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Abstract

Target sentiment analysis aims to detect opin-
ion targets along with recognizing their senti-
ment polarities from a sentence. Some mod-
els with span-based labeling have achieved
promising results in this task. However, the
relation between the target extraction task
and the target classification task has not been
well exploited. Besides, the span-based tar-
get extraction algorithm has a poor perfor-
mance on target phrases due to the maximum
target length setting or length penalty fac-
tor. To address these problems, we propose
a novel framework of Shared-Private Repre-
sentation Model (SPRM) with a coarse-to-fine
extraction algorithm. For jointly learning tar-
get extraction and classification, we design a
Shared-Private Network, which encodes not
only shared information for both tasks but also
private information for each task. To avoid
missing correct target phrases, we also propose
a heuristic coarse-to-fine extraction algorithm
that first gets the approximate interval of the
targets by matching the nearest predicted start
and end indexes and then extracts the targets
by adopting an extending strategy. Experimen-
tal results show that our model achieves state-
of-the-art performance.

1 Introduction

Target sentiment analysis aims to detect the opin-
ion targets explicitly mentioned in the sentences,
referred to as target extraction, and predict the sen-
timent polarities over the opinion targets, referred
to as target classification. For example, in the sen-
tence “I love Windows 7 which is a vast improve-
ment over Vista.”, the user mentions two opinion
targets, namely, “Windows 7” and “Vista”, and ex-
presses positive sentiment over the first target, and
negative sentiment over the second one.

∗Corresponding Author: Meng Yang

Traditional methods formulated the jointly target
extraction and classification task as a sequence la-
beling task. Under the scheme of sequence tagging,
some prevalent models, including Conditional Ran-
dom Field (CRF) (Mitchell et al., 2013; Zhang
et al., 2015; Li and Lu, 2017), Gated Recurrent Unit
(GRU) (Ma et al., 2018), Long Short-Term Mem-
ory (LSTM) (Li et al., 2019a), Convolutional Neu-
ral Network (CNN) (He et al., 2019) and Bidirec-
tional Encoder Representations from Transformers
(BERT) (Li et al., 2019b), are applied. Although
these methods have achieved improved results, they
suffer from the sentiment inconsistency problem of
sequence tagging scheme.

To address it, some methods with span-based
labeling, which can assure the sentiment consis-
tency within a span, have been proposed (Zhou
et al., 2019; Hu et al., 2019). (Zhou et al., 2019)
proposed a span-based loss to predict whether the
target within a span is correct. (Hu et al., 2019) pro-
posed a span-based model, which first predict the
boundary of the targets and then predict the senti-
ment polarities based on the corresponding features.
Although deep learning methods, especially span-
based methods, have achieved promising results,
there are still some issues:

1) The relation between target extraction and tar-
get classification is not well exploited. Previous
methods applied either a shared encoding module
(Ma et al., 2018) or two private encoding modules
(Luo et al., 2019; Hu et al., 2019) to learn features
for target extraction and target classification, thus
weakening the ability to represent the relation be-
tween the two tasks. As shown in Fig. 1, there exist
shared and private information between target ex-
traction and target classification. Specifically, the
semantic and syntactic information are essential
for both tasks, so they are shared information. On
the other hand, as for the target extraction sub-task,
some information like noun and pronoun informa-
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Figure 1: An example of shared and private informa-
tion of target extraction and target classification

tion can be exploited but may interfere with tar-
get classification. Similarly, sentiment information
may only be useful for target classification.

2) The span-based extraction algorithm still per-
form poorly on extracting target phrases. (Zhou
et al., 2019) faces the trade-off problem between
search space and target length. When it sets a
small maximum target length, it may miss long
target phrases. Conversely, setting a large maxi-
mum length will bring huge search space and many
negative candidates. (Hu et al., 2019) adopts a
heuristic algorithm a length penalty to avoid over-
long targets. However, the length penalty make the
model be incline to ignore target phrases.

