
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 4636–4647
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

4636

Multi-hop Question Generation with Graph Convolutional Network

Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng Yu, Pascale Fung
Center for Artificial Intelligence Research (CAiRE)

Department of Electronic and Computer Engineering
The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

{dsu, yxucb, wdaiai, zjiad, tyuah}@connect.ust.hk,

pascale@ece.ust.hk

Abstract

Multi-hop Question Generation (QG) aims to
generate answer-related questions by aggre-
gating and reasoning over multiple scattered
evidence from different paragraphs. It is a
more challenging yet under-explored task com-
pared to conventional single-hop QG, where
the questions are generated from the sentence
containing the answer or nearby sentences in
the same paragraph without complex reason-
ing. To address the additional challenges
in multi-hop QG, we propose Multi-Hop En-
coding Fusion Network for Question Genera-
tion (MulQG), which does context encoding
in multiple hops with Graph Convolutional
Network and encoding fusion via an Encoder
Reasoning Gate. To the best of our knowl-
edge, we are the first to tackle the challenge
of multi-hop reasoning over paragraphs with-
out any sentence-level information. Empiri-
cal results on HotpotQA dataset demonstrate
the effectiveness of our method, in comparison
with baselines on automatic evaluation metrics.
Moreover, from the human evaluation, our pro-
posed model is able to generate fluent ques-
tions with high completeness and outperforms
the strongest baseline by 20.8% in the multi-
hop evaluation. The code is publicly available
at https://github.com/HLTCHKUST/MulQG.

1 Introduction

Question Generation (QG) is a task to automati-
cally generate a question from a given context and,
optionally, an answer. Recently, we have observed
an increasing interest in text-based QG (Du et al.,
2017; Zhao et al., 2018; Scialom et al., 2019; Nema
et al., 2019; Zhang and Bansal, 2019).

Most of the existing works on text-based QG
focus on generating SQuAD-style (Rajpurkar et al.,
2016; Puri et al., 2020) questions, which are gen-
erated from the sentence containing the answer
or nearby sentences in the same paragraph, via

Paragraph A: Marine Tactical Air Command
Squadron 28 (Location T) is a United States Marine
Corps aviation command and control unit based
at Marine Corps Air Station Cherry Point (Location

C) ...
Paragraph B: Marine Corps Air Station Cherry
Point (Location C) ... is a United States Marine
Corps airfield located in Havelock, North Car-
olina (Location H), USA ...
Answer: Havelock, North Carolina (Location H)
Question: What city is the Marine Air Control
Group 28 (Location T) located in?

Table 1: An example of multi-hop QG in the Hot-
potQA (Yang et al., 2018) dataset. Given the answer
is Location H , to ask where is T located, the model
needs a bridging evidence to know that T is located in
C, and C is located in H (T → C → H). This is done
by multi-hop reasoning.

single-hop reasoning (Zhou et al., 2017; Zhao et al.,
2018). Little effort has been put in multi-hop QG,
which is a more challenging task. Multi-hop QG re-
quires aggregating several scattered evidence spans
from multiple paragraphs, and reasoning over them
to generate answer-related, factual-coherent ques-
tions. It can serve as an essential component in
education systems (Heilman and Smith, 2010; Lind-
berg et al., 2013; Yao et al., 2018), or be applied
in intelligent virtual assistant systems (Shum et al.,
2018; Pan et al., 2019). It can also combine with
question answering (QA) models as dual tasks to
boost QA systems with reasoning ability (Tang
et al., 2017).

Intuitively, there are two main additional chal-
lenges needed to be addressed for multi-hop QG.
The first challenge is how to effectively iden-
tify scattered pieces of evidence that can con-
nect the reasoning path of the answer and ques-
tion (Chauhan et al., 2020). As the example shown

https://github.com/HLTCHKUST/MulQG
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in Table 1, to generate a question asking about “Ma-
rine Air Control Group 28” given only the answer

“Havelock, North Carolina”, we need the bridging
evidence like “Marine Corps Air Station Cherry
Point”. The second challenge is how to reason over
multiple pieces of scattered evidence to generate
factual-coherent questions.

