; An-
derson et al., 2018; Deng et al., 2018; Misra et al.,
2018; Li et al., 2018; Yang et al., 2019a,b; Liu et al.,
2019; Can et al., 2020).

When fusing the linguistic features of a spatial
referring expression with visual features, the size of
the receptive field of visual features 1 is important.
Let us take Figure 1 as an example. We can refer
to the gray dot in the figure in various ways:

• a gray dot

• a dot next to the small dot

• a dot below and to the right of the large dot
1In this paper, we picture the size of the receptive field of

visual features as the grid size in the input image. Note that
the size of the receptive field in a real model is wider than the
grid size in general because of multiple convolutional layers.

https://github.com/Alab-NII/lcfp
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• the rightmost dot in a triangle consisting of
three dots

• the third largest dot of four dots

As shown in the figure, there is an optimum size
of receptive field when fusing the features of these
expressions with the visual features. Although the
small receptive field (in the second panel to the
left) matches the expression a gray dot, it does not
capture information about the triangle consisting of
three dots to the upper left. Conversely, the largest
receptive field (in the panel to the right) includes
the triangle, but contains too much information to
determine the color of the gray dot. Thus, linguis-
tic and visual features have an optimum size of
receptive field for fusion.

Few existing models, however, use fusion of lin-
guistic features with visual features with different
receptive field sizes. This is possibly because ma-
jor datasets for referring expression comprehension,
for example, Kazemzadeh et al. (2014); Plummer
et al. (2015); Mao et al. (2016); Yu et al. (2016),
use photographs and weigh expressions related to
object category more often than positional relation-
ships. Tenbrink and Moratz (2003); Tanaka et al.
(2004); Liu et al. (2012, 2013) reveal that people
often use group-based expressions (relative posi-
tional relationships of multiple objects) when there
is no clear difference between objects; therefore,
these expressions are not so unusual. Further in-
vestigation should be done on methods that handle
referring expressions based on positional relation-
ships.

For this reason, we focus on the OneCommon
corpus (Udagawa and Aizawa, 2019), a recently
proposed corpus on a visual dialogue game using
composite images of simple figures. It captures
various expressions based on positional relation-
ships, such as group-based expressions, as shown
in Figure 2.

In this paper, we introduce a neural network ar-
chitecture for referring expression comprehension
considering visual features with different sizes of
the receptive fields, and evaluate it on the OneCom-
mon task. Our structure combines feature pyramid
networks (FPN) (Lin et al., 2017) and feature-wise
linear modulation (FiLM) (Perez et al., 2018) and
modulates visual features with different sizes of the
receptive fields with linguistic features of referring
expressions. FPN is an architecture that uses each
layer of the hierarchical convolutional neural net-
work (CNN) feature extractor for object detection;

Figure 2: Example of OneCommon view and dia-
logue. In the OneCommon framework, two players ob-
serve slightly different views due to parallel shift. The
game requires them to create common ground about the
views through free conversation and identify the same
dot. We show part of an utterance and underline some
expressions that refer to an object or a group.

whereas, FiLM is a structure that robustly fuses
linguistic features with visual features.

To confirm the broad applicability of our ar-
chitecture, we further evaluate it on another task,
which is expected to require the ability of object
category recognition more than OneCommon does
because it uses photographs. We find that our archi-
tecture achieves better accuracy in these tasks than
some existing models, suggesting the advantage of
fusion of linguistic features with multiple visual
features that have different receptive fields.

The contributions of this paper are as follows:

1. We propose the language-conditioned feature
pyramid (LCFP) architecture, which modu-
lates visual features with multiple sizes of re-
ceptive fields using language features.

2. We apply LCFP to dialogue history object
retrieval; our evaluation demonstrates the ad-
vantage of our architecture on referring ex-
pression comprehension in visual dialogue.

2 Dialogue History Object Retrieval

The main focus of this paper is the task of predict-
ing the final object selected by the speaker given
a dialogue history, a scene image, and candidate
objects in the image. A dialogue history consists of
a list of speaker and utterance pairs. We consider
dialogues where speakers switch every turn. Can-
didate objects are indicated by bounding boxes in
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the image. Some task instances provide additional
information, such as object categories. Here, we
call this task dialogue history object retrieval.

