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Abstract

The global pandemic has made it more im-
portant than ever to quickly and accurately re-
trieve relevant scientific literature for effective
consumption by researchers in a wide range
of fields. We provide an analysis of several
multi-label document classification models on
the LitCovid dataset, a growing collection of
23,000 research papers regarding the novel
2019 coronavirus. We find that pre-trained lan-
guage models fine-tuned on this dataset outper-
form all other baselines and that BioBERT sur-
passes the others by a small margin with micro-
F1 and accuracy scores of around 86% and
75% respectively on the test set. We evaluate
the data efficiency and generalizability of these
models as essential features of any system pre-
pared to deal with an urgent situation like the
current health crisis. We perform a data ab-
lation study to determine how important arti-
cle titles are for achieving reasonable perfor-
mance on this dataset. Finally, we explore 50
errors made by the best performing models on
LitCovid documents and find that they often
(1) correlate certain labels too closely together
and (2) fail to focus on discriminative sections
of the articles; both of which are important is-
sues to address in future work. Both data and
code are available on GitHub 1.

1 Introduction

The COVID-19 pandemic has made it a global pri-
ority for research on the subject to be developed
at unprecedented rates. Researchers in a wide va-
riety of fields, from clinicians to epidemiologists
to policymakers, must all have effective access to
the most up to date publications in their respective
areas. Automated document classification can play
an essential role in organizing the stream of articles
by fields and topics to facilitate the search process
and speed up research efforts.

1https://github.com/dki-lab/
covid19-classification

To explore how document classification models
can help organize COVID-19 research papers, we
use the LitCovid dataset (Chen et al., 2020), a col-
lection of 23,000 newly released scientific papers
compiled by the NIH to facilitate access to the lit-
erature on all aspects of the virus. This dataset
is updated daily and every new article is manu-
ally assigned one or more of the following 8 cat-
egories: General, Transmission Dynamics (Trans-
mission), Treatment, Case Report, Epidemic Fore-
casting (Forecasting), Prevention, Mechanism and
Diagnosis. We leverage these annotations and the
articles made available by LitCovid to compile a
timely new dataset for multi-label document classi-
fication.

Apart from addressing the pressing needs of the
pandemic, this dataset also offers an interesting
document classification dataset which spans differ-
ent biomedical specialties while sharing one over-
arching topic. This setting is distinct from other
biomedical document classification datasets, which
tend to exclusively distinguish between biomedical
topics such as hallmarks of cancer (Baker et al.,
2016), chemical exposure methods (Baker, 2017)
or diagnosis codes (Du et al., 2019). The dataset’s
shared focus on the COVID-19 pandemic also sets
it apart from open-domain datasets and academic
paper classification datasets such as IMDB or the
arXiv Academic Paper Dataset (AAPD) (Yang
et al., 2018) in which no shared topic can be found
in most of the documents, and it poses unique chal-
lenges for document classification models.

We evaluate a number of models on the LitCovid
dataset and find that fine-tuning pre-trained lan-
guage models yields higher performance than tra-
ditional machine learning approaches and neural
models such as LSTMs (Adhikari et al., 2019b;
Kim, 2014; Liu et al., 2017). We also notice that
BioBERT (Lee et al., 2019), a BERT model pre-
trained on the original corpus for BERT plus a large
set of PubMed articles, performed slightly better

https://github.com/dki-lab/covid19-classification
https://github.com/dki-lab/covid19-classification
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LitCovid CORD-19 Test
# of Classes 8 8
# of Articles 23,038 100
Avg. sentences 74 109
Avg. tokens 1,399 2,861
Total # of tokens 32,239,601 286,065

Table 1: Dataset statistics for the LitCovid and Test CORD-19
Datasets.

than the original BERT base model. We also ob-
serve that the novel Longformer (Beltagy et al.,
2020) model, which allows for processing longer
sequences, matches BioBERT’s performance when
1024 subwords are used instead of 512, the maxi-
mum for BERT models.

We then explore the data efficiency and gener-
alizability of these models as crucial aspects to
address for document classification to become a
useful tool against outbreaks like this one. Addi-
tionally, we perform a data ablation study to eval-
uate the effect of article titles on the limits of per-
formance for this dataset. Finally, we discuss some
issues found during our error analysis, such as cur-
rent models often (1) correlating certain categories
too closely with each other and (2) failing to focus
on discriminative sections of a document and get
distracted by introductory text about COVID-19,
which suggest avenues for future improvement.