Previous works mainly focus on single-hop QG,
which use neural network based approaches with
the sequence-to-sequence (Seq2Seq) framework.
Different architectures of encoder and decoder have
been designed (Nema et al., 2019; Zhao et al., 2018)
to incorporate the information of answer and con-
text to do single-hop reasoning. To the best of
our knowledge, none of the previous works ad-
dress the two challenges we mentioned above for
multi-hop QG task. The only work on multi-hop
QG (Chauhan et al., 2020) uses multi-task learning
with an auxiliary loss for sentence-level supporting
fact prediction, requiring supporting fact sentences
in different paragraphs being labeled in the training
data. While labeling those supporting facts requires
heavy human labor and is time-consuming, their
method cannot be applied to general multi-hop QG
cases without supporting facts.

In this paper, we propose a novel architecture
named Multi-Hop Encoding Fusion Network for
Question Generation (MulQG) to address the afore-
mentioned challenges for multi-hop QG. First of
all, it extends the Seq2Seq QG framework from
sing-hop to multi-hop for context encoding. Ad-
ditionally, it leverages a Graph Convolutional Net-
work (GCN) on an answer-aware dynamic entity
graph, which is constructed from entity mentions in
answer and input paragraphs, to aggregate the po-
tential evidence related to the questions. Moreover,
we use different attention mechanisms to imitate
the reasoning procedures of human beings in multi-
hop generation process, the details are explained in
Section 2.

We conduct the experiments on the multi-hop
QA dataset HotpotQA (Yang et al., 2018) with
our model and the baselines. The proposed model
outperforms the baselines with a significant im-
provement on automatic evaluation results, such as
BLEU (Papineni et al., 2002). The human evalua-
tion results further validate that our proposed model
is more likely to generate multi-hop questions with
high quality in terms of Fluency, Answerability and
Completeness scores.

Our contributions are summarized as follows:

• To the best of our knowledge, we are the first
to tackle the challenge of multi-hop reasoning
over paragraphs without any sentence-level
information in QG tasks.

• We propose a new and effective framework for
Multi-hop QG, to do context encoding in mul-
tiple hops(steps) with Graph Convolutional
Network (GCN).

• We show the effectiveness of our method on
both automatic evaluation and human evalu-
ation, and we make the first step to evaluate
the model performance in multi-hop aspect.

2 Methodology

The intuition is drawn from human’s multi-hop
question generation process (Davey and McBride,
1986). Firstly, given the answer and context, we
skim to establish a general understanding of the
texts. Then, we find the mentions of entities in
or correlated to the answer from the context, and
analyse nearby sentences to extract useful evidence.
Besides, we may also search for linked information
in other paragraphs to gain a further understanding
of the entities. Finally, we coherently fuse our
knowledge learned from the previous steps and
start to generate questions.

To mimic this process, we develop our MulQG
framework. The encoding stage is achieved by a
novel Multi-hop Encoder. At the decoding stage,
we use maxout pointer decoder as proposed in Zhao
et al. (2018). The overview of the framework is
shown in Figure 1.

2.1 Multi-hop Encoder

Our Multi-hop Encoder includes three modules:
(1) Answer-aware context encoder (2) GCN-based
entity-aware answer encoder (3) Gated encoder
reasoning layer.

The context and answer are split into word-level
tokens and denoted as c = {c1, c2, ..., cn} and
a = {a1, a2, ..., am}, respectively. Each word
is represented by the pre-trained GloVe embed-
ding (Pennington et al., 2014). Furthermore, for the
words in context, we also append the answer tag-
ging embeddings as described in Zhao et al. (2018).
The context and answer embeddings are fed into
two bidirectional LSTM-RNNs separately to obtain
their initial contextual representations C0 ∈ Rd×n

and A0 ∈ Rd×m, in which d is the hidden state
dimension in LSTM.
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Figure 1: Overview of our MulQG framework. In the encoding stage, we pass the initial context encoding C0 and
answer encoding A0 to the Answer-aware Context Encoder to obtain the first context encoding C1, then C1 and
A0 will be used to update a multi-hop answer encoding A1 via the GCN-based Entity-aware Answer Encoder, and
we use A1 and C1 back to the Answer-aware Context Encoder† to obtain C2. The final context encoding Cfinal

are obtained from the Encoder Reasoning Gate which operates over C1 and C2, and will be used in the max-out
based decoding stage.

