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Abstract

Answering questions in many real-world appli-
cations often requires complex and precise in-
formation excerpted from texts spanned across
a long document. However, currently no such
annotated dataset is publicly available, which
hinders the development of neural question-
answering (QA) systems. To this end, we
present MASH-QA1, a Multiple Answer Spans
Healthcare Question Answering dataset from
the consumer health domain, where answers
may need to be excerpted from multiple, non-
consecutive parts of text spanned across a
long document. We also propose MultiCo, a
neural architecture that is able to capture the
relevance among multiple answer spans, by
using a query-based contextualized sentence
selection approach, for forming the answer
to the given question. We also demonstrate
that conventional QA models are not suitable
for this type of task and perform poorly in
this setting. Extensive experiments are con-
ducted, and the experimental results confirm
the proposed model significantly outperforms
the state-of-the-art QA models in this multi-
span QA setting.

1 Introduction

Developing neural networks for question answering
(QA) has become an important and fast-growing
area of research in the NLP community. Interest
in this area is largely driven by the importance and
effectiveness of such systems in virtual assistants
and search engines. Driven by the development
of large-scale datasets such as SQuAD (Rajpurkar
et al., 2016, 2018), most of the work in this domain
focuses on the task of machine reading compre-
hension, where the objective is to find a single
short answer span—typically ranging from a few

1Code: https://github.com/mingzhu0527/
MASHQA

What are tips for managing my bipolar disor-
der?
Along with seeing your doctor and therapist
and taking your medicines, simple daily habits
can make a difference. Start with these strate-
gies. (22 words truncated) Pay attention to
your sleep. This is especially important for
people with bipolar disorder... (178 words
truncated) Eat well. There’s no specific diet...
(29 words truncated) Focus on the basics: Fa-
vor fruits, vegetables, lean protein, and whole
grains. And cut down on fat, salt, and sugar.
Tame stress. (81 words truncated) You can
also listen to music or spend time with posi-
tive people who are good company. (73 words
truncated) Limit caffeine. It can keep you up
at night and possibly affect your mood. (47
words truncated) Avoid alcohol and drugs.
They can affect how your medications work.
(118 words truncated)

Figure 1: An example of a question and its correspond-
ing answer (highlighted) from MASH-QA. The answer
consists of multiple sentences from the context. All
the highlighted sentences will form the comprehensive
answer. The context here is 632 words long, so we trun-
cate a few portions of it.

words to one sentence in length—given a ques-
tion and a paragraph context (Xiong et al., 2017;
Seo et al., 2017). Natural Questions (Kwiatkowski
et al., 2019) makes machine reading comprehen-
sion more challenging by providing questions with
long contexts. This makes it more suitable for train-
ing a typical QA system, which extracts answers
from long documents returned by a search engine.

Existing QA datasets mainly consist of ques-
tions with short answers—typically ranging from
a few words to a sentence—from the context doc-
ument. Even though Natural Questions dataset

https://github.com/mingzhu0527/MASHQA
https://github.com/mingzhu0527/MASHQA
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(Kwiatkowski et al., 2019) provided paragraph-
length answers for certain questions, these long
answers are generally the paragraphs that contain
the short answers, making most of the information
supplemental (not critical) in nature. Moreover,
because of the open-ended nature of many ques-
tions, the final comprehensive, succinct and correct
answers may need to be extracted from multiple
spans or sentences from the document. This prob-
lem is exacerbated when several spans that contain
the answer are not in the vicinity of each other.
Especially, this is often the case in domains such
as healthcare, where people seek information re-
garding their specific health conditions, and the
precise answer for their queries usually come from
multiple sections or spans of a document.