2 Datasets

In this section, we describe the LitCovid dataset
in more detail and briefly introduce the CORD-19
dataset, which we sampled to create a small test set
to evaluate model generalizability.

2.1 LitCovid
The LitCovid dataset is a collection of recently
published PubMed articles that are directly related
to the 2019 novel Coronavirus. The dataset con-
tains upwards of 23,000 articles, and approximately
2,000 new articles are added every week, making it
a comprehensive resource for keeping researchers
up to date with the current COVID-19 crisis.

For a large portion of the articles in LitCovid,
either the full article or at least the abstract can be
downloaded directly from their website. For our
document classification dataset, we select 23,038
articles which contain full texts or abstracts from
the 35,000+ articles available on August 1st, 2020.
As seen in table 1, these selected articles contain,
on average, approximately 74 sentences and 1,399
tokens, reflecting the roughly even split between
abstracts and full articles we observe from inspec-

Class LitCovid CORD-19 Set
Prevention 11,042 12
Treatment 6,897 20
Diagnosis 4,754 25
Mechanism 3,549 70
Case Report 1,914 2
Transmission 1,065 6
Forecasting 461 2
General 368 7

Table 2: Number of documents in each category for the Lit-
Covid and CORD-19 Test Datasets.

tion.
Each article in LitCovid is assigned one or more

of the following 8 topic labels: Prevention, Treat-
ment, Diagnosis, Mechanism, Case Report, Trans-
mission, Forecasting and General. Even though
every article in the corpus can be labeled with mul-
tiple tags, most articles, around 76%, contain only
one label. Table 2 shows the label distribution for
the subset of LitCovid, which is used in the present
work. We note that there is a large class imbalance,
with the most frequently occurring label appearing
almost 20 times as much as the least frequent one.
We split the LitCovid dataset into train, dev, test
with the ratio 7:1:2.

2.2 CORD-19
The COVID-19 Open Research Dataset (CORD-
19) (Wang et al., 2020) was one of the earliest
datasets released to facilitate cooperation between
the computing community and the many relevant
actors of the COVID-19 pandemic. It consists of
approximately 60,000 papers related to COVID-
19 and similar coronaviruses such as SARS and
MERS since the SARS epidemic of 2002. Due to
their differences in scope, this dataset shares only
around 1,200 articles with the LitCovid dataset.

In order to test how our models generalize to
a different setting, we asked biomedical experts
to label a small set of 100 articles found only in
CORD-19. Each article was labeled independently
by two annotators. For articles that received two
different annotations (around 15%), a third annota-
tor broke ties. Table 1 shows the statistics of this
small set and Table 2 shows its category distribu-
tion.

3 Models

In the following section, we provide a brief de-
scription of each model and the implementations
used. We use micro-F1 (F1) and accuracy (Acc.)
as our evaluation metrics, as done in (Adhikari



3717

Model Dev Set Test Set
Acc. F1 Acc. F1

LR 68.5 81.4 68.6 81.4
SVM 71.2 83.4 70.7 83.3
LSTM 69.0 ±0.9 83.9 ±0.1 68.9 ±0.3 83.2 ±0.2
LSTMreg 71.2 ±0.5 83.9 ±0.3 70.8 ±0.7 83.6 ±0.5
KimCNN 69.9 ±0.2 83.3 ±0.3 68.8 ±0.1 82.7 ±0.1
XML-CNN 72.9 ±0.4 84.1 ±0.2 71.7 ±0.7 83.5 ±0.3
BERTbase 74.3 ±0.6 85.5 ±0.4 73.6 ±1.0 85.1 ±0.5
BERTlarge 75.1 ±3.9 85.9 ±1.9 74.4 ±2.7 85.3 ±1.4
Longformer 74.4 ±0.8 85.6 ±0.5 73.9 ±0.8 85.5 ±0.5
BioBERT + LSTM 72.5 ±0.8 85.2 ±0.3 72.4 ±0.7 85.0 ±0.4
BioBERT 75.0 ±0.5 86.3 ±0.2 75.2 ±0.7 86.2 ±0.6

Table 3: Performance for each model expressed as mean ±
standard deviation across three training runs.

et al., 2019a). All reproducibility information can
be found in Appendix A.