OneCommon Target Selection Task OneCom-
mon is a dialogue corpus for common grounding.
It contains 6,760 dialogues from a collaborative
referring game where two players are given a view
that contains 7 dots, as shown in Figure 2. Dots
have four attributes: x/y coordinates on a plane,
size, and color. Only some dots are seen in com-
mon because the centers of the players’ views are
different. The goal of the game is to select the same
dot after talking. Target selection is a subtask of the
game, requiring prediction of the dot that a player
chose based on a given player’s view and dialogue
history.

GuessWhat?! Guessor Subtask GuessWhat?!
(De Vries et al., 2017) is a game related to multi-
modal dialogue. Two players play the roles of
oracle and questioner. They are given a photo and
the oracle mentally selects an object. Then, the
questioner asks the oracle yes-or-no questions to
guess the object. The goal of the game is to select
the object at the end of a question sequence. A
published collection of game records consists of
150,000 games with human players, with a total of
800,000 visual question–answer pairs on 66,000
images extracted from the MS COCO dataset (Lin
et al., 2014). The guesser subtask is to predict the
correct object from 3–20 candidate objects based
on a given photo and set of question–answer pairs.
Candidate information includes bounding boxes
and object category.

In addition to dialogue history object retrieval,
there is an increasing amount of research on task de-
sign for visual dialogue games that require unique
common understanding. For example, in the Photo-
Book dataset (Haber et al., 2019), two participants
are presented with multiple images, and they pre-
dict whether an image is presented only to them or
also to the other person through conversation.

3 Related Work

This section first describes an overview of the mod-
els for referring expression comprehension and
then gives some details about models related to
the OneCommon Corpus and GuessWhat?!.

3.1 Models for Referring Expression
Comprehension

Models for extracting objects from an image are of-
ten based on object detection (Ren et al., 2015; Liu
et al., 2016; Lin et al., 2017; Redmon and Farhadi,
2018) or image segmentation (Ronneberger et al.,
2015). Object detection considers only the bound-
ing boxes of the objects. Image segmentation ex-
tracts the areas indicated by the outlines of the
objects. Referring expression comprehension also
includes reference detection (Hu et al., 2016b; An-
derson et al., 2018; Deng et al., 2018; Yang et al.,
2019a,b) and segmentation (Hu et al., 2016a; Li
et al., 2018; Misra et al., 2018; Liu et al., 2019; Can
et al., 2020) correspondingly.

The standard reference detection consists of two
stages: detecting candidate objects and selecting
objects that match the expression from the candi-
dates. Essentially, they do not fuse visual feature
maps with language when detecting candidates.
Yang et al. (2019b) proposes a one-stage model
that combines the feature map of the object detector
with language to directly select the referred object.
Whereas their model fuses linguistic and visual fea-
tures after reducing visual features of the different
receptive field sizes, ours fuses them before the re-
duction. Zhao et al. (2018) also proposes a model
with a structure that fuses multiple scales and lan-
guages for weakly supervised learning. However,
they use concatenation as the method of fusion,
whereas we use FiLM.

For reference segmentation, Li et al. (2018) point
out a lack of multi-scale semantics and propose a
method that recursively fuses feature maps of differ-
ent scales using a recurrent neural network (RNN).
However, this method concatenates linguistic fea-
tures with only the first input of the RNN; hence,
the feature map in each scale and the linguistic fea-
tures may be poorly fused. U-Net-based models
(Misra et al., 2018; Can et al., 2020) have the most
similar structure to ours. They produce hierarchi-
cal feature maps with CNNs, modulate those maps
with language, and unify them into a single map
through consecutive deconvolution operations.

