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Abstract

State-of-the-art attacks on NLP models lack a
shared definition of what constitutes a success-
ful attack. These differences make the attacks
difficult to compare and hindered the use of ad-
versarial examples to understand and improve
NLP models. We distill ideas from past work
into a unified framework: a successful natural
language adversarial example is a perturbation
that fools the model and follows four proposed
linguistic constraints. We categorize previous
attacks based on these constraints. For each
constraint, we suggest options for human and
automatic evaluation methods. We use these
methods to evaluate two state-of-the-art syn-
onym substitution attacks. We find that pertur-
bations often do not preserve semantics, and
38% introduce grammatical errors. Next, we
conduct human studies to find a threshold for
each evaluation method that aligns with human
judgment. Human surveys reveal that to suc-
cessfully preserve semantics, we need to sig-
nificantly increase the minimum cosine simi-
larities between the embeddings of swapped
words and between the sentence encodings of
original and perturbed sentences. With con-
straints adjusted to better preserve semantics
and grammaticality, the attack success rate
drops by over 70 percentage points. 1

1 Introduction
One way to evaluate the robustness of a machine

learning model is to search for inputs that produce
incorrect outputs. Inputs intentionally designed to
fool deep learning models are referred to as ad-
versarial examples (Goodfellow et al., 2017). Ad-
versarial examples have successfully tricked deep
neural networks for image classification: two im-
ages that look exactly the same to a human receive

⇤* Equal contribution
1Our code and datasets are available here.
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Figure 1: An adversarial example generated by TFAD-
JUSTED for BERT fine-tuned on the Rotten Tomatoes
sentiment analysis dataset. Swapping a single word
causes the prediction to change from positive to neg-
ative.

completely different predictions from the classifier
(Goodfellow et al., 2014).

While applicable in the image case, the idea of
an indistinguishable change lacks a clear analog in
text. Unlike images, two different sequences of text
are never entirely indistinguishable. This raises the
question: if indistinguishable perturbations are not
possible, what are adversarial examples in text?

The literature contains many potential answers to
this question, proposing varying definitions for suc-
cessful adversarial examples (Zhang et al., 2019).
Even attacks with similar definitions of success
often measure it in different ways. The lack of a
consistent definition and standardized evaluation
has hindered the use of adversarial examples to
understand and improve NLP models. 2

Therefore, we propose a unified definition for
successful adversarial examples in natural lan-
guage: perturbations that both fool the model and
fulfill a set of linguistic constraints. In Section 2,
we present four categories of constraints NLP ad-
versarial examples may follow, depending on the
context: semantics, grammaticality, overlap, and
non-suspicion to human readers.

2We use ‘adversarial example generation methods’ and
‘adversarial attacks’ interchangeably in this paper.

https://github.com/QData/Reevaluating-NLP-Adversarial-Examples
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By explicitly laying out categories of constraints
adversarial examples may follow, we introduce a
shared vocabulary for discussing constraints on
adversarial attacks. In Section 4, we suggest op-
tions for human and automatic evaluation meth-
ods for each category. We use these methods to
evaluate two SOTA synonym substitution attacks:
GENETICATTACK by Alzantot et al. (2018) and
TEXTFOOLER by Jin et al. (2019). Human sur-
veys show that the perturbed examples often fail
to fulfill semantics and non-suspicion constraints.
Additionally, a grammar checker detects 39% more
errors in the perturbed examples than in the origi-
nal inputs, including many types of errors humans
almost never make.

In Section 5, we produce TFADJUSTED,
an attack with the same search process as
TEXTFOOLER, but with constraint enforcement
tuned to generate higher quality adversarial ex-
amples. To enforce semantic preservation, we
tighten the thresholds on the cosine similarity be-
tween embeddings of swapped words and between
the sentence encodings of original and perturbed
sentences. To enforce grammaticality, we vali-
date perturbations with a grammar checker. As
in TEXTFOOLER, these constraints are applied at
each step of the search. Human evaluation shows
that TFADJUSTED generates perturbations that bet-
ter preserve semantics and are less noticeable to
human judges. However, with stricter constraints,
the attack success rate decreases from over 80%
to under 20%. When used for adversarial train-
ing, TEXTFOOLER’s examples decreased model
accuracy, but TFADJUSTED’s examples did not.