To solve these issues, we propose a novel
framework, namely Shared-Private Representation
Model (SPRM) with a coarse-to-fine extraction al-
gorithm. Inspired by (Bousmalis et al., 2016; Liu
et al., 2016; Chen et al., 2018), we design a Shared-
Private Network, which contains a shared encoding
layer, namely Shared BERT (Devlin et al., 2018),
and two private encoding layers, namely Target
Extraction Long Short Term Memory (TE-LSTM)
and Target Classification Long Short Term Memory
(TC-LSTM). The two private networks can provide
task-specific features and improve the ability of
modeling the two sub-tasks. Moreover, we propose
a coarse-to-fine extraction algorithm, which obtains
the approximate intervals of targets by matching
predicted start/end boundaries and then applies an
extending strategy instead of a penalty factor for ex-
tracting target phrases correctly. The experiments
on three benchmark datasets show that our model

achieves state-of-the-art performance. Our contri-
butions are summarized as follows:

• A Shared-Private Network is designed to learn
the shared and private representations for both
of the two sub-tasks;

• A coarse-to-fine extraction algorithm is pro-
posed for target extraction to better extract
target phrases;

• Experimental results show our model achieves
start-of-the-art performance.

2 Related Work

(Mitchell et al., 2013) formulated the task of target
sentiment analysis as a sequence tagging problem
and proposed to use Conditional Random Field
(CRF) with hand-crafted linguistic features. In
the proposed method, three ways are designed to
solve the problem, namely, pipeline way, collapsed
way, and joint way. The pipeline way uses two
independent models to extract targets and predict
the sentiment of the extracted targets separately. As
for the joint way, there are shared modules between
the two sub-tasks that are jointly trained. Finally,
the collapsed model combines the label of target
extraction and target classification into the same
label space, and predicts the collapsed label.

Based on (Mitchell et al., 2013), rule-based meth-
ods (Zhang et al., 2015; Li and Lu, 2017) and deep-
learning-based methods (Ma et al., 2018; Li et al.,
2019a; Luo et al., 2019; He et al., 2019) have been
proposed to solve target sentiment analysis task
with the sequence tagging scheme. Although these
methods have achieved improved results, they suf-
fer from the problem of huge search space and sen-
timent inconsistency of sequence tagging scheme
(Hu et al., 2019).

To address it, some span-based models were pro-
posed (Zhou et al., 2019; Hu et al., 2019), which
solved the target sentiment analysis task by pre-
dicting the span of the targets. (Zhou et al., 2019)
proposed a span-based loss to predict whether the
target candidate with a span is a correct target.
(Hu et al., 2019) proposed an extract-then-classify
framework, which first extracts targets using a
heuristic multi-span decoding algorithm and then
classifies their polarities with corresponding sum-
marized span representations. Compared to (Zhou
et al., 2019), the extraction method proposed by
(Hu et al., 2019) has solved the problem of huge



4282

Private TE-LSTM Shared BERT Private TC-LSTM

Embedding

TE Layer TC Layer

Figure 2: The overall architecture of SPRM. “TE” and
“TC” denote “Target Extraction” and “Target Classifi-
cation”, respectively.

search space better and achieve better results. How-
ever, there are still some issues with it. For instance,
(Hu et al., 2019) simply implements the joint model
by employing a shared backbone for the two sub-
tasks, which ignores the private information of each
task. In addition, the heuristic multi-span decoding
algorithm involves manually-setting thresholds for
different datasets, and a length penalty factor for
avoiding overlong targets, which is not suitable for
extracting target phrases.

3 Model

To solve the aforementioned issues, we simultane-
ously learn shared and private features for the target
extraction and classification in a unified framework,
in which a coarse-to-fine extraction algorithm is
designed. In this paper, we propose a novel model
of Shared-Private Representation Model (SPRM)
shown in Fig. 2, which encodes the shared and pri-
vate information of the target extraction sub-task
and the target classification sub-task effectively at
a lower cost. Specifically, a Shared BERT Net-
work is designed to encode as much shared in-
formation of both sub-tasks as possible, and two
Private BiLSTMs are introduced to get the supple-
mentary private representations for each task with
fewer parameters than BERT. Moreover, we design
a coarse-to-fine algorithm that first gets the approxi-
mate interval of the targets by matching the nearest
predicted start and end indexes without any thresh-
olds and then gets the final targets by extending
the interval if the adjacent words are predicted as
start/end boundaries. With the algorithm, targets
can be extracted with reasonable length, since the
nearest strategy avoids overlong targets while the
extending strategy avoids missing target phrases.