GCN

...

mask

Bidirectional	Attention

Figure 2: The illustration of GCN-based Entity-aware
Answer Encoder.

2.1.1 Answer-aware Context Encoder

Inspired by the co-attention reasoning mecha-
nism in previous machine reading comprehension
works (Xiong et al., 2016), we compute the answer-
aware context representation via the following
steps:

S = CT
0 A0 ∈ Rn×m (1)

S′ = softmax(S) ∈ Rn×m (2)

S′′ = softmax(ST ) ∈ Rm×n (3)

A′0 = C0 · S′ ∈ Rd×m (4)

C̃1 = [A0;A
′
0] · S′′ ∈ R2d×n (5)

C1 = BiLSTM([C̃1;C0]) ∈ Rd×n (6)

Firstly, we compute an alignment matrix S
(Eq.1), and normalize it column-wise and row-
wise to get two attention matrices S′ (Eq.2) and S′′

(Eq.3). S′ represents the relevance of each answer
token over the context, and S′′ represents the rele-
vance of each context token over the answer. The
new answer representation A′0 w.r.t. the context
is obtained by Eq.4. Next, the answer dependent
context representation is calculated by concatenat-
ing old and new answer representations and times
the attention weight matrix S′′ (Eq.5). Finally, to
deeply incorporate the interaction between answer
and context, we feed the answer dependent rep-
resentation C̃1 combined with original C0 into a
bi-directional LSTM and obtain the answer-aware
context encoding C1 (Eq.6).

2.1.2 GCN-based Entity-aware Answer
Encoder

As shown in Figure 2, in order to obtain the multi-
hop answer representation, we first compute the
entity encoding from the answer-aware context en-
coding C1, then we apply GCN to propagate multi-
hop information on the answer-aware sub-graph.
Finally we obtain the updated answer encoding A1

via bi-attention mechanism.

Entity Graph Construction The entity graph
is constructed with the name entities in context
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as nodes, where we use BERT-based name entity
recognition model to recognize name entities from
the context. The edges are created for the entity
pairs if they are in the same sentence, or appear
in the same paragraphs. We also connect the enti-
ties from each paragraph title to entities within the
same paragraph.

Entity Encoding With the answer-aware context
encoding C1 obtained from Answer-aware Context
Encoder, we use a mapping matrix M to calcu-
late the entity encoding. M is a binary matrix
where Mi,j = 1 if the i-th token in the context
is within the span of the j-th entity. Each entity’s
encoding will be calculated via a mean-max pool-
ing applied over it’s corresponding context token
encoding span. E0 = {e1, e2, ..., eg} ∈ R2d×g,
where g is the number of entities, and 2d is the
dimension since we directly concatenate the mean-
pooling and max-pooling encoding.

Answer-aware GCN First we calculate an
answer-aware sub-graph, where irrelevant entities
are masked out, only those entity nodes related
to answer are allowed to disseminate informa-
tion. Similar to Xiao et al. (2019), a soft mask
M = [m1,m2, ...,mg] is calculated via Eq. 7,
where each mi indicate the relatedness of the entity
i to the answer, and then apply M on the original
graph entities to obtain answer-aware dynamic sub
entities graph Esub via Eq. 8.

M = σ(aT0 · V · E0) ∈ R1×g (7)

Esub =M · E0 (8)

where V is a linear projection matrix and a0 is the
mean pooling over answer encoding A0, and σ is
sigmoid function.

Then we calculate the answer-aware sub-graph’s
attention matrix as described in Veličković et al.
(2017) AG = {αi,j} ∈ Rg×g, where αi,j repre-
sents the information that will be assigned from
entity i to it’s neighbor j, and obtain the one-layer
information propagation over the sub-graph via:

E1 = ReLU(AG · Esub) (9)

The computation from Eq. 9 can be repeated for
multiple times to obtain multi-hop entity represen-
tation EM .

