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Abstract

Neural network-based models augmented with
unsupervised pre-trained knowledge have
achieved impressive performance on text sum-
marization. However, most existing evaluation
methods are limited to an in-domain setting,
where summarizers are trained and evaluated
on the same dataset. We argue that this ap-
proach can narrow our understanding of the
generalization ability for different summariza-
tion systems. In this paper, we perform an in-
depth analysis of characteristics of different
datasets and investigate the performance of dif-
ferent summarization models under a cross-
dataset setting, in which a summarizer trained
on one corpus will be evaluated on a range
of out-of-domain corpora. A comprehensive
study of 11 representative summarization sys-
tems on 5 datasets from different domains re-
veals the effect of model architectures and
generation ways (i.e. abstractive and extrac-
tive) on model generalization ability. Further,
experimental results shed light on the limita-
tions of existing summarizers. Brief introduc-
tion and supplementary code can be found in
https://github.com/zide05/CDEvalSumm.

1 Introduction

Neural summarizers have achieved impressive per-
formance when evaluated by ROUGE (Lin, 2004)
on in-domain setting, and the recent success of pre-
trained models drives the state-of-the-art results
on benchmarks to a new level (Liu and Lapata,
2019; Liu, 2019; Zhong et al., 2019a; Zhang et al.,
2019; Lewis et al., 2019; Zhong et al., 2020). How-
ever, the superior performance is not a guarantee
of a perfect system since exsiting models tend to
show defects when evaluated from other aspects.
For example, Zhang et al. (2018) observes that

∗These two authors contributed equally.
†Corresponding author.

Figure 1: Ranking (descending order) of current 11
top-scoring summarization systems (Abstractive mod-
els are red while extractive ones are blue). Each sys-
tem is evaluated based on three diverse evaluation meth-
ods: (a) averaging each system’s in-dataset ROUGE-2
F1 scores (R2) over five datasets; (b-c) evaluating sys-
tems using our designed cross-dataset measures: stiff-
R2, stable-R2 (Sec. 5). Notably, BERTmatch and BART
are two state-of-the-art models for extractive and ab-
stractive summarization respectively (highlighted by
blue and red boxes).

many abstractive systems tend to be near-extractive
in practice. Cao et al. (2018); Wang et al. (2020);
Kryściński et al. (2019); Maynez et al. (2020) re-
veal that most generated summaries are factually in-
correct. These non-mainstream evaluation methods
make it easier to identify the model’s weaknesses.

Orthogonal to above two evaluation aspects, we
aim to diagnose the limitation of existing systems
under cross-dataset evaluation, in which a sum-
marization system trained on one corpus would
be evaluated on a range of out-of-dataset corpora.
Instead of evaluating the quality of summarizers
solely based on one dataset or multiple datasets
individually, cross-dataset evaluation enables us to
evaluate model performance from a different an-
gle. For example, Fig. 1 shows the ranking of 11
summarization systems studied in this paper under
different evaluation metrics, in which the ranking
list “(a) in-dataset R2” is obtained by traditional
ranking criteria while other two are based on our

https://github.com/zide05/CDEvalSumm
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designed cross-dataset measures. Intuitively, we
observe that 1) there are different definitions of
a “good” system in various evaluation aspects; 2)
abstractive and extractive systems exhibit diverse
behaviors when evaluated under the cross-dataset
setting.

The above example recaps the general motiva-
tion of this work, encouraging us to rethink the
generalization ability of current top-scoring sum-
marization systems from the perspective of cross-
dataset evaluation. Specifically, we ask two ques-
tions as follows:

Q1: How do different neural architectures of
summarizers influence the cross-dataset generaliza-
tion performances? When designing summariza-
tion systems, a plethora of neural components can
be adopted (Zhou et al., 2018; Chen and Bansal,
2018; Gehrmann et al., 2018; Cheng and Lapata,
2016; Nallapati et al., 2017). For example, will
copy (Gu et al., 2016) and coverage (See et al.,
2017) mechanisms improve the cross-dataset gen-
eralization ability of summarizers? Is there a risk
that BERT-based summarizers will perform worse
when adapted to new areas compared with the ones
without BERT? So far, the generalization ability of
current summarization systems when transferring
to new datasets still remains unclear, which poses
a significant challenge to design a reliable system
in realistic scenarios. Thus, in this work, we take a
closer look at the effect of model architectures on
cross-dataset generalization setting.