3.1 Shared-Private Model

The overall architecture of Shared-Private Model
is shown in Fig 2, which is composed by six com-
ponents: an embedding layer, two Private BiLSTM
networks for target extraction and target sentiment

classification, a Shared BERT Network for both
two sub-tasks, and the final layers of target extrac-
tion and target classification.

Given the sentence input, the embedding layer
process it with the tokenization process and word-
piece embeddings of BERT (Devlin et al., 2018),
and obtain the input embeddings E ∈ Rn×de ,
where n is the length of the processed sequence
and de is the size of embedding vectors.

For target sentiment analysis, both shared infor-
mation of both sub-tasks and private information of
each sub-tasks should be considered. Therefore, a
shared network is designed to encode shared infor-
mation between the two sub-tasks, such as semantic
and syntactic information of the input sentence.

V s = f(E) (1)

where f(·) is the function of learning shared fea-
tures and V s is the learned feature.

At the same time, the task-specific private infor-
mation of target extraction (e.g., whether a word
is a noun) and target classification (e.g., sentiment
information of each word) should be learned in
private modules.

V te = gte(E),V tc = gtc(E) (2)

where gte(·) and gtc(·) are the functions of learning
private features of the target extraction task and
the target classification task, V te and V tc are the
private features.

Based on the shared and private features, fusion
modules are designed to obtain the final features
for the two sub-tasks.

Ṽ te = hte(V s,V te), Ṽ tc = htc(V s,V tc) (3)

where hte(·) and htc(·) are the functions of fusing
shared and private features of the target extraction
task and the target classification task, Ṽ te and Ṽ tc

are the final features, which are fed into output
layers.

Finally, Ṽ te and Ṽ tc are fed into the Target Ex-
traction Layer (TE-Layer) and Target Classifica-
tion Layer (TC-Layer) to generate the predictions,
respectively. The model is finally trained by min-
imizing the sum of the target extraction loss and
polarity classification loss:

l = lTE + lTC (4)

where lTE and lTC are the losses of the target ex-
traction task and target classification task. Here,
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we omit an exhaustive description of the TC-Layer
as it’s same as the classification layer applied in
(Hu et al., 2019), and readers can get more details
from (Hu et al., 2019).

In the following subsections, we will detail the
design of the aforementioned components, such as
the shared module, the two private modules, the
combination of shared and private modules, and
the TE-Layer.

3.1.1 Shared BERT

As shared features are used in both target extrac-
tion and target classification, the shared module
needs to have a strong ability of learning a shared
representation. In addition, shared features gener-
ally portray common information between the two
sub-tasks, like semantic and syntactic information,
which also exist in other NLP tasks. Therefore,
the prevalent model of Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2018), which is a pre-trained bidirectional
Transformer encoder that achieves state-of-the-art
performances across a variety of NLP tasks, is cho-
sen as the shared network.

Given the embeddings E, a series of stacked
Transformer blocks are applied to project the input
embeddings into a sequence of contextual vectors
V s ∈ Rn×ds , where ds is the dimension of outputs.

3.1.2 Private BiLSTM

Although the Shared BERT has captured powerful
features for the two sub-tasks, these shared features
are task-invariant but not task-specific. Therefore,
private modules should be designed to learn private
features for the two sub-tasks, respectively.

Since the Shared BERT has extracted as suffi-
cient syntactic and semantic information as possi-
ble with a huge amount of parameters, we adopt
Bidirectional Long Short Term Memory (BiLSTM),
which captures the relationship between words in
a sentence with fewer parameters than BERT, as
the private modules. Specifically, we adopt two
Private BiLSTM networks, namely TE-LSTM and
TC-LSTM, to learn the private features for the tasks
of target extraction and target sentiment classifica-
tion, respectively. Taking the same embeddings E
as inputs, we can obtain the output of BiLSTMs
V te ∈ Rn×2dp and V tc ∈ Rn×2dp , where dp is the
hidden size of the BiLSTM networks.

3.1.3 Combination of Shared and Private
Features

Since the dimension of the Private BiLSTM out-
put is twice than that of the shared BERT, we first
project the outputs of shared and private modules
into the same vector space by employing fully con-
nected layers after the private modules:

V ′te = FCte(V te);V
′
tc = FCtc(V tc) (5)

where V ′te,V
′
tc ∈ Rn×ds . Then we simply apply

concatenation operation to get the final features at
a low cost.