Multi-hop Answer Encoding we use bi-
attention mechanism (Seo et al., 2016) regarding

entities on the sub-graph as memories to update
our multi-hop answer encoding A1 via:

A1 = BiAttention(A0, EM ) (10)

2.1.3 Encoder Reasoning Gate
We apply a gated feature fusion module on the
answer-aware context representations C1 and C2

from previous context encoder hops, to keep and
forget information to form the final context repre-
sentation Cfinal via:

Cfinal = gt � C1+(1−gt)� C2 (11)

gt = σ(wT
2 C2+w

T
1 C1+w

T
0 C0+b) (12)

2.2 Maxout Pointer Decoder
Uni-directional LSTM model is utilized as the de-
coder of our model. Moreover, we introduce the
Maxout Pointer proposed by Zhao et al. (2018)
into the decoder for sake of reducing the repeti-
tions in the generation. Pointer Generator enables
the decoder to generate the next output token by
either computing from the generative probabilistic
distribution over the vocabulary or copying from
the input sequence. To compute the copy score,
the attention over the input sequence which has a
vocabulary of V from the current decoder hidden
state is leveraged. For the Maxout Pointer Gener-
ator, instead of leveraging all the attention score
over the input tokens, only the maximal is taken
into consideration to avoid the repetitions caused
by the input tokens (as it’s shown in Eq. 13, where
at,k annotates the decoder-encoder attention score).

sccopy =

 max
k,where xk=yt

at,k , yt ∈ V

−inf , otherwise
(13)

2.3 Breadth-First Search Loss
In addition to the cross-entropy loss, we also in-
troduce Breadth-First Search (BFS) Loss (Xiao
et al., 2019) which is a weakly supervised loss to
further assist the training procedure. Given the
answer entities, we conduct the BFS over the adja-
cent matrices of the entity graph we build to obtain
heuristic masks as a weak supervision signal. The
BFS loss is calculated via binary cross-entropy loss
between the predicted soft masksM in GCN-based
Entity-aware Answer Encoder (Section 2.1.2) and
the heuristic masks using Eq. 14 to encourage the
model to learn the answer-aware dynamic entity
graph better.

Loss = LCrossEntropy + λLBFS (14)
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Model n-gram QBLEU4 Answer-
abilityBLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

RefNet1
(Nema et al., 2019) 29.79 19.58 14.41 11.10 30.94 18.59 51.80 70.40

MP-GSN∗
(Zhao et al., 2018) 34.38 23.00 17.05 13.18 31.85 19.67 48.10 64.60

MulQG 40.08 26.58 19.61 15.11 35.35 20.24 53.90 72.70
MulQG + BFS loss 40.15 26.71 19.73 15.20 35.30 20.51 54.00 72.80

Table 2: Performance comparison between our MultQG model and state-of-the-art QG models on HotpotQA test
set. 1The results are obtained with the original implementation of RefNet model. We also follows all the hyper-
parameter settings as they are described in the paper.

Setting n-gram QBLEU4 Answer-
abilityBLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

MulQG
(our model) 40.08 26.58 19.61 15.11 35.35 20.24 53.90 72.70

MulQG
(1-layer GCN) 37.55 25.44 18.95 14.70 34.21 20.56 53.60 72.10

w/o GEAEnc 36.62 24.80 18.50 14.36 33.53 20.39 52.10 70.50
w/o GEAEnc + ACEnc 37.85 26.19 20.15 16.21 33.35 17.86 53.40 71.90
w/o ERG 36.33 24.47 18.14 14.01 33.44 20.28 53.20 71.70
w/o GEAEnc + ACEnc + ERG 34.01 22.95 17.09 13.26 31.90 19.90 52.40 70.70

Table 3: Ablation Study of QG performances on HotpotQA test set, with different encoder modules removed.
(Here GEAEnc: Graph-based Entity-aware Answer Encoder, ACEnc: Answer-aware Context Encoder†, ERG:
Encoder Reasoning Gate)

where λ here is a heuristic number and can be
selected using cross-validation.