3.1 Traditional Machine Learning Models
To compare with simpler but competitive tradi-
tional baselines, we use the default scikit-learn
(Pedregosa et al., 2011) implementation of logis-
tic regression and linear support vector machine
(SVM) for multi-label classification, which trains
one classifier per class using a one-vs-rest scheme.
Both models use TF-IDF weighted bag-of-words
as input.

3.2 Conventional Neural Models
Using Hedwig2, a document classification toolkit,
we evaluate the following models: KimCNN (Kim,
2014), XML-CNN (Liu et al., 2017) as well as an
unregularized and a regularized LSTM (Adhikari
et al., 2019b). We notice that they all perform
similarly and slightly better traditional methods.

3.3 Pre-Trained Language Models
Using the same Hedwig document classification
toolkit, we evaluate the performance of DocBERT
(Adhikari et al., 2019a) on this task with a few dif-
ferent pre-trained language models. We fine-tune
BERT base, BERT large (Devlin et al., 2019) and
BioBERT (Lee et al., 2019), a version of BERT
base which was further pre-trained on a collection
of PubMed articles. We find all BERT models
achieve their best performance with their highest
possible sequence length of 512 subwords. Addi-
tionally, we fine-tune the pre-trained Longformer
(Beltagy et al., 2020) in the same way and find that
it performs best when a maximum sequence length
of 1024 is used.

As in the original Longformer paper, we use
global attention on the [CLS] token for document

2https://github.com/castorini/hedwig

classification but find that performance improves
by around 1% if we use the average of all tokens
as input instead of only the [CLS] representation.
We hypothesize that this effect can be observed
because the LitCovid dataset contains longer doc-
uments on average that the Hyperpartisan dataset
used in the original Longformer paper.

We find that all pre-trained language models out-
perform the previous traditional and neural meth-
ods by a sizable margin in both accuracy and micro-
F1 score. The best performing model is BioBERT,
which achieves a micro-F1 score of 86.2% and an
accuracy of 75.2% on the test set.

Finally, we compare against an architecture pro-
posed by (Mulyar et al., 2019) to process long
documents in the clinical setting. This baseline
splits full documents into segments of 512 sub-
words, encodes each of them separately using the
ClinicalBERT model, and combines them using
an LSTM module over each segment’s [CLS] to-
ken. We replaced ClinicalBERT with BioBERT to
more adequately fit our use case. We find that this
baseline’s F1 and accuracy scores are around 1%
and 3% lower than the length limited BioBERT, re-
spectively. This drop in performance indicates that
the extra content in longer documents distracts this
model from more salient information in the title
and abstract of the article, which is more efficiently
leveraged by the standalone BioBERT model.

4 Results & Discussion

In this section, we explore data efficiency and
model generalizability, present a data ablation
study, and discuss potential ways to improve per-
formance on this task in future work.

4.1 Data Efficiency
During a sudden healthcare crisis like this pan-
demic, it is essential for models to obtain useful re-
sults as soon as possible. Since labeling biomedical
articles is a very time-consuming process, achiev-
ing peak performance using less data becomes
highly desirable. We thus evaluate the data effi-
ciency of these models by training each of the ones
shown in Figure 1 using 1%, 5%, 10%, 20% and
50% of our training data and report the micro-F1
score on the dev set. When selecting the data sub-
sets, we sample each category independently to
make sure they are all represented.

We observe that pre-trained models are much
more data-efficient than other models and that
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Figure 1: Data efficiency analysis. Pre-trained language
models achieve their maximum performance on only 20% of
the training data.

BioBERT is the most efficient, demonstrating the
importance of domain-specific pre-training.

4.2 CORD-19 Generalizability
To effectively respond to this pandemic, experts
must not only learn as much as possible about the
current virus but also thoroughly understand past
epidemics and similar viruses. Thus, it is crucial for
models trained on the LitCovid dataset to success-
fully categorize articles about related epidemics.
We therefore evaluate some of our baselines on
such articles using our labeled CORD-19 subset.
We find that the accuracy and micro-F1 metrics
drop by approximately 35 and 15 points, respec-
tively. This massive drop in performance from a
minor change in domain indicates that the models
have trouble ignoring the overarching COVID-19
topic and isolating relevant signals from each cate-
gory.