Ṽ te = (V s;V
′
te); Ṽ tc = (V s;V

′
tc) (6)

3.2 Coarse-to-Fine Extraction Algorithm

(Hu et al., 2019) has proposed a heuristic algorithm
based on the span-based labeling scheme and veri-
fied that the span-based labeling scheme performs
better on target extraction compared to sequence
tagging methods. However, the heuristic algorithm
requires a manually-setting threshold for extracting
targets and also has poor performance on target
phrases due to the length penalty factor, which is
designed to avoid overlong targets.

To address these issues, we propose a coarse-
to-fine extraction algorithm. In the coarse-to-fine
algorithm, the approximate interval of a target can
be obtained by matching the nearest predicted start
and end indexes rather than manually setting a
threshold, and then the final target is extracted with
a reasonable length by adopting an extending strat-
egy, which extends the intervals if the adjacent
words are predicted as start/end boundaries.

The implementation of the coarse-to-fine extrac-
tion algorithm is described in detail in the following
subsections, and Table 1 shows how the algorithm
is used in a concrete example. The coarse-to-fine
extraction algorithm consist of three steps:

• Boundary prediction gets the predictions of
start and end positions (Sec. 3.2.1);

• Coarse extraction generates approximate
intervals of target candidates by the near-
est strategy based on the prediction results
(Sec. 3.2.2);

• Fine extraction generates the final targets
with an extending strategy based on the ap-
proximate intervals of candidates (Sec. 3.2.3).
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Input
Example ... easy to integrate bluetooth devices, and USB devices are recognized ...

ID ... 0 1 2 3 4 5 6 7 8 9 10 11 ...
Tokens ... easy to integrate blue ##tooth devices , and usb devices are recognized ...

Boundary
Prediction

ps - 0.0005 - 0.8040 0.8515 - - - - 0.9875 - - - -
pe - - - 0.0060 - - 0.9494 - - 0.0171 0.8899 - - -

labels - 0 0 1 1 0 0 0 0 1 0 0 0 0
labele - 0 0 0 0 0 1 0 0 0 1 0 0 0

Coarse
Extraction

Boundary
Number

nbs = 3 (3 true labels: {2, 3, 8}), nbe = 2 (2 true labels: {5, 9})
nb = max(nbs, nbe) = 3

Top nb
Start/End

Boundaries

S={2, 3, 8}
E={5, 8, 9}

Target
Candidates

Cs = {(2, 5), (3, 5), (8, 8)}, Ce = {(3, 5), (8, 8), (8, 9)}
C = {(2, 5), (3, 5), (8, 8), (8, 9)}

Fine
Extraction

Extending
Strategy

C ′ = {(2, 5), (8, 9)}

Target
Number

nts = 2 (2 intervals: [2, 3] and [8, 8]), nte = 2 (2 intervals: [5, 5] and [9, 9])
nt = round((nts + nte)/2) = 2

Top nt
Targets

O = {(2, 5), (8, 9)}

Output Targets [“integrate bluetooth devices”, “usb devices”]

Table 1: An example for coarse-to-fine extraction algorithm. The input words are represented as their ids.

3.2.1 Boundary Prediction
As we have mentioned in Sec. 3.1, Ṽ te is fed into
the TE-Layer to generate the predictions, and then
the loss of the target extraction task lTE is com-
puted. Here, the TE-Layer will be described in
detail.

The start and end scores for each word in the
sequence can be obtained by first applying fully
connected layers and then using a sigmoid function:

gs = FCs(Ṽ te), p
s = sigmoid(gs) (7)

ge = FCe(Ṽ te), p
e = sigmoid(ge) (8)

Different to (Hu et al., 2019), we employ a sig-
moid function instead of the softmax function to get
the scores, because the sigmoid function is more
suitable for binary classification, like predicting
whether a word is a start/end here. Given the proba-
bilities of start and end positions of each word, the
corresponding labels denoting whether a word is
the start/end boundary of a target can be computed
by the following steps.

