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Abstract

Tensor-based fusion methods have been
proven effective in multimodal fusion tasks.
However, existing tensor-based methods make
a poor use of the fine-grained temporal dynam-
ics of multimodal sequential features. Moti-
vated by this observation, this paper proposes
a novel multimodal fusion method called Fine-
Grained Temporal Low-Rank Multimodal Fu-
sion (FT-LMF). FT-LMF correlates the fea-
tures of individual time steps between mul-
tiple modalities, while it involves multiplica-
tions of high-order tensors in its calculation.
This paper further proposes Dual Low-Rank
Multimodal Fusion (Dual-LMF) to reduce the
computational complexity of FT-LMF through
low-rank tensor approximation along dual di-
mensions of input features. Dual-LMF is con-
ceptually simple and practically effective and
efficient. Empirical studies on benchmark mul-
timodal analysis tasks show that our proposed
methods outperform the state-of-the-art tensor-
based fusion methods with a similar computa-
tional complexity.

1 Introduction

Multimodal fusion aims to integrate information of
multiple modalities as a compact but informative
representation. Multimodal fusion is fundamen-
tally significant for real-world multimodal applica-
tions like speech translation (Yuhas et al., 1989),
emotion recognition (De Silva et al., 1997; Chen
et al., 2018), and sentiment analysis (Morency et al.,
2011). It is very challenging that it requires cor-
relating the semantics of multiple modalities in
an effective and efficient way. Recently, several
methods have been proposed to learn joint embed-
dings of multiple modalities (Fukui et al., 2016;
Nojavanasghari et al., 2016; Zadeh et al., 2017).

∗ means equal contribution
† corresponding author

There are two lines of fusion methods: early fusion
and late fusion. In this paper, we mainly focus on
the former, which aims to integrate information of
different modalities before it is processed by the
model.

Earlier work on early fusion employs a simple
concatenation of input features (Pérez-Rosas et al.,
2013; Park et al., 2014; Zadeh et al., 2016b). To
construct a more compact representation, (Zadeh
et al., 2017) introduces Tensor Fusion Network
(TFN) which averages the features of each modal-
ity along the temporal dimension and transforms
the multimodal features into a high-order tensor
which is used for subsequent tasks. Although TFN
achieves a better performance than the concate-
nation manner, its computational complexity in-
creases exponentially with the number of modali-
ties. (Liu et al., 2018) further proposes Low-Rank
Multimodal Fusion (LMF) which employs low-
rank approximation to reconstruct the high-order
tensor. However, these tensor-based methods ne-
glect the fine-grained temporal dynamics which
include rich structured information for multimodal
modeling. For example, if the facial expression
of a man is happy at time step t, he will speak
in a positive tone at time step t + ∆t more likely.
The features of different time steps and different
modalities are correlated.

Motivated by this observation, in this paper we
introduce Fine-Grained Temporal Low-Rank Mul-
timodal Fusion (FT-LMF). Instead of averaging the
features along the temporal dimension, we asso-
ciate the features of individual time steps between
different modalities to form a high-order tensor.
The tensor is then embedded to a low-dimensional
matrix for subsequent tasks. Compared with LMF,
FT-LMF is able to capture the cross-modal interac-
tions at a finer granularity on the temporal dimen-
sion.

Since FT-LMF involves multiplications of high-
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order tensors in its calculation, its computational
complexity increases exponentially with the num-
ber of modalities. To tackle this problem, we fur-
ther introduce Dual Low-Rank Multimodal Fusion
(Dual-LMF) which approximates the high-order
tensor using low-rank tensor decomposition along
both temporal and non-temporal dimensions. We
show that Dual-LMF has a linear complexity w.r.t
the number of modalities. In experiments, we have
validated FT-LMF and Dual-LMF on four bench-
mark multimodal analysis datasets and they have
shown promising results in comparison with the
state-of-the-art methods.

The contributions of this paper can be summa-
rized as follows:

(1) To address the ignorance of fine-grained tem-
poral dynamics in the existing tensor-based fusion
methods, we propose Fine-Grained Temporal Low-
Rank Multimodal Fusion (FT-LMF) which corre-
lates the features of different time steps between
all the modalities.

(2) To reduce the computational complexity of
FT-LMF, we propose Dual Low-Rank Multimodal
Fusion (Dual-LMF) which employs low-rank de-
composition to approximate the high-order tensor
along its dual dimensions.

(3) Experimental results show that our methods
outperform the most state-of-the-art methods on
different multimodal analysis tasks.