Without a shared vocabulary for discussing con-
straints, past work has compared the success rate
of search methods with differing constraint applica-
tion techniques. Jin et al. (2019) reported a higher
attack success rate for TEXTFOOLER than Alzantot
et al. (2018) did for GENETICATTACK, but it was
not clear whether the improvement was due to a
better search method3 or more lenient constraint
application4. In Section 6 we compare the search
methods with constraint application held constant.
We find that GENETICATTACK’s search method is
more successful than TEXTFOOLER’s, contrary to

3TEXTFOOLER uses a greedy search method with word
importance ranking. GENETICATTACK uses a genetic algo-
rithm.

4For example, TEXTFOOLER applies a minimum cosine
distance of .5 between embeddings of swapped words. GE-
NETICATTACK uses a threshold of .75.

the implications of Jin et al. (2019).

The five main contributions of this paper are:

• A definition for constraints on adversarial pertur-
bations in natural language and suggest evalua-
tion methods for each constraint.

• Constraint evaluations of two SOTA synonym-
substitution attacks, revealing that their perturba-
tions often do not preserve semantics, grammati-
cality, or non-suspicion.

• Evidence that by aligning automatic constraint
application with human judgment, it is possible
for attacks to produce successful, valid adversar-
ial examples.

• Demonstration that reported differences in at-
tack success between TEXTFOOLER and GENET-
ICATTACK are the result of more lenient con-
straint enforcement.

• Our framework enables fair comparison between
attacks, by separating effects of search methods
from effects of loosened constraints.

2 Constraints on Adversarial Examples
in Natural Language

We define F : X ! Y as a predictive model, for
example, a deep neural network classifier. X is the
input space and Y is the output space. We focus
on adversarial perturbations which perturb a cor-
rectly predicted input, x 2 X , into an input xadv.
The boolean goal function G(F,xadv) represents
whether the goal of the attack has been met. We
define C1...Cn as a set of boolean functions indi-
cating whether the perturbation satisfies a certain
constraint.

Adversarial attacks search for a perturbation
from x to xadv which fools F by both achieving
some goal, as represented by G(F,xadv), and ful-
filling each constraint Ci(x,xadv).

The definition of the goal function G depends
on the purpose of the attack. Attacks on classifica-
tion frequently aim to either induce any incorrect
classification (untargeted) or induce a particular
classification (targeted). Attacks on other types of
models may have more sophisticated goals. For ex-
ample, attacks on translation may attempt to change
every word of a translation, or introduce targeted
keywords into the translation (Cheng et al., 2018).

In addition to defining the goal of the attack, the
attacker must decide the constraints perturbations
must meet. Different use cases require different
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Input, x: ”Shall I compare thee to a summer’s day?” – William Shakespeare, Sonnet XVIII

Constraint Perturbation, xadv Explanation
Semantics Shall I compare thee to a winter’s day? xadv has a different meaning than x.

Grammaticality Shall I compares thee to a summer’s day? xadv is less grammatically correct than x.
Edit Distance Sha1l i conpp$haaare thee to a 5umm3r’s day? x and xadv have a large edit distance.

Non-suspicion Am I gonna compare thee to a summer’s day? A human reader may suspect this
sentence to have been modified. 1

1 Shakespeare never used the word “gonna”. Its first recorded usage wasn’t until 1806, and it didn’t become popular until the 20th century.
Table 1: Adversarial Constraints and Violations. For each of the four proposed constraints, we show an example
for which violates the specified constraint.

constraints. We build on the categorization of at-
tack spaces introduced by Gilmer et al. (2018) to
introduce a categorization of constraints for adver-
sarial examples in natural language.

In the following, we define four categories of
constraints on adversarial perturbations in natural
language: semantics, grammatically, overlap, and
non-suspicion. Table 1 provides examples of adver-
sarial perturbations that violate each constraint.

2.1 Semantics
Semantics constraints require the semantics of

the input to be preserved between x and xadv.
Many attacks include constraints on semantics as
a way to ensure the correct output is preserved
(Zhang et al., 2019). As long as the semantics of
an input do not change, the correct output will stay
the same. There are exceptions: one could imagine
tasks for which preserving semantics does not nec-
essarily preserve the correct output. For example,
consider the task of classifying passages as written
in either Modern or Early Modern English. Perturb-
ing “why” to “wherefore” may retain the semantics
of the passage, but change the correct label from
Modern to Early Modern English5

2.2 Grammaticality
Grammaticality constraints place restrictions on

the grammaticality of xadv. For example, an ad-
versary attempting to generate a plagiarised paper
which fools a plagiarism checker would need to
ensure that the paper remains grammatically cor-
rect. Grammatical errors don’t necessarily change
semantics, as illustrated in Table 1.