In this work, we introduce MASH-QA, a large-
scale dataset for question-answering, with many
answers coming from multiple spans within a long
document. MASH-QA is based on questions and
knowledge articles from the consumer health do-
main, where the questions are generally non-factoid
in nature and cannot be answered using just a few
words. Fig. 1 shows an example question, and
its corresponding context and answer from our
dataset, which poses several unique challenges.
First, the contexts are comprehensive healthcare
articles, which can typically contain tens of para-
graphs and hundreds of lines. Context of such
length is challenging for existing neural QA mod-
els. Second, the answers are typically several sen-
tences long, while current span extraction models
usually predict very short spans. Another challenge
in this setting raises from the fact that answers can
consist of multiple sentences from nonconsecutive
parts of a document, which can often be many sen-
tences or even paragraphs apart. This results in
sparsely-scattered patterns of semantic relevance in
the context with respect to the query. This means
that even if the answer comes from different parts
of the document, which might be surrounded by
the text that have limited relevance to the question,
different answer snippets have some form of se-
mantic relevance with each-other, and are centered
around the same topic as the question. Although
our dataset is from the healthcare domain, we be-
lieve that this problem setting can be generalized
to other domains, where the questions typically
require long and detailed answers.

Considering all these challenges, we formulate
our question-answering task as a sentence selection

task, which should also model the semantic rele-
vance existing between different answer sentences,
even when they are not adjacent to each-other in the
context. Hence, we also propose MultiCo, a novel
neural architecture that can address the challenges
discussed above. Our model utilizes XLNet (Yang
et al., 2019), which incorporates Transformer-XL
units (Dai et al., 2019) to give semantic represen-
tations that capture the long-range dependencies
existing in the long document context. We also use
a sparsified attention mechanism, to ensure that the
representations of sparsely scattered answer units
are compactly aligned with each-other. The main
contributions of this paper can be summarized as
follows:

• We present a practical and challenging QA task,
where the answers can consist of sentences from
multiple spans of the long context. We intro-
duce a new dataset called MASH-QA from the
consumer health domain, that encompasses the
challenges encountered in this task.

• We propose MultiCo, a novel neural model that
deals with the long context problem, and is able
to identify the sentences spanned across the doc-
ument for forming the answer. MultiCo adapts
a query-based contextualized sentence selection
approach, combined with a sparse self-attention
mechanism.

• Extensive experiments are conducted to evaluate
the proposed model on multiple datasets. Our ex-
perimental results confirm that our approach out-
performs state-of-the-art machine reading com-
prehension and semantic matching models.

To the best of our knowledge, this is the first work
that introduces the QA setting with multiple dis-
continuous answer spans from a long document.

2 Related Work

Datasets The WikiQA dataset (Yang et al., 2015)
contains query-sentence pairs, and their relevance
labels, based on articles from Wikipedia. The
SQuAD datasets (Rajpurkar et al., 2016, 2018) con-
sist of question-answer pairs based on Wikipedia
articles. The questions, however, are generally fac-
toid, the answers are short, and the context is a
small paragraph. The Natural Questions dataset
(Kwiatkowski et al., 2019) provides a more real-
istic setting, where the context is a full Wikipedia
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page, and the answer is a short snippet from the ar-
ticle. Some of the questions also include a long an-
swer. MS-MARCO (Bajaj et al., 2016), SearchQA
(Dunn et al., 2017), and TriviaQA (Joshi et al.,
2017) contain questions and a short answer, and
the questions are supported by more than one con-
text document, some of which might be irrelevant
to the question. CoQA (Reddy et al., 2019) and
NarrativeQA (Kočiskỳ et al., 2018) are free-form
QA datasets, where the answer is a short, free-form
text, not necessarily matching a snippet from the
context. ELI5 (Fan et al., 2019) is a long, free-form
QA dataset, based on questions and answers from
Reddit forums. However, since the evidence docu-
ments are collected using web-search, only 65% of
supporting documents contain the answer.

Recently, many QA datasets from the medical
domain have also been proposed. MedQUAD
(Abacha and Demner-Fushman, 2019) and
HealthQA (Zhu et al., 2019) are consumer health
QA datasets, that contain query-answer tuples,
and their relevance labels. emrQA (Pampari et al.,
2018) contains rule-based questions constructed
from medical records, while questions in CLiCR
(Suster and Daelemans, 2018) are based on clinical
report summaries.