The major difference between those U-Net-
based models and ours is fusion architecture. The
U-Net-based models generate kernels from linguis-
tic features to convolve visual features. Our model
operates an affine transformation on visual features
using coefficients made from linguistic features
in FiLM blocks. Suppose the dimensions of the
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source and modulated visual features are Ds and
Dm, respectively. Then, the size of the kernel for
convolution is DsDm and the size of the coeffi-
cients for affine transformation is 2Dm. Because
of this independency of Ds, our model has the ad-
vantage of being able to handle visual features with
large dimensions, such as the last layer of ResNet50
(He et al., 2016) typically with 2048 dimensions.

3.2 Models for Dialogue History Object
Retrieval

OneCommon Target Selection Udagawa and
Aizawa (2019) proposed the baseline model TSEL,
which creates the features of a candidate taking into
account its attributes (size, color and position) and
the average of the differences between its attributes
and attributes of the other candidates. This model
does not use visual features directly.

Udagawa and Aizawa (2020) extended the base-
line model from the perspective of learning tasks
and introduced TSEL-REF and TSEL-REF-DIAL.
TSEL-REF has a similar structure to TSEL and
learns in a multi-task setting. It resolves referring
expressions in utterances, as well as the final pre-
diction. Additional data consisting of manual an-
notations of reference resolution are used for the
training. TSEL-REF-DIAL also learns on self-play
of dialogue in addition to the TSEL-REF training.

GuessWhat?! Guesser Subtask The Guess-
What?! paper proposes baseline models that use
object category and position to create candidate
features. Although the paper reports that the exten-
sion of their baseline model to visual features from
object recognition does not have any advantages,
some models that use visual features, for exam-
ple, A-ATT (Deng et al., 2018) and HACAN (Yang
et al., 2019a) have recently improved the perfor-
mance on GuessWhat?!. Their approach, based on
reference detection and attention mechanism, fuses
linguistic features with visual features that have a
single size of the receptive fields.

4 Preliminary

We introduce two prerequisite architectures to de-
scribe our proposal.

4.1 Feature-wise Linear Modulation
A feature-wise linear modulation (Perez et al.,
2018) block fuses a given language vector and fea-
ture map to make a new feature map. Let the output
feature map dimension be dout, the language vector

vlang with dimension dlang, and the feature map fin
with dimension din and shape (h,w).

The Trainable parts of the block are two lin-
ear transformations B, G, two convolutional layers
CNV(1), CNV(2) and a batch normalization (BN)
(Ioffe and Szegedy, 2015) layer.

First, it performs a linear transformation on
vlang to obtain the coefficients of the affine
transformation,

β = Bvlang; B ∈ Rdlangdout ,
γ = Gvlang; G ∈ Rdlangdout .

Second, it applies CNV(1) to fin after concate-
nating a positional encode (PE),

fvis = F
(
CNV(1) (PE(fin))

)
,

where F is an activation function, typically a rec-
tified linear unit (ReLU) (Nair and Hinton, 2010),
PE(fin) denotes the concatenation of the two-
dimensional position of each pixel in fin normal-
ized in a range of [−1, 1] on each axis.

Last, the second convolutional layer CNV(2)

with BN and affine transformation is applied to
fvis.

ffuse = F
(
β � BN(CNV(2)(fvis)) + γ

)
,

ffilm = fvis + ffuse (1),

where � denotes the element-wise product. Lan-
guage and vision are fused in this equation. ffilm is
the FiLMed feature map. Note that ffilm can be di-
vided into language-independent fvis and language-
dependent ffuse parts. We analyze the effect of the
terms in Section 6.3

4.2 Feature Pyramid Networks

Feature Pyramid Networks (FPN) (Lin et al., 2017)
use an object recognition model as a backbone and
reconstruct semantically rich feature maps from the
feature extraction results. Here, we suppose that
the backbone is ResNet.