2.3 Overlap
Overlap constraints restrict the similarity be-

tween x and xadv at the character level. This in-

5Wherefore is a synonym for why, but was used much
more often centuries ago.

cludes constraints like Levenshtein distance as well
as n-gram based measures such as BLEU, ME-
TEOR and chRF (Papineni et al., 2002; Denkowski
and Lavie, 2014; Popović, 2015).

Setting a maximum edit distance is useful when
the attacker is willing to introduce misspellings.
Additionally, the edit distance constraint is some-
times used when improving the robustness of mod-
els. For example, Huang et al. (2019) uses Interval
Bound Propagation to ensure model robustness to
perturbations within some edit distance of the in-
put.

2.4 Non-suspicion
Non-suspicion constraints specify that xadv must

appear to be unmodified. Consider the example in
Table 1. While the perturbation preserves seman-
tics and grammar, it switches between Modern and
Early Modern English and thus may seem suspi-
cious to readers.

Note that the definition of the non-suspicious
constraint is context-dependent. A sentence that is
non-suspicious in the context of a kindergartner’s
homework assignment might be suspicious in the
context of an academic paper. An attack scenario
where non-suspicion constraints do not apply is
illegal PDF distribution, similar to a case discussed
by Gilmer et al. (2018). Consumers of an illegal
PDF may tacitly collude with the person uploading
it. They know the document has been altered, but
do not care as long as semantics are preserved.

3 Review and Categorization of SOTA:
Attacks by Paraphrase: Some studies have gen-
erated adversarial examples through paraphrase.
Iyyer et al. (2018) used neural machine transla-
tion systems to generate paraphrases. Ribeiro et al.
(2018) proposed semantically-equivalent adversar-
ial rules. By definition, paraphrases preserve se-
mantics. Since the systems aim to generate perfect

https://books.google.com/ngrams/graph?content=wherefore&year_start=1500&year_end=2008&corpus=15&smoothing=10&share=&direct_url=t1;,wherefore;,c0
https://books.google.com/ngrams/graph?content=wherefore&year_start=1500&year_end=2008&corpus=15&smoothing=10&share=&direct_url=t1;,wherefore;,c0
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paraphrases, they implicitly follow constraints of
grammaticality and non-suspicion.

Attacks by Synonym Substitution: Some works
focus on an easier way to generate a subset of
paraphrases: replacing words from the input with
synonyms (Alzantot et al., 2018; Jin et al., 2019;
Kuleshov et al., 2018; Papernot et al., 2016; Ren
et al., 2019). Each attack applies a search algo-
rithm to determine which words to replace with
which synonyms. Like the general paraphrase case,
they aim to create examples that preserve seman-
tics, grammaticality, and non-suspicion. While not
all have an explicit edit distance constraint, some
limit the number of words perturbed.

Attacks by Character Substitution: Some stud-
ies have proposed to attack natural language classi-
fication models by deliberately misspelling words
(Ebrahimi et al., 2017; Gao et al., 2018; Li et al.,
2018). These attacks use character replacements
to change a word into one that the model doesn’t
recognize. The replacements are designed to create
character sequences that a human reader would
easily correct into the original words. If there
aren’t many misspellings, non-suspicion may be
preserved. Semantics are preserved as long as hu-
man readers can correct the misspellings.

Attacks by Word Insertion or Removal: Liang
et al. (2017) and Samanta and Mehta (2017) de-
vised a way to determine the most important words
in the input and then used heuristics to generate
perturbed inputs by adding or removing important
words. In some cases, these strategies are com-
bined with synonym substitution. These attacks
aim to follow all constraints.

Using constraints defined in Section 2 we cate-
gorize a sample of current attacks in Table 2.

4 Constraint Evaluation Methods and
Case Study

For each category of constraints introduced in
Section 2, we discuss best practices for both human
and automatic evaluation. We leave out overlap due
to ease of automatic evaluation.