3 Experiment

3.1 Dataset

To demonstrate the performance of our model, we
conduct the experiments using HotpotQA (Yang
et al., 2018) dataset in an opposite manner. In the
QG task, paragraphs and the answers are consid-
ered as input, while the corresponding questions
are the expected output. HotpotQA is a multi-
hop question answering dataset, which contains
Wikipedia-based question-answer pairs, with each
question requiring multi-hop reasoning across mul-
tiple paragraphs to infer the answer. There are
mainly two types of multi-hop reasoning in the
HotpotQA dataset: bridge and comparison. Fo-
cusing on the multi-hop ability of our model, we
filter out all the yes/no data samples in the dataset
and run our experiments using the remaining corre-
sponding train and test set, which consists of 73k
questions in the training set and 8k in the test set.

3.2 Baselines

Since multi-hop QG has been under explored so
far, there are very few existing baselines for our
comparison. We choose the following two models

because of their high relevance with our task and
relatively superior performance:

MP-GSN is the first QG model to demonstrate
a large improvement with paragraph-level inputs
for single-hop QG proposed by Zhao et al. (2018).
While they conducted their experiments on SQuAD
(Rajpurkar et al., 2016), we use exactly the same
experiment settings provided in their configuration
file on HotpotQA dataset.

RefNet is the first work that has reported results
on HotpotQA dataset for QG proposed by Nema
et al. (2019). However, their inputs based on the
gold supporting sentences, which contains the facts
related to the multi-hop question, and no paragraph-
level results have been shown. We experiment with
the code they released on paragraphs-level, and test
their model’s performance on both their validation
set and test set of HotpotQA dataset.

We also fine-tuned large pre-trained lan-
guage models UniLM (Dong et al., 2019) and
BART (Lewis et al., 2019) on the multi-hop QG
task as comparison benchmark, to further show the
effectiveness of our method. The details and the
results will be covered in Appendix.
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Model Fluency Answerability Completeness Multi-hop
Baseline 2.26 (0.50) 2.08 (0.87) 2.30 (0.79) 51.5%
Ours 2.46 (0.43) 2.49 (0.61) 2.83 (0.33) 72.3%
Human 2.57 (0.43) 2.67 (0.41) 2.86 (0.26) 81.2%

Table 4: The results of Human Evaluation. The mean values and the standard deviations of the first three evaluation
scores, along with the percentage of questions assessed as multi-hop type are shown above.

3.3 Implementation Details

Our word embeddings are initialized by
glove.840B.300d (Pennington et al., 2014)
and we keep our vocab size as 45000. We use
two-layer bi-directional LSTMs for encoder and
two-layer uni-directional LSTMs for decoder, and
the hidden size is 300 for all the models. We use
stochastic gradient descent (SGD) as the optimizer.
The initial learning rate is 0.1, and it is reduced
during the training stage using a cosine annealing
scheduler (Loshchilov and Hutter, 2016). The
batch size is 12 and the beam size is 10. We set
the dropout probability for LSTM to 0.2 and 0.3
for GCN. The maximum number of epochs is set
to 20. We set the maximum number of entities
in each context to 80, and we use a two-layer
GCN in our GCN-based answer encoder module.
After training the model for 10 epochs, we further
fine-tune the MulQG model with the help of BFS
loss, where the λ in Eq.14 is set to 0.5.

3.4 Automatic Evaluation

3.4.1 Metrics

We use the metrics in previous work on single-hop
QG to evaluate the generation performance of our
model, with n-gram similarity metrics BLEU1 (Pa-
pineni et al., 2002), ROUGE-L (LIN, 2004), and
METEOR using the package released in Lavie
and Denkowski (2009). We also quantify the
QBLEU4 (Nema and Khapra, 2018a) and answer-
ability score of our models, which was shown to
correlate significantly better with human judge-
ments (Nema and Khapra, 2018b).

3.4.2 Results and Analysis

Table 2 shows the performance of various models
on the HotpotQA test set. We report the both results
of the experiments on our proposed model before
and after fine-tuning with auxiliary BFS loss. As
it’s shown in the table, our MulQG model perform
much better than the two baselines methods, with

1https://github.com/Maluuba/nlg-eval

regard to all those measuring metrics, which indi-
cates that the multi-hop procedure can significantly
boost the quality of the encoding representations
and thus improve the multi-hop question genera-
tion performance. Also the BFS loss can further
improve the system performance by encouraging
learning the answer-aware dynamic entity graph
better, which is a key and bottleneck module in the
MulQG model.