2 Related Work

Multimodal analysis has attracted much attention
recently. Thanks to the high-quality open-source
datasets like CMU-MOSI, POM, YOUTUBE, and
ICT-MMMO, many effective methods have been
proposed and comprehensively evaluated. The
key to multimodal analysis is the fusion of mul-
timodal information. Generally, there are two lines
of fusion methods, early fusion and late fusion.
Early fusion methods integrate features of different
modalities before feeding them to the model. For
instance, concatenating different features (Zadeh
et al., 2016b) is a simple way. However, the intra-
modal dynamics cannot be effectively captured,
and the temporal information of a single modality
is ignored in early fusion. Late fusion methods (No-
javanasghari et al., 2016) utilize information of a
single modality for inference, and then ensembling
them by majority voting or weighted averaging
(Wörtwein and Scherer, 2017). Unfortunately, the
inter-modal interactions are not modeled in late

fusion.
To address the drawbacks of the above methods,

(Pham et al., 2019) investigates learning joint rep-
resentations via cyclic translations from source to
target modalities and only uses the source modality
for prediction during testing. TFN (Zadeh et al.,
2017) and its successive work(Liang et al., 2019)
propose to embed multiple feature vectors into a
high-order tensor to improve the modeling of inter-
modal relationships. However, the computational
complexity of TFN increases exponentially with
the number of modalities. LMF (Liu et al., 2018)
reduces the complexity of TFN by applying low-
rank decomposition to the high-order tensor. While
LMF simply averages the feature matrices along
the temporal dimension or chooses a feature vector
of one time step among all the time steps, ignoring
the rich fine-grained temporal information.

In this paper, we develop Fine-Grained Tem-
poral Low-Rank Multimodal Fusion (FT-LMF) to
correlate the features of different time steps be-
tween modalities. Furthermore, considering that
the computational complexity of FT-LMF increases
exponentially with the number of modalities, we
propose Dual Low-Rank Multimodal Fusion (Dual-
LMF) which performs low-rank decomposition to
both dimensions of the input features. The per-
formances of our methods on several tasks, i.e.,
multimodal sentiment analysis and speaker traits
recognition, are improved with an acceptable com-
plexity.

3 Multimodal Tensor Fusion

3.1 Tensor Fusion Network
We start by introducing TFN (Zadeh et al., 2017)
which only adopts multimodal fusion on non-
temporal dimension of input features. Suppose that
the space of the m-th modality is Rdm×tm and the
number of modalities is M . We randomly choose
one time step from features of each modality and
denote it as vm ∈ Rdm . As shown in Fig. 1, TFN
transforms the input vectors v1, v2,...,vM into a
high-order tensor and then maps it back to a low-
dimensional vector. The input tensor Ṽ formed by
the unimodal representation is calculated as:

Ṽ =

M⊗
m=1

vm (1)

where
⊗

denotes the tensor outer product opera-
tion over a set of vectors and Ṽ ∈ R

∏M
m=1 dm is the
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Figure 1: Tensor Fusion Network (TFN). The in-
put vectors of three modalities are transformed into a
3-D tensor, and mapped back to a vector by a fully-
connected layer.
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Figure 2: Low-Rank Multimodal Fusion (LMF). The
input vectors are fed into linear layers (the number of
layers is equal to rank value). The outputs are element-
wise multiplied (◦) with each other followed by a sum-
mation function along the rank dimension.

hybrid representation of the input vectors. Follow-
ing the conventional setting of neural networks, Ṽ
is followed by a fully-connected layer for dimen-
sion reduction, as

h = Wh · Ṽ + bh (2)

where Wh ∈ Rdh×
∏M

m=1 dm and bh ∈ Rdh are
learnable variables1. “·” denotes linear operation.
It is obvious that the computational complexity of
TFN increases exponentially with the number of
modalities.

3.2 Low-Rank Multimodal Fusion
To reduce the complexity of TFN, LMF (Liu et al.,
2018) is proposed to utilize low-rank decomposi-
tion for approximating the high-order tensor Wh,
as shown in Fig. 2. LMF first divides the (M + 1)-
order tensor Wh into a series of M -order tensors
as

Wh =

[
W 1

h ;W 2
h ; ...;W dh

h

]
(3)

For efficiently calculating the tensor multiplica-
tion W i

h · Ṽ , LMF applies low-rank decomposition
1In practice, the bias bh is approximated by the concate-

nation of vm and a scalar value of 1; thus, we omit bh in the
subsequent derivations of this paper.

to each W i
h

W i
h =

R∑
r=1

M⊗
m=1

(W i
h)m,r (4)

where (W i
h)m,r ∈ Rdm×1 and R is the value of

rank. W i
h · Ṽ is then computed based on Eqns. 1

and 4 2:

W i
h · Ṽ =

[
R∑

r=1

M⊗
m=1

(W i
h)m,r

]
·

[
M⊗

m=1

vm

]

=
∑[

R∑
r=1

[ M⊗
m=1

(W i
h)m,r ◦

M⊗
m=1

vm

]]

=

R∑
r=1

[∑ M⊗
m=1

[
(W i

h)m,r ◦ vm
]]

(5)
where ◦ denotes element-wise multiplication and∑

denotes the summation function for all the ele-
ments in the high-order tensor. To facilitate reading,
we rewrite Eqn. 5 as

W i
h · Ṽ =

R∑
r=1

M

Λ
m=1

[
(W i

h)Tm,rvm

]
(6)

where ΛM
m=1 denotes the element-wise multiplica-

tion ◦ over a sequence of tensors. For instance,
Λ3
m=1xm = x1 ◦ x2 ◦ x3. W i

h · Ṽ is an element of
Wh · Ṽ , thus

Wh · Ṽ =
R∑

r=1

M

Λ
m=1

[
(Wh)Tm,rvm

]
(7)

where (Wh)m,r ∈ Rdm×dh consists of (W i
h)m,r ∈

Rdm×1. Through low-rank approximation to the
high-order tensor, LMF scales linearly with the
number of modalities.

4 Fine-Grained Temporal LMF

The existing multimodal tensor-based fusion meth-
ods correlate multimodal features at a coarse granu-
larity, while the rich temporal dynamic information
underlying in different modalities is ignored. In
this work, we propose Fine-Grained Temporal Low-
Rank Multimodal Fusion (FT-LMF) for making a
full use of the fine-grained information along the
temporal dimension.

Based on the discussions in previous section,
we can easily correlate the features of different

2The detailed derivations are shown in Appendix.
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Figure 3: Fine-Grained Temporal LMF (FT-LMF). The inputs are feature matrices of multiple modalities. LMF
is performed on all the time-step groups of different modalities. The number of groups is tv × ta × tl. The space
of an output of LMF is Rdh , thus the space of all the groups is Rdh×tv×ta×tl . A fully-connected layer follows the
high-order tensor to reduce the tensor space from Rdh×tv×ta×tl to Rdh×dk . In practice, the parameters Wk on FC
layer are generated by attention mechanism for better effectiveness.

time steps between multiple modalities. We use
H[l1, l2, ..., lM ] ∈ Rdh with index [l1, l2, ..., lM ]
to denote the correlation result of selected time-
steps of M modalities. We can obtain a high-order
tensor H ∈ R

∏M
m=1 tm×dh which carries the inter-

active information of different time steps between
modalities. Following Eqn. 2, we calculate the
values of tensor as:

H[l1, l2, ..., lM ] = Wh ·

[
M⊗

m=1

(Vm)lm

]
(8)

where Vm ∈ Rdm×tm denotes the feature matrix of
m-th modality and (Vm)lm denotes the lm-th time
step of Vm.

We map H to a 2-D matrix

K = Wk ·H + bk (9)

where the spaces of Wk and bk are Rdk×
∏M

m=1 tm

and Rdk , respectively; thus the space of K is
Rdk×dh . For the convenience of subsequent deriva-
tions, we rewrite Eqn. 9 as

Ki = Wk ·Hi + bk (10)

where Hi ∈ R
∏M

m=1 tm is just one channel of H ,
and Ki ∈ Rdk is one channel of K. In practice, we
employ attention mechanism to generate Wk for
better capturing the importance of each time-step
group:

Wk[l1, ..., lM ] =

e

{
W2tanh(W1H[l1,...,lM ]+b1)

}
∑t1,...,tM

o1,...,oM=1 e

{
W2tanh(W1H[o1,...,oM ]+b1)

} (11)

where W1 ∈ Rdh×dh , b1 ∈ Rdh , W2 ∈ Rdk×dh are
trainable variables, Wk ∈ Rdk×

∏M
m=1 tm consists

of Wk[l1, ..., lM ] ∈ Rdk . The numerator is element-
wise divided by the denominator.

FT-LMF shown in Fig. 3 is able to capture the
fine-grained temporal interactions between differ-
ent modalities, while the computational complexity
of its high-order tensor H increases exponentially
with the number of modalities. To tackle this prob-
lem, we further propose Dual-LMF as discussed in
the next section.