Additionally, we perform a case study, evaluat-
ing how well black-box synonym substitution at-
tacks GENETICATTACK and TEXTFOOLER fulfill
constraints. Both attacks find adversarial exam-
ples by swapping out words for their synonyms
until the classifier is fooled. GENETICATTACK

uses a genetic algorithm to attack an LSTM trained
on the IMDB6 document-level sentiment classifica-
tion dataset. TEXTFOOLER uses a greedy approach
to attack an LSTM, CNN, and BERT trained on
five classification datasets. We chose these attacks
because:

• They claim to create perturbations that preserve
semantics, maintain grammaticality, and are not
suspicious to readers. However, our inspection
of the perturbations revealed that many violated
these constraints.

• They report high attack success rates.7

• They successfully attack two of the most effec-
tive models for text classification: LSTM and
BERT.

To generate examples for evaluation, we attacked
BERT using TEXTFOOLER and attacked an LSTM
using GENETICATTACK. We evaluate both meth-
ods on the IMDB dataset. In addition, we evaluate
TEXTFOOLER on the Yelp polarity document-level
sentiment classification dataset and the Movie Re-
view (MR) sentence-level sentiment classification
dataset (Pang and Lee, 2005; Zhang et al., 2015).
We use 1, 000 examples from each dataset. Table 3
shows example violations of each constraint.

4.1 Evaluation of Semantics
4.1.1 Human Evaluation

A few past studies of attacks have included hu-
man evaluation of semantic preservation (Ribeiro
et al., 2018; Iyyer et al., 2018; Alzantot et al., 2018;
Jin et al., 2019). However, studies often simply
ask users to simply rate the “similarity” of x and
xadv. We believe this phrasing does not generate
an accurate measure of semantic preservation, as
users may consider two sentences with different
semantics “similar” if they only differ by a few
words. Instead, users should be explicitly asked
whether changes between x and xadv preserve the
meaning of the original passage.

We propose to ask human judges to rate if mean-
ing is preserved on a Likert scale of 1-5, where 1 is
“Strongly Disagree” and 5 is “Strongly Agree” (Lik-
ert, 1932). A perturbation is semantics-preserving
if the average score is at least ✏sem. We propose

6https://datasets.imdbws.com/
7We use “attack success rate” to mean the percentage of

the time that an attack can find a successful adversarial exam-
ple by perturbing a given input. “After-attack accuracy” or
“accuracy after attack” is the accuracy the model achieves after
all successful perturbations have been applied.
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Selected Attacks Generating Adversarial Examples in
Natural Language

Semantics Grammaticality Edit
Distance

Non-
Suspicion

Synonym Substitution. (Alzantot et al., 2018; Kuleshov
et al., 2018; Jin et al., 2019; Ren et al., 2019)

3 3 3 3

Character Substitution. (Ebrahimi et al., 2017; Gao et al.,
2018; Li et al., 2018)

3 5 3 3

Word Insertion or Removal. (Liang et al., 2017; Samanta
and Mehta, 2017)

3 3 3 3

General Paraphrase. (Zhao et al., 2017; Ribeiro et al.,
2018; Iyyer et al., 2018)

3 3 5 3

Table 2: Summary of Constraints and Attacks. This table shows a selection of prior work (rows) categorized
by constraints (columns). A “3” indicates that the respective attack is supposed to meet the constraint, and a “5”
means the attack is not supposed to meet the constraint.

Constraint Violated Input, x Perturbation, xadv

Semantics Jagger, Stoppard and director Michael
Apted deliver a riveting and
surprisingly romantic ride.

Jagger, Stoppard and director Michael
Apted deliver a baffling and
surprisingly sappy motorbike.

Grammaticality A grating, emaciated flick. A grates, lanky flick.
Non-suspicion Great character interaction. Gargantuan character interaction.

Table 3: Real World Constraint Violation Examples. Perturbations by TEXTFOOLER against BERT fine-tuned
on the MR dataset. Each x is classified as positive, and each xadv is classified as negative.

✏sem = 4 as a general rule: on average, humans
should at least “Agree” that x and xadv have the
same meaning.

4.1.2 Automatic Evaluation
Automatic evaluation of semantic similarity is

a well-studied NLP task. The STS Benchmark is
used as a common measurement (Cer et al., 2017).

Michel et al. (2019) explored the use of com-
mon evaluation metrics for machine translation as
a proxy for semantic similarity in the attack set-
ting. While n-gram overlap based approaches are
computationally cheap and work well in the ma-
chine translation setting, they do not correlate with
human judgment as well as sentence encoders (Wi-
eting and Gimpel, 2018).