ResNet and Stages of Feature Map The
ResNet family has a common structure for reduc-
ing the size of the input images. First, it converts
an input image into a feature map with half the
resolution of the image with a convolutional layer.
Next, it reduces the map by a factor of two with the
pooling operation. Subsequently, it applies some
residual blocks, gradually reducing the resolution
by half. This task is repeated until the size becomes
1/32 of the original image. We define the final layer
of each resolution as the feature map of the stage;
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Figure 3: Overview of our architecture, consisting of a visual feature extractor and a language encoder. The
feature maps (C1, ..., C5) from the extractor are fused in feature-wise linear modulation blocks with the language
embedded and summed recursively. Striped boxes denote language-conditioned feature maps. For dialogue history
object retrieval, the finest map (P1) is fed into the subsequent pooling layer.

namely, C1 is the final layer of the 1/2 resolution
map, C2 is of 1/4, ..., C5 is of 1/32.

Top-down Reconstruction FPN makes feature
pyramids from the stages of a backbone in a top-
down manner. Suppose that CNV(2), ..., CNV(5)

are trainable convolutional layers and P2, ..., P5 (P
stands for pyramid) are the reconstructed feature
maps on each stage2. Then Pi can be represented
as follows:

Pi = CNV(i)(Ci) + Resize2(P(i+ 1)) (2).

where P6 = 0 and Resize2 denotes the operation
to enlarge the image twice. This means that Pi con-
tains information about higher and coarser stages,
which hold more complex semantics in general
because of their wider receptive fields.

5 Proposed Method

Our architecture consists of language-conditioned
feature pyramids (LCFP) for general feature ex-
traction and a feature extractor for specific tasks,
as shown in Figure 3. In this section, we describe
LCFP and the following structure for dialogue his-
tory object retrieval.

2The reason we do not mention P1 is that the original
paper does not use C1 and P1 owing to their large memory
footprint.

5.1 Language-Conditioned Feature Pyramids

Language Encoder LCFP requires a fixed-
length vector of language information to gener-
ate input for FiLM blocks. We can use any fixed
vector, such as the last hidden layers of RNNs or
transformer-based language models such as Devlin
et al. (2019). Our proposal adopts gated recurrent
unit (GRU) (Cho et al., 2014) in accordance with
the FiLM paper (Perez et al., 2018). Suppose that
dlang is the dimension of hidden layer,

hlang = GRU(text) ∈ Rdlang .

Visual Feature Extractor We use ResNet as our
backbone. In addition to the C2-C5 described in
Section 4.2, we use C1 because our goal is to in-
corporate information in the low stages, i.e., visual
features with small receptive fields.

{Ci; i = 1, ..., 5} = ResNet(image).

Fusing Language and Vision The key idea to
combine aforementioned two architectures is to
replace convolutional layers of FPN in Equation 2
with FiLM blocks.

We represent the block as a function FiLM(vlang,
fin). Then, our feature reconstruction can be ex-
pressed as follows:

Pi = FiLM(i)(hlang,Ci)+Resize2(P(i+1)) (3),

where the weights of the FiLM block in each stage
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are different from each other. We set kernel sizes
for CNV

(1), (2)
i in each FiLM block 1 × 1 and

3× 3, respectively, according to Perez et al. (2018).
{Pi; i = 1, ..., 5} is the output of LCFP.

5.2 LCFP-Based Dialogue History Object
Retrieval

We formulate dialogue history object retrieval as a
classification that predicts a selected object based
on a dialogue history, scene image, and set of can-
didate information. The candidate information con-
sists of a bounding box (x1, y1, x2, y2) in an image
and a fixed-length vector v that represents the addi-
tional information.

Candidate Features We extract a region corre-
sponding to a bounding box of each candidate from
the feature map P1 obtained via LCFP. For candi-
date i, the features in the region are averaged to be
converted into a fixed-length vector:

f ′i =
∑

k∈regioni
P1k/

∑
k∈regioni

1,

where regioni and P1k indicate the region of can-
didate i and the vector at position k in feature map
P1, respectively. We concatenate f ′i with vi addi-
tional information vector for candidate i to make a
full feature vector:

fi = [f ′i ; vi].

Probability Calculation We apply a linear layer
with ReLU activation to each feature and another
linear layer with a one-dimensional output to obtain
a logit for each candidate:

logiti =W2ReLU(W1fi + b).