Q2: Do different generation ways (extractive and
abstractive) of summarizers influence the cross-
dataset generalization ability? Extractive and ab-
stractive models, as two typical ways to summarize
texts, usually follow diverse learning frameworks
and favor different datasets. It would be absorbing
to know their discrepancy from the perspective of
cross-dataset generalization. (e.g., whether abstrac-
tive summarizers are better at generating informa-
tive or faithful summaries on a new test set?)

To answer the questions above, we have con-
ducted a comprehensive experimental analysis,
which involves eleven summarization systems (in-
cluding the state-of-the-art models), five benchmark
datasets from different domains, and two evalua-
tion aspects. Tab. 1 illustrates the overall analy-
sis framework. We explore the effect of different
architectures and generation ways on model gen-
eralization ability in order to answer Q1 and Q2.
Semantic equivalency (e.g., ROUGE) and factual-

Framework Semantic equivalency
(e.g., ROUGE)

Factuality
(e.g., Factcc)

Q1: Architecture
(e.g., Transformer v.s. LSTM)

Sec. 6.1.1 Sec. 6.2

Q2: Generation way
(e.g., BERT v.s. BART)

Sec. 6.1.2 Sec. 6.2

Table 1: Overall analysis framework.

ity are adopted to characterize the different aspects
of cross-dataset generalization ability. Addition-
ally, we strengthen our analysis by presenting two
views of evaluation: holistic and fine-grained views
(Sec. 5).

Our contributions can be summarized as: 1)
Cross-dataset evaluation is orthogonal to other eval-
uation aspects (e.g., semantic equivalence, factual-
ity), which can be used to re-evaluate current sum-
marization systems, accelerating the creation of
more robust summarization systems. 2) We have de-
sign two measures Stiffness and Stableness, which
could help us to characterize generalization abil-
ity in different views, encouraging us to diagnose
the weaknesses of state-of-the-art systems. 3) We
conduct dataset bias-aided analysis (Sec. 4.3) and
suggest that a better understanding of datasets will
be helpful for us to interpret systems’ behaviours.

2 Representative Systems

Although it’s intractable to cover all neural sum-
marization systems, we try to include more repre-
sentative models to make a comprehensive evalua-
tion. Our selection strategy follows: 1) the source
codes of systems are publicly available; 2) systems
with state-of-the-art performance or the top perfor-
mace on benchmark datasets (e.g., CNNDM (Nalla-
pati et al., 2016)) 3) systems equipped with typical
neural components (e.g., Transformer, LSTM) or
mechanism (e.g., copy).

2.1 Extractive Summarizers

Extractive summarizers directly choose and output
the salient sentences (or phrases) in the original
document. Generally, most of the existing extrac-
tive summarization systems follow a framework
consisting of three major modules: sentence en-
coder, document encoder and decoder. In this pa-
per, we investigate extractive summarizers with
different choices of encoders and decoders.
LSTMnon (Kedzie et al., 2018) This summarizer
adopts convolutional neural network as sentence
encoder and LSTM to model the cross-sentence
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relation. Finally, each sentence will be selected in
a non-autoregressive way.
Transnon (Liu and Lapata, 2019) The Trans-
formerExt model in Liu and Lapata (2019), similar
to above setting except that the document encoder
is replaced with the Transformer layer.
Transauto (Zhong et al., 2019a) The decoder is
replaced with a pointer network to avoid the repeti-
tion (autoregressive).
BERTnon (Liu and Lapata, 2019) The Bert-
SumExt model in Liu and Lapata (2019), this
model is an extension of Transnon by introducing a
BERT (Devlin et al., 2018) layer.
BERTmatch (Zhong et al., 2020) This is the ex-
isting state-of-the-art extractive summarization
system, which introduce a matching layer using
siamese BERT.

2.2 Abstractive Summarizers

The abstractive approach involves paraphrasing
the inputs using novel words. The current abstrac-
tive summarization systems mainly focus on the
encoder-decoder paradigm.
L2Lcovptr (See et al., 2017) The model is a LSTM
based sequence to sequence summarizer with copy
and coverage mechanism.
L2Lptr We remove the coverage module and keep
other parts unchanged.
L2L This model is implemented by removing the
pointer network of the above summarizer.
T2T (Liu and Lapata, 2019) A sequence to se-
quence model with Transformer as the encoder and
decoder.
BE2T (Liu and Lapata, 2019) A sequence to se-
quence model with BERT as encoder and Trans-
former as decoder.
BART (Lewis et al., 2019) A fully pre-trained
sequence to sequence model. It is the existing state-
of-the-art abstractive summarization system.