5 Dual-LMF

Based on FT-LMF, Dual-LMF further performs
low-rank decomposition on both temporal dimen-
sion and non-temporal dimensions. First, we follow
LMF to divide the (M + 1)-order tensor Wk into
a series of M -order tensors. The number of the
tensors is dk:

Wk =

[
W 1

k ;W 2
k ; ...;W dk

k

]
(12)

We apply low-rank decomposition to each W j
k ,

W j
k =

R2∑
r2=1

M⊗
m=1

(W j
k )m,r2 (13)

where (W j
k )m,r2 ∈ Rtm×1. We then rewrite W j

kHi

as

W j
k ·Hi =

[
R2∑

r2=1

M⊗
m=1

(W j
k )m,r2

]
·Hi (14)

Hi[l1, l2, ..., lM ] ∈ R1 is an element of Hi ∈
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Figure 4: Dual-LMF. Dual-LMF performs dimension reduction on both the temporal dimension and the non-
temporal dimension of input features, while FT-LMF only performs dimension reduction on the non-temporal
dimension. After linear mapping, features of all the modalities have the same space RR1×dh×R2×dk , and we
perform element-wise multiplication to combine them. Finally, we sum over both rank dimensions (R1 and R2) of
the high-order tensor to obtain the multimodal fusion matrix.

R
∏M

m=1 tm and it can be calculated by Eqn. 6:

Hi[l1, ..., lM ]=

R1∑
r1=1

M

Λ
m=1

[
(W i

h)Tm,r1(Vm)lm

]
(15)

where (W i
h)m,r1 is the decomposed component of

Wh. Then Hi which consists of Hi[l1, l2, ..., lM ] is
obtained as,

Hi =

R1∑
r1=1

M⊗
m=1

[
(W i

h)Tm,r1Vm

]
(16)

(W i
h)Tm,r1Vm is a tm-dimensional vector. We sub-

stitute Eqn. 16 into Eqn. 14 2:

W j
k ·Hi

=

[
R2∑

r2=1

M⊗
m=1

(W j
k )m,r2

]
·

[
R1∑

r1=1

M⊗
m=1

[
(W i

h)Tm,r1Vm

]]

=
∑[

R2∑
r2=1

R1∑
r1=1

M⊗
m=1

[
(W j

k )m,r2 ◦ [(W i
h)Tm,r1Vm]

]]

=

R2∑
r2=1

R1∑
r1=1

[∑[ M⊗
m=1

(W j
k )m,r2 ◦ [(W i

h)Tm,r1Vm]

]]

=

R2∑
r2=1

R1∑
r1=1

M

Λ
m=1

[
(W i

h)Tm,r1Vm(W j
k )m,r2

]
(17)

where we treat both (W j
k )m,r2 and (W i

h)Tm,r1Vm

as tm-dimensional vectors in the second and third
rows of Eqn. 17. While in the forth row, we uti-
lize the original sizes, i.e., (W j

k )m,r2 ∈ Rtm×1,
(W i

h)Tm,r1Vm ∈ R1×tm .

W j
k ·Hi is an element of Wk ·H and [i, j] is the

corresponding index. We refer to the derivations of
LMF and employ a simple transformation to Eqn.
17 to obtain the output fusion matrix WkH:

Wk ·H =

R2∑
r2=1

R1∑
r1=1

M

Λ
m=1

[
(Wh)Tm,r1Vm(Wk)m,r2

]
(18)

Similar to Eqn. 11, (Wk)m ∈ Rtm×(R2×dk) is
computed with element-wise attention mechanism,

[(Wk)m]lm =

e

{
W4tanh

(
W3

[
(Wh)

T
m(Vm)lm

]
+b3
)}

∑tm
om=1 e

{
W4tanh

(
W3

[
(Wh)Tm(Vm)om

]
+b3
)} (19)

where the space of (Wh)m is Rdm×(R1×dh), the
space of W3 is R(R1×dh)×(R1×dh), the space of W4

is R(R2×dk)×(R1×dh), the space of b3 is RR1×dh ,
(Wk)m ∈ Rtm×(R2×dk) consists of [(Wk)m]lm ∈
R(R2×dk), the numerator is element-wise divided
by the denominator.

Thanks to the low-rank decomposition on both
temporal and non-temporal dimensions of input
features, Dual-LMF shown in Fig. 4 is much more
efficient than FT-LMF and has a good scalability
to the increasing number of modalities.

6 Experiments

6.1 Datasets
We evaluate FT-LMF and Dual-LMF on several
benchmark datasets of multimodal analysis tasks,



382

including CMU-MOSI (Zadeh et al., 2016a), POM
(Park et al., 2014), YOUTUBE (Morency et al.,
2011), and ICT-MMMO (Wöllmer et al., 2013).