Acc. F1
SVM 29.0 62.8

LSTMreg 32.7 ±1.5 67.7 ±0.7
Longformer 41.3 ±6.4 70.0 ±2.9

BioBERT 36.0 ±7.8 69.7 ±2.8

Table 4: Performance on the CORD-19 Test Set expressed as
mean ± standard deviation across three training runs.

It is interesting to note that Mechanism is the
only category for which BioBERT performs better
in CORD-19 than in LitCovid. This could be due
to Mechanism articles using technical language and
there being enough samples for the models to learn;
in contrast with Forecasting, which also uses spe-
cific language but has far fewer training examples.
BioBERT’s binary F1 scores for each category on
both datasets can be found in Appendix B.

Figure 2: Data ablation study. Reasonable performance can
be obtained with titles only but full articles are crucial for
achieving best performance.

4.3 Data Ablation Study
To study whether full articles are required to
achieve reasonable performance on this dataset, we
evaluate a few representative models on two ver-
sions of the dataset, one with titles only and another
with article bodies only. As we can see in Figure 2,
the Longformer achieves the highest performance
when titles are removed, given that it is able to pro-
cess a larger portion of the article body than other
pre-trained models. We also notice that the gap
between BioBERT’s ’Title Only’ and ’Body Only’
performance is much smaller than other models,
suggesting that BioBERT’s domain-specific pre-
training allows it to use the salient title information
more efficiently. We conclude that even though
the article’s body alone is more predictive than the
title, standalone titles can still obtain reasonable
performance on this dataset and are necessary to
achieve the best possible performance.

4.4 Error Analysis
We analyze 50 errors made by both highest scor-
ing BioBERT and the Longformer models on Lit-
Covid documents to better understand their per-
formance. We find that 34% of these were an-
notation errors which our best performing model
predicted correctly. We also find that 10% of the er-
rors were nearly impossible to classify using only
the text available on LitCovid, and the full arti-
cles are needed to make better-informed prediction.
From the rest of the errors we identify some aspects
of this task which should be addressed in future
work. We first note these models often correlate
certain categories, namely Prevention and Fore-
casting, much more closely than necessary. Even
though these categories are semantically related
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Article Label Prediction
Analysis on epidemic situation and spatiotemporal changes of COVID-19 in Anhui.
... We mapped the spatiotemporal changes of confirmed cases, fitted the epidemic situation by the population growth
curve at different stages and took statistical description and analysis of the epidemic situation in Anhui province.

Forecasting
Prevention
Forecasting

2019 Novel coronavirus: where we are and what we know.
There is a current worldwide outbreak of a new type of coronavirus (2019-nCoV), which originated from Wuhan in
China and has now spread to 17 other countries.
... This paper aggregates and consolidates the virology, epidemiology, clinical management strategies ...
In addition, by fitting the number of infections with a single-term exponential model ...

Treatment
Mechanism

Transmission
Forecasting

Prevention
Forecasting

Managing Cancer Care During the COVID-19 Pandemic: Agility and Collaboration Toward a Common Goal.
The first confirmed case of coronavirus disease 2019 (COVID-19) in the United States was reported on
January 20, 2020, in Snohomish County, Washington. ...

Treatment Prevention

Table 5: LitCovid Error Samples. Sentences relevant to the article’s category are highlighted with blue and general ones with
red.

and some overlap exists, the Forecasting tag is pre-
dicted in conjunction with the Prevention tag much
more frequently than what is observed in the labels,
as can be seen from the table in Appendix C. Future
work should attempt to explicitly model correlation
between categories to help the model recognize the
particular cases in which labels should occur to-
gether. The first row in Table 5 shows a document
labelled as Forecasting which is also incorrectly
predicted with a Prevention label, exemplifying
this issue.

Finally, we observe that models have trouble
identifying discriminative sections of the document
due to how much introductory content on the pan-
demic can be found in most articles. Future work
should explicitly model the gap in relevance be-
tween introductory sections and crucial sentences
such as thesis statements and article titles. In Table
5, the second and third examples would be more
easily classified correctly if specific sentences were
ignored while others attended to more thoroughly.
This could also increase interpretability, facilitating
analysis and further improvement.

5 Conclusion

We provide an analysis of document classification
models on the LitCovid dataset for the COVID-
19 literature. We determine that fine-tuning pre-
trained language models yields the best perfor-
mance on this task. We study the generalizability
and data efficiency of these models, evaluate the ef-
fect of article titles on performance through a data
ablation study and discuss some important issues
to address in future work.
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A Experimental Set-up

We split the LitCovid dataset into train, dev, test
with the ratio 7:1:2.