We apply softmax over all logits of the candidates
when we need probability of the selected candidate.

6 Experiments

We first validate the advantage of our architecture
on two tasks in dialogue history object retrieval
described in Section 2. We then investigate the
cause of the advantage through ablation studies.

Common Text Processing We consider dia-
logue history as a text that starts with task name
followed by a <text> token, with a sequence of
utterances and a <selection> token at the end.
Each utterance is interposed between a speaker to-
ken, <you> or <them>, and an end-of-sequence
token <eos>. Tokenization of utterances is differ-
ent for each task.

Accuracy
Model Valid. Test (Full) Test (SO)

TSEL - - 67.79
±1.53

TSEL-REF - - 69.01
±1.58

TSEL-REF-
DIAL - - 69.09

±1.12

LCFP 72.99
±1.37

73.47
±1.09

78.26
±1.21

Human - - 90.79

Table 1: Accuracy on OneCommon Target Selection.
SO indicates successful games only. The average re-
sults of 10 trials are shown. The values of TSEL,
TSEL-REF, TSEL-REF-DIAL, and Human are from
Udagawa and Aizawa (2020).

Common Implementation We implemented
our model with the PyTorch framework (Paszke
et al., 2019). We used ResNet50 provided from
the PyTorch vision package, which is pretrained on
object recognition tasks with the ImageNet dataset
(Deng et al., 2009) as a backbone. All weights of
the backbone, including those of statistics for batch
normalization, are fixed. The dimensions of token
embeddings, GRU hidden states, feature maps, ad-
ditional information, and the last linear layer are
256, 1024, 256, 256 and 1024 respectively. For
optimization, we used ADAM (Kingma and Ba,
2014) with alpha 5e-4, eps 1e-9, and mini-batch
size 32. No regularization was used except for BN.
We ran 5 epochs in a trial and chose the weight set
with the lowest validation loss.

6.1 OneCommon Target Selection Task

Model Detail Tokenization was performed by
splitting using white spaces; all tokens are uncased.
Tokens that appear fewer than five times in the
training dataset were replaced with an <unk> to-
ken. We drew the game views based on candidate
dot data in a 224px square image. The additional
information vector is disabled by inputting a vector
that denotes that information is not provided.

Results Table 1 compares accuracy between the
existing models and ours. Our model achieves bet-
ter accuracy than the three models described in Sec-
tion 3.2, although the accuracy is lower than with
human performance. In particular, our model out-
performs TSEL-REF and TSEL-REF-DIAL, which
use additional learning, with learning only from
standard training data. This result demonstrates the
advantages and the high learning efficiency of our
architecture.
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Error
Model Train Valid. Test

LSTM1 SL 27.9 37.9 38.7
HRED1 SL 32.6 38.2 39.0
LSTM+VGG1 SL 26.1 38.5 39.2
HRED+VGG1 SL 27.4 38.4 39.6
A-ATT2 SL 26.7 33.7 34.2
HACAN

w/o HAST3 SL 26.9 33.6 34.1

GST (SL)4 SL 24.7 33.7 34.3

LCFP (ours) SL 20.1
±1.6

32.2
±0.2

33.1
±0.5

HACAN3 HAST 26.1 32.3 33.2
GST (RL,

Max.Q’s=8)4 RL 16.7 16.9 18.4

Humana - 9.0 9.0 9.2

Table 2: Error rate on GuessWhat?! Guesser Subtask.
SL: Supervised learning, RL: Reinforcement learning,
HAST: History-Advantaged Sequence Training (Yang
et al., 2019a). The average result of 5 trials for LCFP.
1 (De Vries et al., 2017), 2 (Deng et al., 2018), 3 (Yang
et al., 2019a) and 4 (Pang and Wang, 2020).

6.2 GuessWhat?! Guesser Subtask

Although it contains many referring expressions
related to positional relationships, OneCommon
uses a view with simple figures. We next evaluated
our architecture on the Guesser subtask of Guess
What?!, which uses photographs, to verify whether
our structure can be applied to more complex visual
information.