CMU-MOSI (Zadeh et al., 2016a) is created for
sentiment analysis, which contains 63 long videos
with a sentiment label in range [-3,3]. During the
training and testing, we divide the 63 videos into
2199 chunks for label alignment. Following the ex-
isting work, we divide the whole dataset into three
parts, for training, validation, and testing. Note that
the same speaker does not appear in multiple sets.

POM (Park et al., 2014) is created for speaker
traits recognition. It contains 903 movie review
videos and each video is annotated with 16 speaker
traits, including confident, passionate, voice pleas-
ant, dominant, credible, vivid, expertise, entertain-
ing, reserved, trusting, relaxed, outgoing, thorough,
nervous, persuasive and humorous.

YouTube (Morency et al., 2011) is created for
sentiment analysis. It contains 47 videos from the
social media website YouTube and each video is
annotated at the segment level for sentiment.

ICT-MMMO (Wöllmer et al., 2013) is created
for sentiment analysis. It contains 370 movie re-
view videos and each video is annotated at the
video level for sentiment.

6.2 Features

In this paper, we follow the existing methods to
do empirical studies on three different modalities,
including audio, visual, and text. In addition, P2FA
(Yuan and Liberman, 2008) is utilized to align the
three modalities at the word granularity. The visual
and audio features are aligned by computing their
average value over the utterance interval of each
word.

To extract audio, visual, and text features, we
follow the methods of LMF. Specifically, for audio
modality, we use COVAREP (Degottex et al., 2014)
to extract a set of low-level audio features. For
visual modality, we use Facet (iMotions, 2017) to
extract a set of visual features for each frame. For
text modality, we use pre-trained 300-dimension
glove word vectors (Pennington et al., 2014) to
extract word representations.

For audio and visual features, we use a 2-layer
feed-forward neural network to handle the features
of all time steps. For text features, we use an LSTM
(Hochreiter and Schmidhuber, 1997) to capture the
semantic information. After encoding the features,
we send them to fusion models.

6.3 Metrics

For different datasets, we compare methods un-
der different metrics. For CMU-MOSI, we report
Mean Absolute Error (MAE), Pearson correlation
(Corr), binary accuracy, F1-Score, 7-class accuracy.
For POM, we report average MAE, average Corr,
average binary-accuracy for speaker traits. For
YouTube, we report 3-class accuracy and F1-Score.
For ICT-MMMO, we report binary accuracy and
F1-Score.

6.4 Model and Optimization

For a fair comparison, we implement FT-LMF and
Dual-LMF similarly to LMF, while we keep all the
time steps of the three modalities. The output of
our FT-LMF and Dual-LMF is K ∈ Rdk×dh . In the
experiments, we set dk to 1 and dh to the number
of attributes. We employ MAE loss function to
optimize the learnable variables.

6.5 Experimental Setting

For CMU-MOSI, the output dimension is 1; we
train the model for at most 500 epochs. If MAE
does not increase for 20 epochs, we stop the train-
ing. The other hyper-parameters (i.e., hidden size,
learning rate, batch size) are determined by the
grid search method. The best hyper-parameters are
different for TFN, LMF, FT-LMF, Dual-LMF.

For POM, the output dimension is 16, since we
treat the predictions for 16 speakers as a multi-
label task. We also train the model for at most
500 epochs and the patience is 20. The other
hyper-parameters are determined by the grid search
method.

For YOUTUBE and ICT-MMMO, the output
dimension is 1. We also train the model for at
most 500 epochs and the patience is 20. The other
hyper-parameters are determined by the grid search
method.

6.6 Comparison Baselines

We use TFN (Zadeh et al., 2017) and LMF (Liu
et al., 2018) as our baselines. In addition, we com-
pare our methods with several other state-of-the-art
methods which employ simple feature-encoding
ways, like LSTM and fully-connected layer, since
we also use these simple ways and focus on the
fusion method before final prediction.