Following (Adhikari et al., 2019a), we adopt
micro-F1 and accuracy as our evaluation metrics.
We use scikit-learn (Pedregosa et al., 2011) and
Hedwig evaluation scripts to evaluate all the mod-
els. We use the NLTK library for preprocessing,
tokenization and sentence segmentation.

All the document classification models used in
the paper, logistic regression 1 SVM 2 DocBERT
3, Reg-LSTM 4, Reg-LSTM 5, XML-CNN 6, Kim
CNN 7 are run based on the implementations listed
here and strictly followed their instructions. We
used the following pre-trained language models,
BioBERT 8, BERT base 9, BERT large 10 and the
Longformer 11.

For reproducibility, we list all the key hyperpa-
rameters, the tuning bounds and the # of parameters
for each model in Table A3. For the logistic regres-
sion and the SVM all hyperparameters used were
default to scikit-learn and therefore are excluded
from this table. For all models, we train for a maxi-
mum of 30 epochs with a patience of 5. We used
the micro-F1 score for all hyperparameter tuning.
All models were run on NVIDIA GeForce GTX
1080 GPUs.

B Performance by Category

In this section, we present BioBERT’s binary F1
scores per category on both the LitCovid dev set
and the CORD-19 test dataset. On the LitCovid
dataset, BioBERT obtains scores above 80% for all

1https://scikit-learn.org/stable/
modules/generated/\sklearn.linear_model.
LogisticRegression.html

2https://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html

3https://github.com/castorini/hedwig/
blob/master/models/bert

4https://github.com/castorini/hedwig/
blob/master/models/reg_lstm

5https://github.com/castorini/hedwig/
blob/master/models/reg_lstm

6https://github.com/castorini/hedwig/
blob/master/models/xml_cnn

7https://github.com/castorini/hedwig/
blob/master/models/kim_cnn

8https://huggingface.co/monologg/
biobert_v1.1_pubmed

9https://huggingface.co/
bert-base-uncased

10https://huggingface.co/
bert-large-uncased

11https://github.com/allenai/longformer

categories except Transmission, Forecasting, and
General, the three categories with the least amount
of training data. The class with the least number
of training samples, General, has the lowest perfor-
mance by far, obtaining half the F1 score than the
second smallest class, Forecasting; this suggests
that the General class is especially challenging.
We note that Mechanism is the only category for
which BioBERT does better in CORD-19 than in
LitCovid. This is most likely due to the technical
language used in the Mechanism category and the
fact that it has more training examples than other
highly technical categories such as Forecasting.

Category Binary F1 Score
LitCovid

Dev
CORD-19 Set

Prevention 92.7 ±0.7 66.7 ±2.5

Case Report 87.9 ±1.5 66.7 ±0.0

Treatment 85.6 ±0.9 53.9 ±9.0

Diagnosis 82.1 ±0.5 63.0 ±3.3

Mechanism 81.5 ±2.1 86.8 ±0.8

Forecasting 70.3 ±2.3 0.0 ±0.0

General 35.5 ±33.9 0.0 ±0.0

Transmission 60.9 ±1.6 56.4 ±3.2

Table A1: BioBERT Binary F1 scores per category on the
LitCovid dev set and the CORD-19 test set. Scores are given
as mean ± standard deviation across three BioBERT training
runs.

C Category Correlation

Table A2 suggests that the Longformer model tends
to predict the Prevention class whenever it predicts
the Forecasting class. Although these categories
are semantically similar and occur together in two-
thirds of the total Forecasting documents, they are
predicted jointly in almost 90% of the documents
labeled with the Forecasting class. This shows that
these two classes are coupled more closely than
they should; future work could explicitly address
this coupling to improve performance.