Techniques Earlier works in QA used similar-
ity based models for classifying answers based on
their semantic similarity with the document (Yu
et al., 2014; Miao et al., 2016). The public release
of SQuAD dataset motivated the development of
attention-based neural models (Xiong et al., 2017;
Seo et al., 2017; Chen et al., 2017). With the ad-
vancements in language modeling (LM) techniques
such as BERT (Devlin et al., 2019) and XLNet
(Yang et al., 2019), LM-based techniques have
gained more popularity in recent times.

3 MASH-QA Dataset

3.1 Dataset Description

Since we focus on the task of multi-span question-
answering from long documents, our dataset con-
sists of (question, context, [answer sentences]) tu-
ples. Each tuple consists of a natural language
question, which can be answered using one or more
sentences from the context. Context here is a long
document, a typical web article with multiple para-
graphs. Each answer consists of several sentences,
which can either belong to one single span, or mul-
tiple spans from the context document. Since ques-

tions in our dataset can have multiple sentences
that form the answer, we provide the index of all
correct answer sentences with each tuple. We refer
to the single-span answer subset of our dataset as
MASH-QA-S, and the multi-span answer subset as
MASH-QA-M. Some of the basic statistics of our
dataset are shown in Table 1.

MASH-QA-S MASH-QA-M MASH-QA
# Contexts 5,210 3,999 5,574
# QA pairs 25,289 9,519 34,808
# Train QA 19,989 7,739 27,728
# Dev QA 2,614 879 3,493
# Test QA 2,686 901 3,587

Table 1: Basic statistics of MASH-QA dataset.

3.2 Data Collection and Processing

Our dataset consists of consumer healthcare queries
sourced from the popular health website WebMD2.
The website contains articles from a diverse set
of domains related to consumer healthcare. Each
healthcare section on the website also consists of
questions related to common healthcare problems
faced by people. The answers to these queries
consist of sentences or paragraphs from the article
associated with the relevant healthcare condition.
These answers have been curated by healthcare ex-
perts, and can accurately answer the corresponding
query. Because of the nature of the domain, cor-
rectness of the answer is especially important, as
in domains such as healthcare, an incorrect answer
to a consumer can have dire consequences.

For each question, we first split the answer into
sentences. We also split each of the context doc-
uments into the constituent sentences. Next, for
every answer, we map each of its sentences to the
corresponding sentence from the context. We no-
tice that some of the answer sentences have been
manually edited by the healthcare experts who an-
swered the question. In such cases, we select a set
of candidate sentences from the context that are
similar to the answer sentence using tf-idf match,
and then manually select the sentence that corre-
sponds to the answer.

3.3 Dataset Characteristics

A comparison of our dataset with other QA datasets
from general and healthcare domains is shown in
Table 2. Table 3 shows some of the common ques-
tion types from our dataset. We discuss some of

2https://www.webmd.com/

https://www.webmd.com/
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Dataset #QA Context Source QA Type Answer
Span

Context
Length

Answer
Length

G
en

er
ic WikiQA 3K Wikipedia Extractive Single 238.4 11

SQuAD-1.1 108K Wikipedia Extractive Single 117.2 3.1
Natural Questions 307K Wikipedia Extractive Single 7320.3 85.2 (long)
ELI5 270K Web Search Abstractive Multiple 857.6 130.6

H
ea

lth
ca

re CLiCR 105K Clinical Reports Abstractive Single 1385.4 2.7
emrQA 400K Medical Records Extractive Single 955.4 10.2
MedQUAD 47K Health articles Ranking Single N/A 123.9
HealthQA 8K Health articles Ranking Single N/A 233.4
MASH-QA 35K Health articles Extractive Multiple 696.2 67.2

Table 2: Comparison of MASH-QA dataset with other Question Answering datasets.

Starts With %age Example

What 46.09 What are the symptoms of gastritis?
What are tips for treating acne?

How 31.03 How can I prevent blisters?
How does exercise help stress?