3 Datasets

We explore five typical summarization datasets:
CNNDM, Xsum, PubMed, Bigpatent B and
Reddit TIFU. CNNDM (Nallapati et al., 2016)
and Xsum (Narayan et al., 2018) are news domain
summarization datasets which are various in their
publications and abstractiveness. PubMed (Cohan
et al., 2018) is a scientific paper dataset, which
can be used to investigate the generalization abil-
ity of models on scientific domain. Bigpatent
B (Sharma et al., 2019) is the B category of

Bigpatent (a dataset consisting of patent doc-
uments from Google Patents Public Datasets).
Reddit TIFU (Kim et al., 2019) is a dataset
with less formal posts collected from the online
discussion forum Reddit. Detailed statistics and in-
troduction of datasets are presented in the appendix
section.

4 Evaluation for Summarization

Existing summarization systems are usually evalu-
ated on different datasets individually based on an
automatic metric: r = eval(D,S,m), where D, S
represents a dataset (e.g., CNNDM) and system (e.g.,
L2L) respectively. m denotes an evaluation metric
(e.g., ROUGE).

Gsum

Factuality Sem. Equa.

Data bias
Doc Ref

Figure 2: Different metrics characterized by a relation
chart among generated summaries (Gsum), references
(Ref) and input documents (Doc).

To evaluate the quality of generated summaries,
metrics can be designed from diverse perspectives,
which can be abstractly characterized in Fig. 2.
Specifically, semantic equivalence is used to quan-
tify the relation between generated summaries
(Gsum) and references (Ref) while factuality aims
to characterize the relation between generated sum-
maries (Gsum) and input documents (Doc).

Besides evaluation metrics, in this paper, we also
introduce some measures that quantify the relation
between input documents (Doc) and references
(Ref). We claim that a better understanding of
dataset biases can help us interpret models’ dis-
crepancies.

4.1 Semantic Equivalence
ROUGE (Lin, 2004) is a classic metric to evaluate
the quality of model generated summaries by count-
ing the number of overlapped n-grams between the
evaluated summaries and the ideal references.

4.2 Factuality
Apart from evaluating the semantic equivalence
between generated summaries and the references,
another evaluation aspect of recent interest is factu-
ality. In order to analyze the generalization perfor-
mance of models in different perspectives, in this
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Figure 3: Characteristics of test set for each dataset (the train set possesses almost the same property thus is
not displayed here): coverage,copy length, novelty, sentence fusion score, repetition. Here we choose 2-gram to
calculate the novelty and 3-gram for the repetition.

work, we also take the factuality evaluation into
consideration.

Factcc Factcc (Kryściński et al., 2019) is intro-
duced to measure the fact consistency between the
generated summaries and source documents. It is
a model based metric which is weakly-supervised.
We use the proportion of summary sentences that
factcc predicts as factually consistent as the factu-
ality score in this paper.

4.3 Dataset Bias
We detail several measures that could quantify the
characteristics of datasets, which are helpful for us
to understand the differences among models.
Coverage (Grusky et al., 2018) illustrates the over-
lap rate between document and summary, it is de-
fined as the proportion of the copied segments in
summary.
Copy Length measures the average length of seg-
ments in summary copied from source document.
Novelty (See et al., 2017) is defined as the pro-
portion of segments in the summaries that haven’t
appeared in source documents. The segments can
be instantiated as n-grams.
Repetition (See et al., 2017) measures the rate of
repeated segments in summaries. Similar to the
above measure, we choose n-gram (n ranges from
one to four) as segment unit.
Sentence fusion score is calculated using the re-
sult of the algorithm proposed by (Lebanoff et al.,
2019), which is to find whether summary sentence
is compressed from one sentence or fused from
several sentences. Then, sentence fusion score is
calculated as the proportion of fused sentences (sen-
tences that are fused from two or three document
sentences) to all summary sentences.

A high value of coverage and copy length sug-
gests the dataset is more extractive, while novelty
represents the rate of novel units in summary and

sentence fusion score represents the proportion of
sentences that is fused from more than two docu-
ment sentences. Zhong et al. (2019b) also explores
dataset bias to aid the analysis of model perfor-
mance, but they only focus on metrics for extractive
summarizers.

4.4 Dataset Bias Analysis

According to the coverage and copy length re-
sults in Fig. 3, CNNDM is the most extractive
dataset. Bigpatent B also exhibits relatively
higher copy rate in summary but the copy seg-
ments is shorter than CNNDM. On the other hand,
Bigaptent b, Xsum obtain higher sentence fu-
sion score, which suggests that the proportion of
fused sentences in these two datasets are high.
Xsum and Reddit obtain more 3-gram novel
units in summary, reflecting these two datasets are
more abstractive. In terms of repetition in Fig. 3,
only PubMed and Bigpatent B contain more
2-gram repeated phrases in summary.