Category Full Label
Percentage of Docs

with Category
Label Prediction

Forecasting
Single Label 34.9 8.5
+ Prevention 62.7 88.0

Table A2: The numbers presented are percentages of the total
number of documents with that category label.

https://scikit-learn.org/stable/modules/generated/\sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/\sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/\sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://github.com/castorini/hedwig/blob/master/models/bert
https://github.com/castorini/hedwig/blob/master/models/bert
https://github.com/castorini/hedwig/blob/master/models/reg_lstm
https://github.com/castorini/hedwig/blob/master/models/reg_lstm
https://github.com/castorini/hedwig/blob/master/models/reg_lstm
https://github.com/castorini/hedwig/blob/master/models/reg_lstm
https://github.com/castorini/hedwig/blob/master/models/xml_cnn
https://github.com/castorini/hedwig/blob/master/models/xml_cnn
https://github.com/castorini/hedwig/blob/master/models/kim_cnn
https://github.com/castorini/hedwig/blob/master/models/kim_cnn
https://huggingface.co/monologg/biobert_v1.1_pubmed
https://huggingface.co/monologg/biobert_v1.1_pubmed
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-large-uncased
https://huggingface.co/bert-large-uncased
https://github.com/allenai/longformer
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Model Hyperparameters Hyperparameter bounds Number of Parameters

Kim CNN

batch size: 32
learning rate: 0.001
dropout: 0.1
mode: static
output channel: 100
word dimension: 300
embedding dimension: 300
epoch decay: 15
weight decay: 0

batch size: (16, 32, 64)
learning rate: (0.01, 0.001, 0.0001)
dropout: (0.1, 0.5, 0.7)

362,708

XML-CNN

batch size: 32
learning rate: 0.001
dropout: 0.7
dynamic pool length: 8
mode: static
output channel: 100
word dimension: 300
embedding dimension: 300
epoch decay: 15
weight decay: 0
hidden bottleneck dimension: 512

batch size: (32, 64)
learning rate: (0.001, 0.0001, 1× 10−5)
dropout: (0.1, 0.5, 0.7)
dynamic pool length: (8, 16, 32)

1,653,716

LSTM

batch size: 8
learning rate: 0.001
dropout: 0.1
hidden dimension: 512
mode: static
output channel: 100
word dimension: 300
embedding dimension: 300
number of layers: 1
epoch decay: 15
weight decay: 0
bidirectional: true
bottleneck layer: true
weight drop: 0.1
embedding dropout: 0.2
temporal averaging: 0.0
temporal activation regularization: 0.0
activation regularization: 0.0

learning rate: (0.01, 0.001, 0.0001)
hidden dimension: (300, 512)

3,342,344

LSTMReg

batch size: 8
learning rate: 0.001
dropout: 0.5
hidden dimension: 300
temporal averaging: 0.99
mode: static
output channel: 100
word dimension: 300
embedding dimension: 300
number of layers: 1
epoch decay: 15
weight decay: 0
bidirectional: true
bottleneck layer: true
weight drop: 0.1
embedding dropout: 0.2
temporal activation regularization: 0.0
activation regularization: 0.0

batch size: (8,16)
learning rate: (0.01, 0.001, 0.0001)
hidden dimension: (300, 512)
dropout: (0.5, 0.6)

1,449,608

BERTbase

learning rate: 2× 10−5

max sequence length: 512
batch size: 6
model: bert-base-uncased
warmup proportion: 0.1
gradient accumulation steps: 1

learning rate: (0.001, 0.0001,
2× 10−5, 1× 10−6)
maximum sequence length: (256, 512)

110M

BERTlarge

learning rate: 2× 10−5

max sequence length: 512
batch size: 2
model: bert-large-uncased
warmup proportion: 0.1
gradient accumulation steps: 1

learning rate: (0.001, 0.0001,
2× 10−5, 1× 10−6)
maximum sequence length: (256, 512)

336M

BioBERT

learning rate: 2× 10−5

max sequence length: 512
batch size: 6
model: monologg/biobert v1.1 pubmed
warmup proportion: 0.1
gradient accumulation steps: 1

learning rate: (0.001, 0.0001,
2× 10−5, 1× 10−6))
maximum sequence length: (256, 512)

108M

BioBERT + LSTM

learning rate: 2× 10−5

max sequence length: 512
batch size: 16
model: monologg/biobert v1.1 pubmed
weight decay: 0
freeze bert: true

108M

Longformer

learning rate: 2× 10−5

max sequence length: 1024
batch size: 3
model: longformer-base-4096
warmup proportion: 0.1
gradient accumulation steps: 1

learning rate: (0.001, 0.0001,
2× 10−5, 1× 10−6))
maximum sequence length: (1024, 3584)

148M

Table A3: Hyperparameters, tuning bounds and number of parameters for each method.