Can, Is, Are 11.01 Can I prevent sinusitis?
Do, Does Is scalp psoriasis common?

When 3.65 When do I need eye protection?
When is flu season in the U.S.?

Why 2.05 Why do we have tears?
Why do I need dental exams?

Table 3: Common question types and their examples
from the MASH-QA dataset.

the key observations below:

Answers with Multiple Spans A key character-
istic of our dataset is that, for many questions, the
answers are obtained using information from multi-
ple, discontinuous spans from the document, mak-
ing the task more challenging in nature. The exist-
ing multi-document or multi-span QA datasets are
abstractive in nature, and the support documents
were curated using automatic techniques, such as
web search. Because of this nature, the answer
is not guaranteed to be found in the context, and
the documents are often noisy, with limited rele-
vance to the question. In contrast, our dataset con-
tains multi-span answers that are curated by experts,
which ensures that the different answer spans have
information that is required to answer the question.
Moreover, for a domain such as healthcare, we be-
lieve the extractive setting is ideal, since abstractive
answers can introduce unpredicted errors resulting
from answer generation.

Comprehensive and Compact Answers The
answers in our dataset are generally comprehensive,
and all the sentences in an answer contribute infor-
mation that is important to answer the question. In
existing datasets with long answers, majority of the
information in the long answer is supplemental in
nature. Natural Questions, for example, provides

a short answer for the question, and a long answer
that was created by selecting the entire paragraph
containing the short answer. The answers in our
dataset, on the other hand, have multiple sentences,
each of which contains a unique piece of informa-
tion about the subject in the query. We believe that
comprehensiveness and compactness of answers
are vital in the healthcare domain, since answers
with missing information can potentially mislead
people, while answers with extra information can
be overwhelming.

Question Types A majority of the questions in
our dataset are non-factoid and open-ended in na-
ture, and seek for detailed information about the
health condition. A significant proportion of the
questions are “How” type, and such questions gen-
erally tend to be open-ended. Although questions
starting with “What” generally ask for specific
facts, we find that many of these questions, such as
the ones shown in Table 3, are in fact open-ended,
and require long answers. Our dataset also contains
many “Yes/No” type questions, which often require
explanations.

4 The Proposed MultiCo Model

Given a query and a document, the goal of our
MultiCo model is to select the sentences that can
accurately answer the query. An intuitive way to
solve this problem would be to use a text matching
model that takes the query and a sentence as the
input, and predicts their relevance. However, as
shown later, this approach does not capture the
overall context of the sentences. Hence, in our
problem setting, where multiple sentences from a
document can belong to the answer, it gives poor
results. Hence, our proposed approach uses the
concept of query-based contextualized sentence
selection from the document.
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Figure 2: Architecture of the proposed MultiCo model.

4.1 Problem Formulation

Given a query Q and a context document D =
{s1, .., sn}, where si refers to the ith sentence in
the document, the objective of our model is to clas-
sify each sentence si as relevant or not for the given
query, conditioned on other sentences present in
the document. Let ci ∈ {0, 1} be the relevance la-
bel that depicts whether sentence si belongs to the
answer or not. Mathematically, we want to model
the probability P (si = ci|Q,D) for i ∈ {1, ..,n}.

4.2 Model Architecture

Figure 2 shows the architecture of our proposed
model. The main components of our model are
described in detail below:

Query and Context Encoder To encode the
query and the long document context, we use XL-
Net (Yang et al., 2019) as the encoder. One of the
main advantages of XLNet is that it is based on
the Transformer-XL framework (Dai et al., 2019),
which is specifically designed to deal with long
documents. This makes it an ideal choice in our
setting, as it can effectively encode the long con-
text. Moreover, using a large pre-trained language
model also allows us to obtain high quality token
representations.