3.4.3 Ablation Study
To further evaluate and investigate the performance
of different components in our model, we perform
the ablation study. As we can see from Table 3,
both the GCN-based entity-aware answer encoder
module and Gated Context Reasoning module are
important to the model. Each of them provides a
relative contribution of 2%-3% for overall perfor-
mance improvement.

w/o GEAEnc: Without GCN-based Entity-
aware Answer Encoder, answer-related multi-hop
evidence information cannot be identified. With-
out multi-hop answer encoding being updated, next
step’s answer-aware context encoding will be af-
fected and thus the performance will drop a lot.

w/o GEAEnc + ACEnc: The performance con-
tinues to decrease but not that much. This matches
with our expectation, since without an informative
input A1 containing multi-hop information from
the GCN-based Entity-aware Answer Encoder, the
Answer-aware Context Encoder† cannot generate
an informative C2. Thus remove it won’t hurt the
performance that much.

w/o ERG: When we remove the Encoder Rea-
soning Gate, the performance drops by around 3%
in BLEU-1. This also matches our intuition since
without effective feature reasoning and fusion, all
the previous encoders cannot generate effective rep-
resentations. Thus the generation performance will
be affected.

w/o GEAEnc + ACEnc + ERG: Without the
three modules, the performance directly drops to
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Example I
Paragraph A:

:::::::::::::::::::
House of Many Ways

::
is

::
a

::::::
young

:::::
adult

:::::::
fantasy

:::::
novel

:::::::
written

:::
by

::::::::::::::::::
Diana Wynne Jones.

:::
The

:::::
story

::
is

:::
set

::
in

::::
the

:::::
same

:::::
world

::
as

::::::::
“Howl’s

::::::::
Moving

::::::
Castle” and “Castle in the Air”.

Paragraph B: Howl’s Moving Castle is a fantasy novel by British author Diana Wynne Jones. ... In
2004 it was adapted as an animated film of the same name, which was nominated for
the academy award for best-animated feature.

Answer: academy award for best animated feature
Baseline: house of many ways is a young adult fantasy novel written by diana wynne jones , the

story is set in the same world as ” howl ’s moving castle
Ours: what award was the author of the book house of many ways nominated for ?
Human: house of many ways is a young adult fantasy novel set in the same world as a novel

that was adapted as an animated film of the same name and nominated for what ?
Example II

Paragraph A: Prudence Jane Goward ( born 2 September 1952 in Adelaide ), an Australian politician,
... she has previously served as the minister for mental health, minister for medical
research, and assistant minister for health between April 2015 and January 2017.
... Goward is a member of the new south wales legislative assembly representing
Goulburn for the liberal party of Australia since 2007.

Paragraph B:
::::::::::::::::::::::::::::
Goulburn is an electoral district

::
of

:::
the

::::::::::
legislative

:::::::::
assembly

::
in

:::
the

::::::::::
Australian

:::::
state

::
of

::::
new

:::::
south

::::::
wales.

::
It

::
is

:::::::::::
represented

::
by

::::
Pru

:::::::
Goward

:::
of

:::
the

::::::
liberal

:::::
party

:::
of

:::::::::
Australia.

Answer: jane goward
Baseline: goulburn is an electoral district of the legislative assembly in the australian state of

new south wales , it is represented by pru goward of the liberal party of australia
Ours: which member of the electoral district of goulburn has previously served as the minister

for mental health?
Human: which australian politician represented electoral district of goulburn

Example III
Paragraph A: Jeremy Lee Renner (born January 7, 1971) is an

:::::::::
American

:::::
actor. ... He was nominated

for the academy award for best supporting actor for his much-praised performance in
“The Town”.

Paragraph B: Arrival is a
::::
2016

::::::::::
American

:::::::
science

::::::
fiction

::::
film

::::::::
directed

:::
by

::::::
Denis

::::::::::
Villeneuve ... It

stars Amy Adams, Jeremy Renner, and Forest Whitaker, ...
Answer: jeremy renner
Baseline: which american actor starred in the 2016 american science fiction film directed by

denis villeneuve ?
Ours: which star of the movie arrival was nominated for the academy award for best sup-

porting actor for his performance in “ the town ”?
Human: name the actor who has acted in the film arrival and who has been nominated for the

academy award for best supporting actor for the film “ the town ” ?