Model Detail We tokenized utterences by
NLTK’s TweetTokenizer under case-insensitive
conditions and omitted tokens appearing fewer than
five times in the training dataset. We resized the
photos to 224px square, regardless of their aspect
ratio. As additional information, we input object
categories provided by the dataset by converting
them into one-hot embedding vectors.

Results Table 2 shows the error rate of the task.
The table also shows the learning methods of
the models. Our model achieves the lowest er-
ror rate of models of supervised learning, includ-
ing models that use visual features (LSTM+VGG,
HRED+VGG, A-ATT and HACAN w/o HAST).
This demonstrates that our architecture can be ap-
plied to visual input of natural objects as well as
simple figures. Our method alone does not match
the results of the method using reinforcement learn-
ing; however, our method can be combined with
those more sophisticated learning methods. Ex-
amining such combinations will be an interesting
topic for the future.

Stage Valid. err.
Model 5 4 3 2 1 OC GW

Setting 1: Stages Ablation

A5 fvis
ffuse

X
X 45.8 38.4

A3 fvis
ffuse

X
X

X
X

X
X 28.5 33.1

Full fvis
ffuse

X
X

X
X

X
X

X
X

X
X 27.0 32.2

Setting 2: Language-Conditioned Parts Ablation

A5’ fvis
ffuse

X
X

X X X X 38.8 37.8

A3’ fvis
ffuse

X
X

X
X

X
X

X X 27.4 32.9

Full fvis
ffuse

X
X

X
X

X
X

X
X

X
X 27.0 32.2

Table 3: Ablation study on the OneCommon Target Se-
lection Task (OC) and GuessWhat?! Guesser Subtask
(GW). Error is shown. We ablate some of fvis and ffuse
in the FiLM block at each stage. fvis and ffuse rows
in each model show the condition where X indicates
that the model uses the corresponding information.

6.3 Ablation
To confirm the importance of fusing multiple vi-
sual features that have different receptive field
sizes with linguistic features, we performed abla-
tion in two settings: Stage ablation and Language-
conditioned parts ablation. The former examines
the effect of applying FiLM to small receptive
fields by removing FiLM for some stages. The
latter examines the effect of language modulation
by leaving only the language-independent parts of
FiLM.

Stage Ablation Stage ablation in Table 3 com-
pares A5, A3 and Full models. A5 uses only the
last stage of the image extractor and Full uses all
stages. A3 is in the middle. The same trend ex-
ists for both OneCommon and GuessWhat?!; The
Full model outperforms A5 and achieves a slightly
better result than A3. This shows that consider-
ing visual features with a small receptive field size
improves performance.

Language-Conditioned Parts Ablation This
ablation introduces A5’ and A3’ models that use
the language-independent fvis part in all stages but
do not use the language-dependent ffuse part in
some stages (see Equation. 1 in Section 4.1 for
the definition of fvis and ffuse). Comparing A5
and A5’ and A3 and A3’ shows that the models
consistently achieve better results when using the
language-dependent part, suggesting that the lan-
guage fusion has a positive impact. Although the
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Token N TSEL [%] LCFP [%]
(overall) 2702 66 74
triangle 304 60 (-6) 71 (-3)
group 100 55 (-11) 72 (-2)
pair 72 56 (-10) 72 (-2)

square 10 47 (-19) 80 (+6)
diamond 6 72 (+6) 100 (+26)
trapezoid 4 42 (-24) 75 (+1)

Table 4: Accuracy of example sets containing group-
related tokens on OneCommon Target Selection. N
represents the number of examples that contain group-
related tokens in their dialogue. We show the differ-
ences between the accuracy of the overall and example
sets in parentheses. We merged the validation and test
splits for this table. The average results of three trials
are shown.

impacts of the language fusion in stages 2 and 1
were expected to be relatively small owing to the
small difference between Full and A3’ model, they
still have some impact on the performance.

Combining these, we conclude that the advan-
tage evaluated in the previous subsection is a result
of the fusion of linguistic features with multiple
visual features with different receptive field sizes.