In our model, we first tokenize the query and
each context sentence, and then pad each sentence
upto a pre-defined maximum sentence length m.
Let {X1, ..,Xn} represent the sentences, where
Xi = {xij}mj=1 be the tokens in sentence si, and
let Q = {qj}nj=1 represent the query. Following
(Yang et al., 2019), we concatenate a [CLS] token
to the query, and a [SEP] token at the end of the
last sentence. The encoded representations can be
obtained by the equation below:

U1; ..;Un,u[SEP ],Uq,u[CLS] =

XLNet(X1; ..;Xn,[SEP ],Q, [CLS])
(1)

Sentence Embeddings To obtain a fixed dimen-
sional vector for each sentence si, we use self-
attention (Lin et al., 2017) over the encoded repre-
sentations Ui obtained in the previous step, to get
the intermediate sentence embedding ṽi.

hij = wa tanh(Wauij)

αij = softmax
j

(hij) ṽi =

m∑
j=1

αijuij
(2)

Here, α represents attention weights. Next, to add
the overall context and query representations to
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the sentence representation, we concatenate the
embedding of [CLS] token returned by XLNet, to
get the final sentence vector vi = [ṽi;u[CLS]].

Sparsified Inter-Sentence Attention The multi-
span nature of answers in our dataset requires us
to have a mechanism to link the different answer
sentences with each-other. Moreover, the number
of relevant sentences in the context is much less
than the total number of sentences in the context.
Hence, we use a sparsified inter-sentence attention
layer based on α-entmax (α = 1.5) (Peters et al.,
2019; Correia et al., 2019) to introduce sparsity.

gij = wb tanh(Wb[vi;vj ]),

βij = α-entmax
j

(gij) zi =
n∑
j=1

βi,jvj
(3)

βij here represents attention weights of sentence i
with respect to sentence j. For any given sentence,
α-entmax above gives sparse attention weights over
other sentences in the context. This makes the final
representation only conditional on a small number
of other sentences with similar semantic nature,
and zeroes out the effect of other sentences, unlike
the standard softmax. For any given vector g, it
can be calculated as follows.

α-entmax(g) = ReLU[(α− 1)g − τ1]1/α−1 (4)

Here, τ is the threshold, which can be computed
as per Peters et al. (2019). As we can see, the
function will give a zero probability for all values of
g ≤ 1/(α−1), hence resulting in a sparse probability
distribution.

Answer Classifier After computing the represen-
tation of each sentence with respect to the query
and the overall context, we pass the sentence vector
zi through a multi-layer dense network, followed
by softmax, to get the final answer probability dis-
tribution ŷi.

ŷi = softmax(Woutzi + bout) (5)

4.3 Optimization
Since we model the question-answering task as a
sentence classification task, we use binary cross
entropy as the loss function to train our model. Let
yi be the true binary labels for sentence si. The
loss for each sentence can be computed as follows:

L = −
∑

j∈{0,1}

yij log(ŷij) (6)

5 Experiments

5.1 Implementation Details

We implemented our model in TensorFlow (Abadi
et al., 2016). The model was trained using Adam
optimizer (Kingma and Ba, 2015), with a learn-
ing rate of 2 × 10−5. The maximum length for
query and context sentences was set to 64 and 32
tokens respectively, and the maximum number of
sentences in one segment was set to 13. For longer
contexts, we split them into multiple segments of
13 sentences each, and append query to each seg-
ment. The maximum input length, including con-
text, query and other tokens, was set to 512 tokens.
We used a pre-trained version of XLNet (24 layers,
340M parameters), and allow only the top 12 lay-
ers to be trainable, as previous research (Jawahar
et al., 2019) suggests that the semantic features are
learned mainly by the top layers. All the experi-
ments were run on servers with single Tesla K80
GPUs.

5.2 Performance against Answer Sentence
Classification Based Methods

In our first set of experiments, we would like to
observe the performance of our model (which com-
putes the probability of sentence being in the an-
swer conditional on both the query and the full
context) compared to pairwise models (which only
use the query and the sentence under consideration)
that classify the query-sentence as relevant or not
using semantic matching. As suggested earlier, this
is an intuitive way to solve the sentence classifi-
cation task. Hence, for this task, we compare the
performance of our model against other semantic
matching baselines, that predict the relevance label
for each sentence individually, given the (query,
sentence) pair as the input.