SVM is trained on simply concatenated multi-
modal features for prediction (Zadeh et al., 2016b;
Park et al., 2014; Pérez-Rosas et al., 2013).
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Table 1: Experimental results on CMU-MOSI and POM

Dataset CMU-MOSI POM
Model Acc(↑) F1(↑) MAE(↓) Corr(↑) Acc-7(↑) MAE(↓) Acc(↑) Corr(↑)
SVM 50.2 50.1 1.864 0.057 17.5 0.887 33.9 0.104
DF 74.2 74.2 1.143 0.518 26.8 0.869 34.1 0.144

MV-LSTM 73.9 74.0 1.019 0.601 33.2 0.891 34.6 0.270
BC-LSTM 73.9 73.9 1.079 0.614 28.7 0.840 34.8 0.278

MCTN 79.3 79.1 0.909 0.676 - - - -
MARN 77.1 77.0 0.968 0.625 34.7 - 39.4 -

TFN 73.9 73.4 0.970 0.633 32.1 0.886 31.6 0.093
LMF 76.4 75.7 0.912 0.668 32.8 0.796 42.8 0.396

FT-LMF 78.7 78.8 0.901 0.693 35.1 0.788 42.1 0.395
Dual-LMF 78.4 78.3 0.901 0.700 35.8 0.777 42.8 0.398

Figure 5: The performances (Corr) of different time
step sizes on CMU-MOSI. The step size of 1 is stan-
dard FT-LMF/Dual-LMF proposed in this paper. The
step size of 20 is LMF (Liu et al., 2018).

DF (Nojavanasghari et al., 2016) uses multiple
fully-connected layers to predict the results for each
modality, respectively, and ensembles the results.

BC-LSTM (Poria et al., 2017) correlates multi-
ple modalities with a proposed context-dependent
fusion method.

MV-LSTM (Rajagopalan et al., 2016) is an ex-
tension to LSTM, designed to model both view-
specific and cross-view dynamic by partitioning
internal representations to mirror the multiple input
modalities.

MCTN (Pham et al., 2019) investigates learning
joint representations via cyclic translations from
source to target modalities and only uses the source
modality for prediction during testing.

MARN (Zadeh et al., 2018) discovers the inter-
action between modalities through time with a neu-
ral module called Multi-attention Block and stores
them in a hybrid memory component called Long-
short Term Hybrid Memory. Although MARN con-
siders temporal information, it is not tensor-based.

7 Results

7.1 Compared with State-of-the-Art
Table 1 shows the performances of the methods on
CMU-MOSI and POM datasets. On CMU-MOSI,
FT-LMF and Dual-LMF outperform the state-of-
the-art methods on MAE, Corr, and Acc-7; and
Dual-LMF has a better overall performance than
FT-LMF. On POM, we report the average perfor-
mances on 16 speakers and find that Dual-LMF
outperforms the state-of-the-art methods on all the
metrics. Table 2 shows the performances of the
methods on ICT-MMMO and YOUTUBE datasets.
The observed results are similar to those of POM.
The promising empirical results demonstrate the
effectiveness of our methods.

Table 2: Experimental results on ICT-MMMO and
YOUTUBE.

Dataset ICT-MMMO YOUTUBE
Model Acc(↑) F1(↑) Acc-3(↑) F1(↑)
SVM 68.8 68.7 42.4 37.9
DF 65.0 58.7 45.8 32.0

MV-LSTM 72.5 72.3 45.8 43.3
BC-LSTM 70.0 70.1 47.5 47. 3

MCTN 81.3 80.8 51.7 52.4
MARN 86.3 85.9 54.2 52.9

TFN 72.5 72.6 47.5 41.0
LMF 83.7 84.0 49.2 47.8

FT-LMF 85.0 85.0 52.5 50.3
Dual-LMF 87.5 87.7 55.9 54.3

7.2 Effect of Fine-Grained Temporal
Information

To further validate the effect of fine-grained tem-
poral information, we show the performances of
FT-LMF and Dual-LMF with different time-step
sizes3. In our experiments, tv=ta=tl=20. The time-

3In practice, we average the features along the temporal
dimension every time-step size.
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Table 3: Computational complexity of tensor-based fu-
sion methods. The FLOPs do not include the prepro-
cessing modules (i.e., 2-layer feed-forward neural net-
work and LSTM). The space complexity is discussed
w.r.t. the number of modalities.

Method FLOPs Complexity
TFN 1.3× 105 Exp
LMF 2.6× 103 Linear

FT-LMF 1.4× 105 Exp
Dual-LMF 1.8× 104 Linear

step sizes of standard FT-LMF and Dual-LMF are 1.
Here we select a series of time-step sizes including
2, 4, 10, and 20 for comparison. Note that FT-LMF,
Dual-LMF, and LMF are equivalent when the time-
step size is 20. As shown in Fig. 5, we find that the
performances of the models are improved as the
step size decreases. The results demonstrate the ef-
fectiveness of incorporating fine-grained temporal
dynamics into the multimodal fusion scheme.