labels =

{
1 if ps ≥ 0.5

0 otherwise

labele =

{
1 if pe ≥ 0.5

0 otherwise

(9)

where ps = {ps1, ps2, . . . , psn} and pe =
{pe1, pe2, . . . , pen} are the start and end scores, re-
spectively. Taking these two scores, the start la-
bels ys = {ys1, ys2, . . . , ysn} and the end labels

ye = {ye1, ye2, . . . , yen} as inputs, we get the loss of
target extraction:

lTE =
n∑
i

(logloss(psi , y
s
i ) + logloss(pei , y

e
i ))

(10)
where logloss(pi, yi) is an error function defined
as follows:

logloss(pi, yi) =

{
−log(pi) if yi = 1

−log(1− pi) if yi = 0
(11)

3.2.2 Coarse Extraction
The coarse extraction step first gets top start/end
boundaries and then generates the original set of
target candidates by the nearest strategy, which
matches the nearest predicted start and end bound-
aries without any thresholds.

Given the predicted labels of start and end posi-
tions, we can get the numbers of tokens predicted
as start/end boundaries, namely nbs and nbe. Since
enough candidates should be extracted to avoid
missing correct candidates, we employ maximum
function to compute the number of the boundaries
nb which should be considered.

nb = max(nbs, nbe) (12)

Therefore, the top nb candidates of start/end bound-
ary from ps and pe are obtained and then the set of
start/end candidates, namely S and E, are gener-
ated.

Since a target generally consists of a few tokens,
we apply nearest strategy to avoid overlong targets.



4285

Using the nearest strategy, we match the nearest
end index in E with each start boundary candidate
to get the start target candidate set Cs. Similarly,
the end target candidate set Ce is also obtained. Fi-
nally, the approximate intervals of target candidates
are obtained.

C = Cs ∪Ce (13)

3.2.3 Fine Extraction
To get the final targets, the fine extraction step first
adopts an extending strategy and then selects tar-
gets based on start/end probabilities and the com-
puted target number.

For target phrases, the boundaries of the nouns
in them are usually predicted as start/end positions,
too. For example, the token ‘blue’ of the target
phrase ‘integrate bluetooth devices’ is predicted
as the start position of a target, as shown in Ta-
ble. 1. Therefore, an extending strategy shown in
Algorithm 1 is designed to extract complete targets.
In the extending strategy, every possible candidate
can be extended on both the left side (line 3-4)
and the right side (line 5-6) if the adjacent word is
predicted as the start or end boundary.

Algorithm 1 Extending Strategy
Input: C: the candidate set; S: the start candidate

set; E: the end candidate set
Output: C ′: the extended candidate set

1: C ′ = {}, O = {}
2: for (si, ei) in C do
3: while si − 1 ≥ 0 and si − 1 ∈ S do
4: si = si − 1

5: while ei − 1 < n and ei + 1 ∈ E do
6: ei = ei + 1

7: C ′ = C ′ ∪ (si, ei)

As is mentioned before, the boundaries of the
nouns in target phrases are usually predicted as
start/end position of a target. Therefore, we can
observe that the model may predict one or a few
start/end positions for a target, which are generally
adjacent to each other. In other words, the numbers
of intervals which contain only labels predicted as
true start/end boundaries can be used to infer the
number of extracted targets nt. Specifically, the
interval numbers of labels and labele, namely
nts, nte, are computed first, and then we use the
average value to estimate the number of the targets
nt.

nt = round((nts + nte)/2) (14)

Dataset #+ #- #0 Total

LAPTOP
Train 987 860 455 2302
Test 339 130 165 634

REST
Train 2,610 1,037 667 4314
Test 1,524 501 264 2289

TWITTER - 703 274 2,266 3,243

Table 2: Dataset statistics. ‘+’, ‘-’, and ‘0’ refer to
the positive, negative, and neutral sentiment classes, re-
spectively.

With the target number nt, we sort the extended
candidate set C ′ in descending order with the addi-
tion of start and end probabilities and then choose
the top nt candidates. Note that the candidates
overlapped by the extracted targets will be removed
while being chosen.