7 Discussion

Finally, this section focuses on linguistic expres-
sions. We discuss the effect of our architecture on
group-based referring expressions and our first intu-
ition regarding the relationship between expression
and receptive fields using OneCommon.

7.1 Effect on Group-Based Expression
Comprehension

To obtain an insight into the performance of group-
based referring expression, we performed an aggre-
gation over examples in which dialogue includes
tokens related to groups. We took the six tokens
shown in Table 4 as a marker that indicates that the
dialogue contains a group-based referring expres-
sion. If the model struggles to handle group-based
referring expressions, the accuracy should be lower
than the overall accuracy.

Table 4 shows the results. The baseline model
TSEL yields low accuracy on triangle, group, pair,
square, and trapezoid with large drops ranging
from 6% to 24% compared to the overall accu-
racy. Conversely, our architecture reduces the drop.
In the worst case triangle, accuracy drops by 3%
. This supports the idea that our architecture im-
proves the understanding of group-based referring

expressions.
Note that dialogue history object retrieval re-

solves the final reference of the dialogue. The ex-
istance of a group-based referring expression does
not necessarily mean that it relates to the answer;
hence, this is indirect support.

7.2 Expressions and the Size of Receptive
Fields

We visualized the activation pattern of the modu-
lated features in our architecture to verify our first
intuition that linguistic and visual features have an
optimum size of receptive field for fusion.

Figure 4 shows the results. For visualization, we
input simple expressions related to single attributes
such as select the largest dot (size) or select the
darkest dot (color). The stage with the most acti-
vated pattern varies depending on attributes in the
expressions. We observed this phenomenon on dif-
ferent view inputs from the view in Figure 4. The
model pays the most attention to stage 1, which
has the smallest receptive field, when it receives an
input expression related to color. Then, it moves
to the stages with the larger receptive fields as the
input changes to size and position. That is likely to
correspond to the typical magnitude of localization.

These results suggest that the model selects vi-
sual features by the size of the receptive field ac-
cording to the referring expression, supporting our
first intuition.

Failure Cases Although the model makes a good
predictions regarding size and color, it does not
handle position well. Thus, there is still room to
improve expression related to positional relation-
ships, although the model improves this ability.

Through this visualization, we observed that our
model tends to set the wrong range. For example,
for four position-related expressions in Figure 4,
the model predicts answers only from dots in the
salient triangle formed by dots c, d and e.

A possible explanation of this observation is data
bias. Because the OneCommon game framework
rewards players if they successfully create common
ground with each other, players may think to men-
tion to more salient dots to increase the success rate.
As a result, the variation of expressions could be
restricted. In fact, Udagawa and Aizawa (2019) re-
ports these trends on color and size attributes. This
suggests the importance of exploring task design
for data collection from the viewpoint of collecting
a wide range of general reference expressions.
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Figure 4: Single-attribute referring expressions and averaged activation pattern in feature-wise linear modulation
blocks. All patterns are normalized with the same factor. The input view is shown in the top center (characters are
a guide to identify the dots, not inputs). Each band of patterns has five maps corresponding to the stages of the
model. The language-independent parts (fvis) to the upper left are common to all expressions. The remaining parts
(ffuse) are responses to the expressions. Black dots under the maps indicate the stage with the largest activation.

8 Conclusion

To improve referring expression comprehension,
this paper proposes a neural network architecture
that modulates visual features; the visual features
have different sizes of receptive fields in each hier-
archy extracted by CNNs with linguistic features.
As our architecture affine transforms visual features
with linguistic features, it requires a lower calcu-
lation cost than methods that generate convolution
kernels.

Our evaluation of referring expression compre-
hension tasks on two visual dialogue games demon-
strates the model’s advantage in the understanding
of referring expressions and the broad applicability
of our architecture. Ablation studies support the
importance of multiple fusion.

We expect that hierarchical visual information
is also important to generation. However, our ar-
chitecture is difficult to directly apply to referring
expression generation because it outputs modulated
feature maps. Therefore, the future direction is to
extend our architecture to language generation.
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