Some attacks have used sentence encoders to
encode two sentences into a pair of fixed-length
vectors, then used the cosine distance between
the vectors as a proxy for semantic similarity.
TEXTFOOLER uses the Universal Sentence En-
coder (USE), which achieved a Pearson correlation
score of 0.782 on the STS benchmark (Cer et al.,
2018). Another option is BERT fine-tuned for se-
mantic similarity, which achieved a score of 0.865
(Devlin et al., 2018).

Additionally, synonym substitution methods, in-
cluding TEXTFOOLER and GENETICATTACK, of-
ten require that words be substituted only with
neighbors in the counter-fitted embedding space,

which is designed to push synonyms together and
antonyms apart (Mrksic et al., 2016). These auto-
matic metrics of similarity produce a score that rep-
resents the similarity between x and xadv. Attacks
depend on a minimum threshold value for each
metric to determine whether the changes between
x and xadv preserve semantics. Human evaluation
is needed to find threshold values such that people
generally ”agree” that semantics is preserved.

4.1.3 Case Study
To quantify semantic similarity of x and xadv,

we asked users whether they agreed that the
changes between the two passages preserved mean-
ing on a scale of 1 (Strongly Disagree) to 5
(Strongly Agree). We averaged scores for each
attack method to determine if the method generally
preserves semantics.

Perturbations generated by TEXTFOOLER were
rated an average of 3.28, while perturbations gen-
erated by GENETICATTACK were rated on average
2.70.8 The average rating given for both methods
was significantly less than our proposed ✏sem of 4.
Using a clear survey question illustrates that hu-
mans, on average, don’t assess these perturbations
as semantics-preserving.

8We hypothesize that TEXTFOOLER achieved higher
scores due to its use of USE.
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4.2 Evaluation of Grammaticality
4.2.1 Human Evaluation

Both Jin et al. (2019) and Iyyer et al. (2018) re-
ported a human evaluation of grammaticality, but
neither study clearly asked if any errors were in-
troduced by a perturbation. For human evaluation
of the grammaticality constraint, we propose pre-
senting x and xadv together and asking judges if
grammatical errors were introduced by the changes
made. However, due to the rule-based nature of
grammar, automatic evaluation is preferred.

4.2.2 Automatic Evaluation
The simplest way to automatically evaluate

grammatical correctness is with a rule-based gram-
mar checker. Free grammar checkers are available
online in many languages. One popular checker is
LanguageTool, an open-source proofreading tool
(Naber, 2003). LanguageTool ships with thousands
of human-curated rules for the English language
and provides an interface for identifying grammat-
ical errors in sentences. LanguageTool uses rules
to detect grammatical errors, statistics to detect un-
common sequences of words, and language model
perplexity to detect commonly confused words.

4.2.3 Case Study
We ran each of the generated (x,xadv) pairs

through LanguageTool to count grammatical errors.
LanguageTool detected more grammatical errors
in xadv than x for 50% of perturbations generated
by TEXTFOOLER, and 32% of perturbations gen-
erated by GENETICATTACK.

Additionally, perturbations often contain errors
that humans rarely make. LanguageTool detected 6
categories for which errors in the perturbed samples
appear at least 10 times more frequently than in
the original content. Details regarding these error
categories and examples of violations are shown in
Table 4.

4.3 Evaluation of Non-suspicion
4.3.1 Human Evaluation

We propose evaluation of non-suspicion by hav-
ing judges view a shuffled mix of real and adver-
sarial inputs and guess whether each is real or
computer-altered. This is similar to the human
evaluation done by Ren et al. (2019), but we for-
mulate it as a binary classification task rather than
on a 1-5 scale. A perturbed example xadv is not

suspicious if the percentage of judges who iden-
tify xadv as computer-altered is at most ✏ns, where
0  ✏ns  1.

4.3.2 Automatic Evaluation
Automatic evaluation may be used to guess

whether or not an adversarial example is suspicious.
Models can be trained to classify passages as real
or perturbed, just as human judges do. For example,
Warstadt et al. (2018) trained sentence encoders on
a real/fake task as a proxy for evaluation of lin-
guistic acceptability. Recently, Zellers et al. (2019)
demonstrated that GROVER, a transformer-based
text generation model, could classify its own gen-
erated news articles as human or machine-written
with high accuracy.