4 Experiments

4.1 Setup

4.1.1 Datasets
We conduct experiments on three benchmark
datasets, as shown in Table. 2. LAPTOP contains
product reviews from the laptop domain in Se-
mEval 2014 (Pontiki et al., 2014). REST is the
union set of the restaurant domain from SemEval
2014, 2015 and 2016 (Pontiki et al., 2015, 2016).
TWITTER is built by (Mitchell et al., 2013), con-
sisting of twitter posts. Following (Zhang et al.,
2015; Li et al., 2019a; Hu et al., 2019), we report
the ten-fold cross-validation results for TWITTER,
as there is no train-test split. For each dataset,
the gold target span boundaries are available, and
the targets are labeled with sentiment polarities,
namely positive (+), negative (-), and neutral (0).

4.1.2 Metrics
We adopt the precision (P), recall (R), and F1 score
as evaluation metrics. A predicted target is correct
only if it exactly matches the gold targets and the
corresponding polarity. To separately analyze the
performance of two sub-tasks, precision, recall,
and F1 are also used for the target extraction sub-
task, while the accuracy (ACC) metric is applied to
polarity classification.

4.1.3 Model Settings
We use the publicly available BERT-Base model as
the shared BERT, and refer readers to (Devlin et al.,
2018) for details on model sizes. The dimension
sizes de, dp and ds are all 768. In addition, we
use Adam optimizer (Kingma and Ba, 2014) with
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Model
LAPTOP REST TWITTER

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Sequence-tagging-based
Method

CRF-pipeline 59.69 47.54 52.93 52.28 51.01 51.64 42.97 25.21 31.73
CRF-joint 57.38 35.76 44.06 60.00 48.57 53.68 43.09 24.67 31.35
CRF-collapsed 59.27 41.86 49.06 63.39 57.74 60.43 48.35 19.64 27.86
NN-CRF-pipeline 57.72 49.32 53.19 60.09 61.93 61.00 43.71 37.12 40.06
NN-CRF-joint 55.64 34.48 45.49 61.56 50.00 55.18 44.62 35.84 39.67
NN-CRF-collapsed 58.72 45.96 51.56 62.61 60.53 61.56 46.32 32.84 38.36
TAG-pipeline 65.84 67.19 66.51 71.66 76.45 73.98 54.24 54.37 54.26
TAG-joint 65.43 66.56 65.99 71.47 75.62 73.49 54.18 54.29 54.20
TAG-collapsed 63.71 66.83 65.23 71.05 75.84 73.35 54.05 54.25 54.12
UNIFIED 61.27 54.89 57.90 68.64 71.01 69.80 53.08 43.56 48.01
DOER - - 60.35 - - 72.78 - - 51.37

Span-based Method

Zhou SPAN 61.40 58.20 59.76 76.20 68.20 71.98 54.84 48.44 51.44
Hu SPAN-pipeline 69.46 66.72 68.06 76.14 73.74 74.92 60.72 55.02 57.69
Hu SPAN-joint 67.41 61.99 64.59 72.32 72.61 72.47 57.03 52.69 54.55
Hu SPAN-collapsed 50.08 47.32 48.66 63.63 53.04 57.85 51.89 45.05 48.11

Our Model SPRM 68.66 68.77 68.72 77.78 80.60 79.17 60.25 58.76 59.45

Table 3: Main results (%) on three benchmark datasets. State-of-the-art results are marked in bold.

LAPTOP REST
SPRM w/o Shared BERT 53.25 70.03
SPRM w/o Private BiLSTMs 66.72 78.78
SPRM w/o Aspect Extraction LSTM 66.20 78.74
SPRM w/o Aspect Classification LSTM 67.92 78.41
SPRM 68.72 79.17

Table 4: F1 results (%) on examining the effectiveness
of Shared-Private Network.

a learning rate of 3e-5 and warmup over the first
10% steps. The batch size is 32 and a dropout
probability of 0.1 is used.

4.1.4 Baselines
We compare SPRM with both sequence-tagging-
based methods and span-based methods. The
sequence-tagging-based methods includes CRF-
{pipeline, joint, collapsed} (Mitchell et al., 2013),
NN-CRF-{pipeline, joint, collapsed} (Zhang et al.,
2015), TAG-{pipeline, joint, collapsed} (Hu et al.,
2019), UNIFIED (Li et al., 2019a), DOER (Luo
et al., 2019). The span-based methods are Zhou
SPAN (Zhou et al., 2019) and Hu SPAN-{pipeline,
joint, collapsed} (Hu et al., 2019).