Figure 3: Case study of three examples from the HotpotQA test set. The left part of the figure shows the importance
of the entitie nodes, where he left column in red indicates the answer entities and the right colume in blue displays
the importance of the entities of graph reasoning at the starting point by the shade of color. The tables show the
generated questions from different models along with the corresponding paragraphs and the answer. Moreover, we
highlight the reasoning paths of our proposed model in green for a more intuitive display. We also use

:::::
wavy

::::
lines

to mark out the snippets of the paragraphs that the questions generated by the MP-GSN model derive from.

single-hop QG system level, which proves the con-
tributions of the whole proposed model.

MulQG (1-layer GCN): When apply 1-layer
GCN and only allow information propagation being
limited to each node’s neighbor, the answer-related
evidences might not be able to be fully obtained,
thus the performance are not as good as our 2-layer
GCN-based model.

3.5 Human Evaluation

Human evaluation is conducted to further analyze
the performance of our model (Table 4). We com-
pare the generated questions from MP-GSN model,
our model and gold ones on four metrics: Fluency,
Completeness, Answerability and whether the gen-
erated questions are multi-hop question or not.
Fluency emphasizes the grammar correctness of

the question, while Completeness only focuses on
the sentence completeness. Answerability mainly
indicates the relationship between the answers and
the generated questions. For the first three index,
the score for each data sample could be chosen
from {1,2,3} in comparison with the other samples
generated from the other two models with the same
input, where a higher score indicates a better perfor-
mance on that matrix, For the multi-hop evaluation,
we only carry out binary discrimination. We ran-
domly sample 100 data samples from the test set.
Ten annotators are asked in total to evaluate them
on the aforementioned four metrics. Each sample
is evaluated by three different annotators.

To present a more convincing analysis, we con-
duct the t-test on the human evaluation results. All
the reported results between our proposed model
and the baseline are statistically significant with a p-
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value<0.05. We also calculate the inter-annotator
agreement using Fleiss’ Kappa (Fleiss, 1971) mea-
sure and achieve high agreement scores on the pro-
posed model. We observe that our MulQG model
largely outperforms the MP-GSN model in terms
of Fluency, Answerability and Completeness with
more stable quality. Moreover, our model tends
to generate more complete question and achieve
comparable completeness score with the human
annotations. For the multi-hop evaluation, we out-
perform the strongest baseline by 20.8% on the
multi-hop evaluation.

3.6 Case Study

We present a case study comparing between the
strong baseline MP-GSN model, our model and the
human annotations. Three cases are presented in
Figure 3. In the first two examples, it’s clearly
shown in the examples that the baseline model
tends to copy a contiguous and long span of context
as the generation, while our proposed model per-
forms better in this aspect. we observe that since
the supporting fact information is not leveraged
in our method, the generated questions from our
model may show a different reasoning path with
that for the gold question. There could be multiple
ways to construct a multi-hop question given the
same input. So the generations may be much dif-
ferent from the gold label, although they are still
correct questions, which could be indicated from
the first two examples. This phenomenon causes a
lower score in automatic matrices, such as BLEU
and METEOR, but we note that the generated ques-
tions still follow the multi-hop scheme and can be
answered with the given answers.

In Example III, we show the data sample in an
easier mode. In this case, while the answer entity is
in one paragraph, a similar entity (annotated with
orange color) also appears in another paragraph,
which gives a strong clue of the reasoning path and
makes it easier for the model to attend to both para-
graphs. The generations from our model and the
human annotation show almost the same reason-
ing path. However, we observe that the question
generated by MP-GSN model still tends to attend
to the entities that are closer to the answer entities.
Moreover, for the human annotation in Example I
and Example III, the gold questions have a problem
with fluency, which is harmful for the QG mod-
els, but interestingly, even with training using these
labels, our model is still capable of generating rela-

tively fluent outputs.