4.3.3 Case Study
We presented a shuffled mix of real and per-

turbed examples to human judges and asked if
they were real or computer-altered. As this is
a time-consuming task for long documents, we
only evaluated adversarial examples generated by
TEXTFOOLER on the sentence-level MR dataset.

If all generated examples were non-suspicious,
judges would average 50% accuracy, as they would
not be able to distinguish between real and per-
turbed examples. In this case, judges achieved
69.2% accuracy.

5 Producing Higher Quality Adversarial
Examples

In Section 4, we evaluated how well generated
examples met constraints. We found that although
attacks in NLP aspire to meet linguistic constraints,
in practice, they frequently violate them. Now,
we adjust automatic constraints applied during the
course of the attack to produce better quality adver-
sarial examples.

We set out to find if a set of constraint appli-
cation methods with appropriate thresholds could
produce adversarial examples that are semantics-
preserving, grammatical and non-suspicious. We
modified TEXTFOOLER to produce TFADJUSTED,
a new attack with stricter constraint application.
To enforce grammaticality, we added Language-
Tool. To enforce semantic preservation, we tuned
two thresholds which filter out invalid word sub-
stitutions: (a) minimum cosine similarity between
counter-fitted word embeddings and (b) minimum
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Grammar
Rule ID

x xadv Explanation Context

TO NON BASE 2 123 Did you mean “know”? —— Replace with one of [know] ...ees at person they don’t really want to knew
PRP VBG 3 112 Did you mean “we’re wanting”, “we are wanting”, or “we

were wanting”? —— Replace with one of [we’re
wanting,we are wanting,we were wanting]

while we wanting macdowell’s character to retrieve
her h...

A PLURAL 20 294 Don’t use indefinite articles with plural words. Did you
mean “a grate”, “a gratis” or simply “grates”? ——
Replace with one of [a grate,a gratis,grates]

a grates, lanky flick

DID BASEFORM 25 328 The verb ‘can’t’ requires base form of this verb: “compare”
—— Replace with one of [compare]

...first two cinema in the series, i can’t compares
friday after next to them, but nothing ...

PRP VB 6 73 Do not use a noun immediately after the pronoun ‘it’. Use
a verb or an adverb, or possibly some other part of speech.
—— Replace game with one of []

...ble of being gravest, so thick with wry it game like
a readings from bartlett’s familia...

PRP MD NN 4 46 It seems that a verb or adverb has been misspelled or is
missing here. —— Replace with one of [can be
appreciative,can have appreciative]

...y bit as awful as borchardt’s coven, we can
appreciative it anyway

NON3PRS VERB 7 78 The pronoun ’they’ must be used with a non-third-person
form of a verb: “do” —— Replace with one of [do]

they does a ok operating of painting this family ...

Table 4: Adversarial Examples Contain Uncommon Grammatical Errors. This table shows grammatical errors
detected by LanguageTool that appeared far more often in the perturbed samples. x and xadv denote the numbers
of errors detected in x and xadv across 3,115 examples generated by TEXTFOOLER and GENETICATTACK.

cosine similarity between sentence embeddings.
Through human studies, we found threshold values
of 0.9 for (a) and 0.98 for (b)9. We implemented
TFADJUSTED using TextAttack, a Python frame-
work for implementing adversarial attacks in NLP
(Morris et al., 2020).

5.1 With Adjusted Constraint Application
We tested TFADJUSTED to determine the effect

of tightening constraint application. We used the
IMDB, Yelp, and MR datasets for classifcation
as in Section 4. We added the SNLI and MNLI
entailment datasets (Bowman et al., 2015; Williams
et al., 2018) for the portions not requring human
evaluation. Table 5 shows the results.

Semantics. TEXTFOOLER generates perturbations
for which human judges are on average “Not sure”
if semantics are preserved. With perturbations gen-
erated by TFADJUSTED, human judges on average
“Agree” that semantics are preserved.

Grammaticality. Since all examples produced by
TFADJUSTED are checked with LanguageTool, no
perturbation can introduce grammatical errors. 10

Non-suspicion. We repeated the non-suspicion
study from Section 4.3 with the examples gener-
ated by TFADJUSTED. Participants were able to
guess with 58.8% accuracy whether inputs were
computer-altered. The accuracy is over 10% lower
than the accuracy on the examples generated by

9Details in the appendix, Section A.2.2.
10Since the MR dataset is already lowercased and tokenized,

it is difficult for a rule-based grammar checker like Language-
Tool to parse some inputs.