4.2 Main Results

We report the results of SPRM and the baselines in
Table. 3. Two main observations can be obtained
from the table. Firstly, compared to SPAN-joint,
SPRM improves the performance significantly by
4.13%, 6.70% and 4.90% on three datasets, since
SPAN-joint ignores the private encoding compo-
nents for the two sub-tasks and only apply a Shared
BERT network. It shows that some private informa-

Npara LAPTOP REST
SPAN-pipeline + BERT-Large 671M 68.06 74.92
SPAN-joint + BERT-Large 336M 64.59 72.47
SPAN-joint + BERT-Base 109M 59.88 68.95
SPRM + BERT-Large 342M 69.11 79.08
SPRM + BERT-Base 131M 68.72 79.17

Table 5: F1 results (%) on LAPTOP and REST w.r.t
different BERT backbone models.

LAPTOP REST
SPRM with CRF 59.55 75.34
SPRM with (Hu et al., 2019) 66.35 78.49
SPRM 68.72 79.17

Table 6: F1 results (%) on examining the effectiveness
of Coarse-to-Fine Extraction Algorithm.

tion for the two sub-tasks can be well obtained by
applying two private encoding components. Sec-
ondly, SPRM achieves 0.66%, 4.25%, and 1.76%
absolute gains on three datasets compared to the
best SPAN method SPAN-pipeline, indicating the
efficacy of the Shared BERT. Therefore, SPRM
can get better performance with fewer parameters
compared to SPAN-pipeline, which employs two
separate BERT encoding network for target extrac-
tion and target classification, respectively.

4.3 Effectiveness of Shared-Private Network
To verify the effectiveness of the Shared-Private
Network, we conduct extensive experiments on the
LAPTOP and REST datasets, and the experimental
results is shown in Table. 4.

From the results, we observe that removing
Shared BERT makes the performance worse since
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BERT has a strong ability of learning powerful
features. Although the model can perform well
while just applying BERT, the Private BiLSTMs
can also learn useful features for each sub-task to
improve the performance. Specifically, the Private
AE-LSTM is more effective than the Private AC-
LSTM, as the performance of the former LSTM
has a bigger decrease in performance.

Moreover, we plot the performance of SPAN and
SPRM with respect to different BERT backbone
networks in Table. 5 to further examine the effec-
tiveness of the Shared-Private Network. We can ob-
serve that SPRM with BERT-Base achieves compa-
rable results compared to SPRM with BERT-Large,
while the performance of SPAN-joint with BERT-
Base is significantly worse than that of SPAN-
joint with BERT-Large. It shows that the intro-
duction of private layers improves the performance
with fewer parameters compared to using BERT-
Large as the backbone network instead of BERT-
Base. Besides, SPRM with BERT-Base outper-
forms SPAN-pipeline with BERT-Large, which
uses almost 5 times the trainable parameters of
SPRM with BERT-Base. Therefore, the introduc-
tion of Shared BERT can not only connect the task
of target extraction and target classification to some
extent but also reduce the parameter number.

4.4 Effectiveness of Coarse-to-Fine
Extraction Algorithm

To verify the effectiveness of the coarse-to-fine ex-
traction algorithm, we employ CRF and the heuris-
tic algorithm proposed by (Hu et al., 2019) instead
of our coarse-to-fine extraction algorithm on the
LAPTOP and REST datasets, and the experimental
results are shown in Table. 6.

Among the three extraction methods, CRF pre-
forms worse since it suffers from the problems of
huge search space. In addition, the coarse-to-fine
extraction algorithm outperforms the heuristic ex-
traction method of (Hu et al., 2019) as our model
applies a flexible way to extract targets.

4.5 Analysis on Both Sub-Tasks
To analyze the performance of our model on target
extraction and target sentiment classification, we
compare our model with previous approaches de-
signed for both of the two tasks and some state-of-
the-art methods proposed for one of the sub-tasks,
namely, DE-CNN (Xu et al., 2018) for target ex-
traction and DMMN-SDCM (Lin et al., 2019) for
target classification. The experimental results of

Dataset LAPTOP REST TWITTER
DE-CNN 81.59 - -
TAG 85.20 84.48 73.47
SPAN 83.35 82.38 75.28
SPM 84.72 86.71 69.85

Table 7: F1 comparison of different approaches for tar-
get extraction.