Baselines and Evaluation Metrics We compare
our model against various semantic matching mod-
els for this task. The semantic matching models
which are used for our experiments were based on
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and XLNet (Yang et al., 2019). For all these
models, we use the standard 24-layer pre-trained
versions of their LARGE models, and fine-tune
them to do semantic matching on (query, sentence)
pairs. We also use TANDA (Garg et al., 2020),
which utilizes a BERT-based architecture to answer
questions using pairwise (query, sentence) classifi-
cation approach, as a baseline model.



3846

We evaluate all the models on two levels:
Sentence-level evaluation computes the Precision,
Recall, and F1-score based on the predicted label
(relevant or not) of each sentence. These set of
metrics will reward a model, even if the answer is
partially correct. We also evaluate Answer-level
Exact Match (EM), which computes the percent-
age of answers, whose predicted label matches the
true label, for all the sentences in the answer. This
will help us evaluate if the model can get the entire
answer correct.

Sentence Answer
Model name P R F1 EM

TANDA 56.48 16.42 25.44 8.95
BERT 56.18 16.25 25.21 8.89

RoBERTa 57.70 19.06 28.65 9.40
XLNet 56.05 19.73 29.19 9.09

MultiCo 58.16 55.90 57.00 22.05

Table 4: Comparison of MultiCo with other baseline
Classification models on MASH-QA dataset.

Results on MASH-QA As we can see from the
results in Table 4, MultiCo significantly outper-
forms the classification baselines on the MASH-
QA dataset, on both the sentence-level and answer-
level metrics. Since we model the sentence con-
ditional on both the query and other sentences in
the context, our model can take into account the
semantic dependencies that exist between multiple
sentences in a document, and their relationship with
the query. Other techniques only use the query and
the sentence under consideration, and do not take
into account the association between different an-
swer sentences, which leads to lower performance.

Model name P R F1
TANDA 68.47 45.00 54.31
BERT 48.10 56.32 51.89

RoBERTa 56.23 53.92 55.05
XLNet 48.54 51.19 49.83

MultiCo 56.79 56.92 56.86

Table 5: Comparison of MultiCo with other baseline
classification models on WikiQA dataset.

Results on other QA datasets We also evaluate
the performance of our proposed model on other
QA datasets, to observe its generalizability to other
settings. Since there are no existing datasets that
contain multi-span answers, the only dataset that

can resemble our problem setting is WikiQA. Here,
we only calculate the sentence-level metrics, as
most of the answers in WikiQA contain only one
sentence. The results presented in Table 5 show
that our model outperforms all other baselines. A
paired t-test indicates that our model outperforms
RoBERTa with more than 95% confidence level
(experimented with 5 different random seeds). The
baselines have a better performance on WikiQA as
compared to MASH-QA, which can be attributed
to two factors: shorter context length, and fewer
sentences per answer. Because of this, the tech-
niques used in our model to handle these factors
have minimal effect. Nonetheless, our model still
outperforms the baselines, which shows that our
technique can be generalized to other QA settings
as well.

5.3 Performance against Span Extraction
Based Methods

In this setup, we show the comparison of our pro-
posed model with other span extraction based meth-
ods. This setup allows us to evaluate how the sen-
tence selection/classification approach performs in
contrast to approaches that predict the start and end
indices of the answer span. Since such methods
are designed only to predict a single start and end
index, the applicability of such approaches is only
limited to cases where the answer can only have
one span from the context. Hence, for this setup,
we only use the subset MASH-QA-S of our dataset
that contains questions with single span answers.

Baselines and Evaluation Metrics We use the
following baseline techniques in this experiment
task: DrQA Reader (Chen et al., 2017) uses an
RNN-based architecture, along with context-to-
query attention, to compute the answer. BiDAF
(Seo et al., 2017) uses bidirectional attention
(query-to-context and context-to-query) for answer
span prediction. We also use the QA versions of
BERT, SpanBERT (Joshi et al., 2020), and XL-
Net, as the baselines. For the former three models,
we use the standard pre-trained versions of LARGE
models, and fine-tune them on our dataset.