7.3 Complexity Analysis

Space Complexity
We analyze the space complexity of different

methods theoretically. Following the supposition in
the approach section, we focus on the sizes of learn-
able variables and the output of each layer. Note
that we omit the variables with relatively small size,
i.e., bias.

TFN The size of a vector of m-th modality is
dm. Therefore, the size of the high-order tensor
is
∏M

m=1 dm. The size of variables in the fully-
connected layer is dh×

∏M
m=1 dm. The space com-

plexity is O(dh ×
∏M

m=1 dm).
LMF We map all the vectors to a dimension of

dh. The rank is set to R; the size of variables in
linear layers is dh×R×

∑M
m=1 dm; the size of the

output is dh × R ×M . The space complexity is
O(dh ×R×

∑M
m=1 dm).

FT-LMF We use LMF for
∏M

m=1 tm groups of
time steps in total. The size of variables in a fully-
connected layer of LMF is dh × R ×

∑M
m=1 dm;

thus, the size of the generated high-order tensor
is
∏M

m=1 tm × dh. The size of variables in the
subsequent attention-based fully-connected layer
is dh × (dh + dk). The space complexity is
O(dh× (

∏M
m=1 tm +R×

∑M
m=1 dm + dh + dk)).

Dual-LMF The size of variables in the linear
layer is dh×R1×

∑M
m=1 dm+dh×(dh+dk)×R1×

R2. The size of the output is M×R2×dk×R1×dh.
The space complexity is O(dh×R1×

∑M
m=1 dm +

R2 ×R1 × dh × ((M + 1)× dk + dh)).

With respect to the number of modalities, we can
easily find that TFN and FT-LMF have an exponen-
tial space complexity, while LMF and Dual-LMF
have a linear space complexity.

Figure 6: The performances (MAE) of combinations of
rank values R1 and R2 on CMU-MOSI

Practical FLOPs
Table 4 shows the float point operation (FLOPs)

of different methods on CMU-MOSI. Specifically,
we use a set of hyper-parameters as tv=ta=tl=20,
dv=da=dl=32, R1=4, R2=4, dh=1, dk=1. The
FLOPs of TFN and FT-LMF are much more than
those of LMF and Dual-LMF.

7.4 Empirical Study on Rank Value
The selection of rank is important in multimodal
fusion. We utilize the hyper-parameters mentioned
above and evaluate Dual-LMF with combinations
of different rank values R1 and R2. We start by
setting both R1 and R2 to 1, and gradually increase
them. The results on CMU-MOSI are shown in Fig.
6. We find that only a single R1 or R2 cannot well
determine the final performance. Thus, a careful
selection of R1 and R2 is necessary. In addition,
Dual-LMF with low rank values can achieves sim-
ilar results to that with high rank values and the
computational complexity is reduced.

8 Conclusion

In this paper, we have proposed novel multimodal
fusion methods, including FT-LMF and Dual-LMF,
for multimodal analysis tasks. FT-LMF is a fine-
grained version of Low-Rank Multimodal Fusion
which particularly associates the features of individ-
ual time steps between multiple modalities. Based
on FT-LMF, Dual-LMF performs low-rank tensor
approximation along dual dimensions of input fea-
tures to reduce the exponential computational com-
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plexity of FT-LMF to a linear complexity w.r.t. the
number of modalities. The experimental results
show that our methods achieve superior perfor-
mance compared with the state-of-the-art methods
with similar computational cost.
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.1 Reproducibility of the paper
We implement experiments on GTX 1080Ti. The
main hyperparameters include audio hidden dimen-
sion, video hidden dimension, text hidden dimen-
sion, audio dropout rate, video dropout rate, text
dropout rate, learning rate, weight decay, rank1
and rank2. Grid search is employed to find the
appropriate combination of parameters. For each
method, we randomly try 2000 combinations, since
the model is small and the running time is short as
shown in Table 4. The feature extraction method
and the division of training and test sets follow
(Zadeh et al., 2018). If the paper is accepted,
we promise to open the source code and the best-
performing hyperparameters.

Table 4: The model size and execution time of our
methods.

Method Size(MB) Time(s)
TFN 1163 19.3
LMF 627 11.7

FT-LMF 1097 17.9
Dual-LMF 721 13.0

.2 Derivations for Eqns. 5 and 6 in the paper
W i

h · Ṽ can be rewritten as:

W i
h · Ṽ =

[
R∑

r=1

M⊗
m=1

(W i
h)m,r

]
·

[
M⊗

m=1

vm

]
(20)

where “·” denotes linear operation for
⊗M

m=1 vm.
Since

∑R
r=1

⊗M
m=1(W

i
h)m,r and

⊗M
m=1 vm have

the same size R
∏M

m=1 dm , we can rewrite the linear
operation as the combination of element-wise mul-
tiplication and summation. The two formations are
equivalent.