TEXTFOOLER.

Attack success. For each of the three datasets,
the attack success rate decreased by at least 71
percentage points (see last row of Table 5).

5.2 Adversarial Training With Higher
Quality Examples

Using the 9, 595 samples in the MR training set
as seed inputs, TEXTFOOLER generated 7,382 ad-
versarial examples, while TFADJUSTED generated
just 825. We append each set of adversarial exam-
ples to a copy of the original MR training set and
fine-tuned a pre-trained BERT model for 10 epochs.
Figure 2 plots the test accuracy over 10 training
epochs, averaged over 5 random seeds per dataset.
While neither training method strongly impacts ac-
curacy, the augmentation using TFADJUSTED has
a better impact than that of TEXTFOOLER.

We then re-ran the two attacks using 1000 exam-
ples from the MR test set as seeds. Again averag-
ing over 5 random seeds, we found no significant
change in robustness. That is, models trained on the
original MR dataset were approximately as robust
as those trained on the datasets augmented with
TEXTFOOLER and TFADJUSTED examples. This
corroborates the findings of Alzantot et al. (2018)
and contradicts those of Jin et al. (2019). We in-
clude further analysis along with some hypotheses
for the discrepancies in adversarial training results
in A.4.
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Datasets �! IMDB Yelp MR SNLI MNLI Note
Semantic Preservation (before) 3.41 3.05 3.37 � �
Semantic Preservation (after) 4.06 3.94 4.18 � � Higher value: more preserved
Grammatical Error % (before) 52.8 61.2 28.3 26.7 20.1
Grammatical Error % (after) 0 0 0 0 0 Lower value: less mistakes
Non-suspicion % (before) � � 69.2 � �
Non-suspicion % (after) � � 58.8 � � Lower value: less suspicious
Attack Success % (before) 85.0 93.2 86.6 94.5 95.1
Attack Success % (after) 13.9 5.3 10.6 7.2 14.8
Difference (before - after) 71.1 87.9 76.0 87.3 80.3

Table 5: Results from running TEXTFOOLER (before) and TFADJUSTED (after). Attacks are on BERT classifica-
tion models fine-tuned for five respective NLP datasets.

Figure 2: Accuracy of adversarially trained models on
the MR test set. Augmentation with adversarial ex-
amples generated by TEXTFOOLER (blue), although
higher in quantity, decreases the overall test accuracy
while examples generated by TFADJUSTED (orange)
have a small positive effect.

Constraint Removed Yelp IMDB MR MNLI SNLI
(Original - all used) 5.3 13.9 10.6 14.3 7.2
Sentence Encoding 22.9 45.0 28.7 44.4 31.2
Word Embedding 74.6 87.1 52.9 82.7 69.8
Grammar Checking 5.8 15.0 11.6 15.4 9.0

Table 6: Ablation study: effect of removal of a single
constraint on TFADJUSTED attack success rate. At-
tacks against BERT fine-tuned on each dataset.

5.3 Ablation of TFADJUSTED Constraints
TFADJUSTED generated better quality adversar-

ial examples by constraining its search to exclude
examples that fail to meet three constraints: word
embedding distance, sentence encoder similarity,
and grammaticality. We performed an ablation
study to understand the relative impact of each on
attack success rate.

We reran three TFADJUSTED attacks (one for
each constraint removed) on each dataset. Table 6
shows attack success rate after individually remov-
ing each constraint. The word embedding distance
constraint was the greatest inhibitor of attack suc-
cess rate, followed by the sentence encoder.

6 Comparing Search Methods
When an attack’s success rate improves, it may

be the result of either (a) improvement of the search
method for finding adversarial perturbations or (b)
more lenient constraint definitions or constraint ap-
plication. TEXTFOOLER achieves a higher success
rate than GENETICATTACK, but Jin et al. (2019)
did not identify whether the improvement was due
to (a) or (b). Since TEXTFOOLER uses both a
different search method and different constraint
application methods than GENETICATTACK, the
source of the difference in attack success rates is
unclear.