4 Related Work

Question Generation Early single-hop QG use
rule-based methods to transform sentences to ques-
tions (Labutov et al., 2015; Lindberg et al., 2013).
Recently neural network based approaches adopt
the sequence-to-sequence (Seq2Seq) based frame-
work, with different types of encoders and de-
coders have been designed (Zhou et al., 2017;
Nema et al., 2019; Zhao et al., 2018). Zhao et al.
(2018) proposes to incorporate paragraph level con-
tent by using Gated Self Attention and Maxout
pointer networks, while Nema et al. (2019) pro-
poses a model which contains two decoders where
the second decoder refines the question generated
by the first decoder using reinforcement learning.
There are different ways to attend answer infor-
mation to the context encoding stage. Zhou et al.
(2017) and Liu et al. (2019) directly concatenate
answer tagging with the context embedding, while
Nema et al. (2019) also applies bi-attention mech-
anism proposed by Seo et al. (2016) for QA to do
answer-aware context representation. Chen et al.
(2019) is the most recent work which proposes
a reinforcement learning based graph-to-sequence
(Graph2Seq) model which use a bidirectional graph
encoder on a syntax-based graph for QG, while they
still focus on the single-hop QG.

Multi-hop QA Popular Graph Nueral Network
(GNN) frameworks, such as graph convolutional
networks (Kipf and Welling, 2016), graph atten-
tion network (Veličković et al., 2017), and graph
recurrent network (Song et al., 2018) have been ex-
plored and showed promising results on multi-hop
QA task that requiring reasoning. Xiao et al. (2019)
proposes a dynamic fused graph network to work
on multi-hop QA on the HotpotQA dataset. De Cao
et al. (2018) proposes an entity-GCN method to rea-
son over across multiple documents for multi-hop
QA on the WIKIHOP dataset (Welbl et al., 2018).

5 Conclusion

Multi-hop QG task is more challenging and worthy
of exploration compared to conventional single-
hop QG. To address the additional challenges in
multi-hop QG, we propose MulQG, which does
multi-hop context encoding with Graph Convolu-
tional Network and encoding fusion via a Gated
Reasoning module. To the best of our knowledge,
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we are the first to tackle the challenge of multi-hop
reasoning over paragraphs without any sentence-
level information. The model performance on Hot-
potQA dataset demonstrates its effectiveness on
aggregating scattered pieces of evidence across the
paragraphs and fusing information effectively to
generate multi-hop questions. The strong reason-
ing ability of the Multi-hop Encoder in the MulQA
model can potentially be leveraged in complex gen-
eration tasks for the future work.
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A Appendix

A.1 Detailed Experiment Settings
We run our experiments on 1 GeForce® GTX 1080
Ti GPU, with batch size to 12. The average run-
time for our model is around 7500s for one epoch.
The total numbers of parameters for our model is
: 84250510, while we freeze the word embedding
parameters, so our total number of parameters need
to be optimized is 57250510. We run the baselines
also on the same computing environment, using the
configuration file they provided. For the Maxout
Pointer baseline, we use a batch size of 16 to fit
with our GPU memory.

A.2 Comparison with fine-tuning large
pre-trained language models

In order to further show the effectiveness of our
method, we further fine-tuned UniLM (Dong et al.,
2019) and BART (Lewis et al., 2019) on the multi-
hop QG task. UniLM and BART has obtained state-
of-the-art performance on the summarization tasks
and also on question generation task on SQuAD
(Rajpurkar et al., 2016) dataset.

As we can see from Table A1, the performance
of our model is on par with fine-tuning the large-
pretrained models on the multihop QG tasks. While
our model is much more light-weight and can pro-
vide explicit reasoning interpretability.
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR
Finetune-UniLM(l48 p0 b1) 42.37 29.95 22.61 17.61 40.34 25.48

Finetune-BART(test.hypo.l32 p0 b5) 41.41 30.90 24.39 19.75 36.13 25.20
MulQG 40.08 26.58 19.61 15.11 35.35 20.24

MulQG + BFS loss 40.15 26.71 19.73 15.20 35.30 20.51

Table A1: Performance comparison between our MultQG model and fine-tuning state-of-the-art large pre-trained
models on HotpotQA test set.