Since our objective here is to predict the answer
span for the single answer, we use F1 and Exact
Match (EM) as the evaluation metrics. F1 mea-
sures the overlap between the predicted and the
true answers, and EM measures the percentage of
overall predicted answers that exactly match the
true answer.
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Figure 3: Heatmap of attention weights from the inter-sentence attention layer for two QA pairs. The matrices
show the attention weights of each sentence with respect to every other sentence from the context. The high values
of diagonal elements represent the weight of a sentence with respect to itself. Answers from BERT are shown on
the right.

Model name F1 EM
DrQA Reader 18.92 1.82

BiDAF 23.19 2.42
BERT 27.93 3.95

SpanBERT 30.61 5.62
XLNet 56.46 22.78

MultiCo 64.94 29.49

Table 6: Comparison of MultiCo with other baseline
Question Answering models on MASH-QA-S dataset.

Results The results for the span prediction task
on single-span MASH-QA are shown in Table 6.
As we can see, MultiCo outperforms all the other
baselines by a wide margin. This can be attributed
to the fact that most of the QA models proposed so
far in the literature are mainly focused on the extrac-
tive QA datasets with short answers, that typically
range upto a few words. The answers in MASH-
QA on the other hand, are longer, making the task
more challenging. For long answers, where the
minimum answer unit is a sentence, models trained
with sentence-level objective are likely to perform
better than those with word-level objectives.

5.4 Qualitative Results

For qualitative analysis, we analyze the effect of us-
ing sparse attention on the model performance. In

Fig. 3, we plot the heatmap of the attention weights
obtained from the sparse attention layer, for two
query-context pairs from our dataset. The first ex-
ample here contains an answer with four consecu-
tive sentences. As we can see, the attention weights
for these sentences are high with respect to each
other, and zeroed out with respect to non-answer
sentences. Similarly, non-answer sentences only at-
tend to other non-answer sentences. A similar trend
is observed in the other example, that contains four
answer sentences from two non-consecutive spans.

The answers obtained from the baseline BERT
model using the two QA approaches are also shown.
Using the span extraction approach, BERT gives
an incorrect short answer, while with the pairwise
query-sentence classification approach, it only pre-
dicts one answer sentence correctly. We observe
that these answers have been selected based on
superficial cues. By linking semantically similar
sentences, the sparse attention ultimately helps to
link the query with answer sentences that have lim-
ited similarity with the query, but are similar to
other answer sentences.

6 Conclusion

We proposed a novel form of question-answering,
where answers to a question consist of multiple
sentence-level spans from a long document. To
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support this task, we introduce MASH-QA, a novel
and challenging QA dataset from the consumer
health domain. MASH-QA consists of questions
that can be answered using information from mul-
tiple spans from the document. To motivate fur-
ther research in multi-span QA, we also propose
a novel QA architecture called MultiCo, that uses
query-based contextualized sentence selection ap-
proach for finding multi-span answers from long
documents. By using a sentence-selection based
objective, our model outperforms the existing state-
of-the-art QA models by a wide margin.
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Sparse sequence-to-sequence models. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 1504–1519.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7:249–266.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In International
Conference on Learning Representations (ICLR).

Simon Suster and Walter Daelemans. 2018. Clicr: a
dataset of clinical case reports for machine reading
comprehension. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1551–1563.

Caiming Xiong, Victor Zhong, and Richard Socher.
2017. Dynamic coattention networks for question
answering. In International Conference on Learn-
ing Representations (ICLR).

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2013–2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep learning for answer
sentence selection. arXiv preprint arXiv:1412.1632.

Ming Zhu, Aman Ahuja, Wei Wei, and Chandan K
Reddy. 2019. A hierarchical attention retrieval
model for healthcare question answering. In The
World Wide Web Conference, pages 2472–2482.