To determine which search method is more ef-
fective, we used TextAttack to compose attacks
from the search method of GENETICATTACK and
the constraint application methods of each of
TEXTFOOLER and TFADJUSTED (Morris et al.,
2020). With the constraint application held con-
stant, we can identify the source of the difference
in attack success rate. Table 7 reveals that the ge-
netic algorithm of GENETICATTACK is more suc-
cessful than the greedy search of TEXTFOOLER at
both constraint application levels. This reveals the
source of improvement in attack success rate be-
tween GENETICATTACK and TEXTFOOLER to be
more lenient constraint application. However, GE-
NETICATTACK’s genetic algorithm is far more com-
putationally expensive, requiring over 40x more
model queries.

7 Discussion
Tradeoff between attack success and exam-

ple quality. TFADJUSTED made semantic con-
straints more selective, which helped attacks gener-
ate examples that scored above 4 on the Likert scale
for preservation of semantics. However, this led to
a steep drop in attack success rate. This indicates
that, when only allowing adversarial perturbations
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Constraints TFADJUSTED TEXTFOOLER
Search Method TEXTFOOLER GENETICATTACK TEXTFOOLER GENETICATTACK

Semantic Preservation 4.06 4.11 - -
Grammatical Error % 0 0 - -
Non-suspicion Score 58.8 56.9 - -

Attack Success % 10.6 12.0 91.1 95.0
Perturbed Word % 11.1 11.0 18.9 17.2

Num Queries 27.1 4431.6 77.0 3225.7
Table 7: Comparison of the search methods from GENETICATTACK and TEXTFOOLER with two sets of constraints
(TEXTFOOLER and TFADJUSTED). Attacks were run on 1000 samples against BERT fine-tuned on the MR dataset.
GENETICATTACK’s genetic algorithm is more successful than TEXTFOOLER’s greedy strategy, albeit much less
efficient.

that preserve semantics and grammaticality, NLP
models are relatively robust to current synonym
substitution attacks. Note that our set of constraints
isn’t necessarily optimal for every attack scenario.
Some contexts may require fewer constraints or
less strict constraint application.

Decoupling search methods and constraints.
It is critical that researchers decouple new search
methods from new constraint evaluation and con-
straint application methods. Demonstrating the
performance of a new attack that simultaneously in-
troduces a new search method and new constraints
makes it unclear whether empirical gains indicate
a more effective attack or a more relaxed set of
constraints. This mirrors a broader trend in ma-
chine learning where researchers report differences
that come from changing multiple independent vari-
ables, making the sources of empirical gains un-
clear (Lipton and Steinhardt, 2018). This is es-
pecially relevant in adversarial NLP, where each
experiment depends on many parameters.

Towards improved methods for generating
textual adversarial examples. As models im-
prove at paraphrasing inputs, we will be able to
explore the space of adversarial examples beyond
synonym substitutions. As models improve at mea-
suring semantic similarity, we will be able to more
rigorously ensure that adversarial perturbations pre-
serve semantics. It remains to be seen how robust
BERT is when subject to paraphrase attacks that
rigorously preserve semantics and grammaticality.

8 Related Work
The goal of creating adversarial examples that

preserve semantics and grammaticality is common
in the NLP attack literature (Zhang et al., 2019).
However, previous works use different definitions
of adversarial examples, making it difficult to com-
pare methods. We provide a unified definition of

an adversarial example based on a goal function
and a set of linguistic constraints.

Gilmer et al. (2018) laid out a set of potential
constraints for the attack space when generating
adversarial examples, which are each useful in dif-
ferent real-world scenarios. However, they did not
discuss NLP attacks in particular. Michel et al.
(2019) defined a framework for evaluating attacks
on machine translation models, focusing on mean-
ing preservation constraints, but restricted their def-
initions to sequence-to-sequence models. Other
research on NLP attacks has suggested various con-
straints but has not introduced a shared vocabulary
and categorization that allows for effective compar-
isons between attacks.

9 Conclusion
We showed that two state-of-the-art synonym

substitution attacks, TEXTFOOLER and GENETI-
CATTACK, frequently violate the constraints they
claim to follow. We created TFADJUSTED, which
applies constraints that produce adversarial exam-
ples judged to preserve semantics and grammati-
cality.

Due to the lack of a shared vocabulary for dis-
cussing NLP attacks, the source of improvement
in attack success rate between TEXTFOOLER and
GENETICATTACK was unclear. Holding constraint
application constant revealed that the source of
TEXTFOOLER’s improvement was lenient con-
straint application (rather than a better search
method). With a shared framework for defining
and applying constraints, future research can fo-
cus on developing better search methods and better
constraint application techniques for preserving se-
mantics and grammaticality.
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