Dataset LAPTOP REST TWITTER
DMMN-SDCM 77.59 - -
TAG 71.42 81.80 59.76
SPAN 81.39 89.95 75.16
SPM 81.50 90.35 78.34

Table 8: Accuracy comparison of different approaches
for polarity classification.

target extraction and target classification are shown
in Table. 7 and Table. 8, respectively.

On the task of target extraction, our model
doesn’t have the best performance on all of the
three datasets. SPM outperforms SPAN by 1.37%
and 4.33% on the LAPTOP and REST datasets, but
has worse performance on the TWITTER dataset.
And on the task of target sentiment classification,
our model outperforms all the baselines by 0.11%,
0.40%, and 3.18% on three datasets. The experi-
mental results show that one of the disadvantages
of the joint model over the pipeline model is that it
can make sure to perform best on the task of target
sentiment analysis but can’t perform best on both
sub-tasks at the same time for guarantee.

4.6 Qualitative Analysis

Table. 9 shows some qualitative cases sampled
from SPAN-pipeline and SPRM. We can observe
that our model SPRM with the coarse-to-fine ex-
traction algorithm can extract more accurate tar-
gets. The heuristic coarse-to-fine extraction algo-
rithm computes the number of targets by the predict
scores of start and end boundaries instead of a man-
ually set threshold, so our method can be more
precise with the number of targets. Take the exam-
ple 6 in the table as an example, the correct targets,
“Windows XP” and “Windows 7”, are not extracted
by SPAN-pipeline as the threshold filters them in-
correctly, while our method extracts all the three
correct targets as we infer the number of targets
correctly. Example 1 is also a good example to
confirm this. In addition, our algorithm adopts the
extending strategy instead of the strategy of length
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Examples SPAN-pipeline SPRM
1. All in all, the [food]+ was great (ex-
cept for the [desserts]−).

[food]+ (3),
None (7)

[food]+ (3),
[desserts]− (3)

2. [Vanison]0 was good but not amaz-
ing.

[Vanison]0 (3) [Vanison]0 (3)

3. The [selection of food]+ is excellent
(I’m not used to having much choice at
restaurants), and the [atmosphere]+ is
great.

[selection]+ (3),
[food]+ (7),

[atmosphere]+ (3)

[selection of food]+ (3),
[atmosphere]+ (3)

4. Beware of the [chili signed food
items]− not unless you want to call the
fire department to douse the flames in
your mouth.

[chili]− (7),
[food items]− (7)

[chili signed food items]− (3)

5. This mac does come with an [exten-
der cable]0 and I’m using mine right
now hoping the [cable]+ will stay nice
for the many years I plan on using this
mac.

[extender cable]0 (3),
None (7)

[extender cable]0 (3)
[cable]+ (3)

6. I used [Windows XP]0, [Windows
Vista]0, and [Windows 7]0 extensively.

None (7),
[Windows Vista]0 (3),

None (7)

[Windows XP]0 (3),
[Windows Vista]0 (3),

[Windows 7]0 (3)
7. The only thing I miss is that my old
Alienware laptop had [backlit keys]−.

[backlit]− (7),
[keys]− (7)

[backlit keys]− (3)

Table 9: Case study. The extracted targets are wrapped in brackets with the predicted polarities given as subscripts.
Correct and incorrect predictions are marked with 3and 7, respectively.

penalty, and it can avoid missing the targets which
consist of a few words. Take the example 4 in the
table as an example, the correct extracted target
should be “chili signed food items”, but SPAN-
pipeline split the gold target entity to two separate
targets because of its length penalty. However, our
algorithm can extract the target “chili signed food
items” correctly since we get the original candi-
dates with the closest indexes and then extract the
targets by the extending strategy.

5 Conclusion

In this paper, we propose a Shared-Private Repre-
sentation Model (SPRM) with coarse-to-fine ex-
traction for target sentiment analysis. To encode
the information of the two sub-tasks of target senti-
ment analysis, a Shared-Private Network has been
proposed to learn shared features as well as private
features. Moreover, we designed a coarse-to-fine
extraction algorithm, which extracts targets with-
out thresholds and adopts an extending strategy for
better extracting target phrases. Experiments on
three benchmark datasets show the effectiveness of
SPRM.
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