W i
h · Ṽ =

∑[
R∑

r=1

[ M⊗
m=1

(W i
h)m,r ◦

M⊗
m=1

vm

]]

=
R∑

r=1

[∑[ M⊗
m=1

(W i
h)m,r ◦

M⊗
m=1

vm

]]
(21)

where
⊗M

m=1(W
i
h)m,r ◦

⊗M
m=1 vm can be rewrit-

ten as another formation,
⊗M

m=1

[
(W i

h)m,r ◦ vm
]

.

The equivalence can be proven by element-wise
comparison:

Proposition 1.
M⊗

m=1

(W i
h)m,r ◦

M⊗
m=1

vm =

M⊗
m=1

[
(W i

h)m,r ◦ vm
]

(22)

Proof.[ M⊗
m=1

(W i
h)m,r ◦

M⊗
m=1

vm

]
c1,c2,...,cM

=

[ M⊗
m=1

(W i
h)m,r

]
c1,c2,...,cM

◦
[ M⊗
m=1

vm

]
c1,c2,...,cM

=

[
(W i

h)1,r

]
c1

◦...◦
[
(W i

h)M,r

]
cM

◦ (v1)c1 ◦ ... ◦ (vM )cM

=

{[
(W i

h)1,r

]
c1

◦ (v1)c1

}
◦...◦

{[
(W i

h)M,r

]
cM

◦ (vM )cM

}
=

[
(W i

h)1,r ◦ v1
]
c1

◦ ... ◦
[
(W i

h)M,r ◦ vM
]
cM

=

[
M⊗

m=1

[
(W i

h)m,r ◦ vm
]]

c1,c2,...,cM
(23)

where c1, c2, ..., cM (cm ∈ [1, 2, ..., dm]) denotes
the index of the elements in high-order tensor.

W i
h · Ṽ can be rewritten as follows:

W i
h · Ṽ =

R∑
r=1

[∑ M⊗
m=1

[
(W i

h)m,r ◦ vm
]]

(24)

where
∑⊗M

m=1

[
(W i

h)m,r ◦ vm
]

can be rewritten

as another formation, Λ
M

m=1

[
(W i

h)Tm,rvm

]
. The

equivalence can be proven as follows:

Proposition 2.

∑ M⊗
m=1

[
(W i

h)m,r ◦ vm
]

=
M

Λ
m=1

[
(W i

h)Tm,rvm

]
(25)

Proof.

M

Λ
m=1

[
(W i

h)Tm,rvm

]
=

M

Λ
m=1

∑[
(W i

h)m,r ◦ vm
]

(26)
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Following the simple transformation like (a +
b)(c + d) = ac + ad + bc + bd, we can

easily transform Λ
M

m=1

∑[
(W i

h)m,r ◦ vm
]

to∑⊗M
m=1

[
(W i

h)m,r ◦ vm
]

. These two formations

are equal, just with different operation orders. The
former utilizes summation(

∑
) first, while the later

uses multiplication(
⊗

) between different elements
first.

Therefore, we obtain the final formation of
W i

hṼ :

W i
h · Ṽ =

R∑
r=1

M

Λ
m=1

[
(W i

h)Tm,rvm

]
(27)

.3 Derivations for Eqn. 17 in the paper
W j

k ·Hi can be rewritten as:

W j
k ·Hi=

[
R2∑

r2=1

M⊗
m=1

(W j
k )m,r2

]
·

[
R1∑

r1=1

M⊗
m=1

[
(W i

h)Tm,r1Vm

]]
(28)

similar to Eqns. 21, 24, and 27, we obtain the final
formation of W j

k ·Hi,

W j
k ·Hi

=
∑[

R2∑
r2=1

R1∑
r1=1

[ M⊗
m=1

(W j
k )m,r2 ◦

M⊗
m=1

[(W i
h)Tm,r1Vm]

]]

=
∑[

R2∑
r2=1

R1∑
r1=1

M⊗
m=1

[
(W j

k )m,r2 ◦ [(W i
h)Tm,r1Vm]

]]

=

R2∑
r2=1

R1∑
r1=1

[∑ M⊗
m=1

[
(W j

k )m,r2 ◦ [(W i
h)Tm,r1Vm]

]]

=

R2∑
r2=1

R1∑
r1=1

M

Λ
m=1

[
(W i

h)Tm,r1Vm(W j
k )m,r2

]
(29)