Models
ROUGE 1

CNN.* CNN. Xsum Pubm. Patent b Red.

Ext.

LSTMnon 41.22 41.36 19.51 42.98 39.29 20.46
Transnon 40.90 40.84 15.74 38.45 34.41 16.25
Transauto 41.36 41.35 19.29 42.74 38.76 18.55
BERTnon 43.25 42.69 21.76 38.74 35.85 21.84
BERTmatch 44.22 44.26 24.97 41.19 38.89 25.32

Abs.

L2L 31.33 32.80 28.31 27.84 30.46 16.89
L2Lptr 36.44 37.06 29.67 32.04 31.03 21.32
L2Lcov

ptr 39.53 39.95 28.83 35.27 35.90 21.28
T2T 40.21 39.90 29.01 30.71 42.94 19.96
BE2T 41.72 41.34 38.99 37.11 43.10 26.66
BART 44.16 44.75 44.73 45.02 45.78 34.00

Table 2: Representative summarizers studied in
this paper and their corresponding performance
(ROUGE-1 F1 score) on different datasets (CNNDM,
Xsum, PubMed, Bigpatent B, Reddit). We re-
implement all 11 systems on five datasets by ourselves.
All implemented results can outperform or slightly
lower than the performances reported in original papers
(the column of CNN.*).
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UA UB Measures

a b a b UA UB

a 48 40 a 61 43 Stiff. 44 55

b 41 45 b 46 69 Stable. 94 84

Table 3: Illustration of two views (Stiffness: ru and Sta-
bleness: rσ) to characterize the cross-dataset (a and
b) generalization based on model A and B. UA and
UB represent two cross-dataset matrix of two models.
rµ(UA) < rµ(UB) means the model B gains a better
cross-dataset absolute performance while rσ(UA) >
rσ(UB) suggests the model A is more robust.

5 Cross-dataset Evaluation

Despite recent impressive results on diverse sum-
marization datasets, modern summarization sys-
tems mainly focus on extensive in-dataset archi-
tecture engineering while ignore the generaliza-
tion ability which is indispensable when systems
are required to process samples from new datasets
or domains. Therefore, instead of evaluating the
quality of summarization system solely based on
one dataset, we introduce cross-dataset evaluation
(a summarizer (e.g., L2L) trained on one dataset
(e.g., CNNDM) will be evaluated on a range of other
datasets (e.g., XSUM)). Methodologically, we per-
form cross-dataset evaluation from two views: fine-
grained and holistic and we will detail them below.

5.1 Methodology

Given a summarization system S, a set of datasets
D = D1, · · · , DN , and evaluation metric m, we
can design different evaluation function to quantify
the system’s quality: r = eval(D, S,m). Depend-
ing on different forms of function eval(·), r could
be instantiated as either a scalar or a vector (or
matrix).

5.1.1 Fine-grained Measures

Once r, the cross-dataset evaluation result, is in-
stantiated as a matrix, we can characterize the given
system in a fine-grained way. Specifically, we de-
fine r as: r = U ∈ RN×N where each cell Ui,j

refers to the metric result (e.g., ROUGE) when a
summarizer is trained in dataset Di and tested in
dataset Dj (N refers to the number of datasets).

Additionally, we can normalize each cell by the
diagonal value, r = Uij/Ujj × 100% = Û,
Uij/Ujj measures how close the out-of-dataset
performance (trained in Di and tested in Dj) of a

system is to its in-dataset performance (trained in
Dj and tested in Dj).

5.1.2 Holistic Measures
Instead of using a matrix, holistically, we can quan-
tify the cross-dataset generalization ability of each
summarization system using a scalar. Specifically,
we propose two views to characterize the cross-
dataset generalization.

Stiffness This measure reflects the absolute per-
formance of a system under cross-dataset setting.
Given a system, its stiffness can be calculated as:
rµ = 1

N×N
∑

i,j Uij

Intuitively, a higher value of stiffness suggests
the system obtains better performance when trans-
ferred to new datasets.

Stableness It characterizes the relative perfor-
mance gap between in-dataset and cross-dataset
test. rσ = 1

N×N
∑

i,j Uij/Ujj × 100%

Generally, a higher value of stableness suggests
that the variance between in-dataset and cross-
dataset results is smaller.

Tab. 3 gives an example to characterize general-
ization ability in two views. It shows that stiffness
and stableness are not always unanimous, a model
with higher stiffness may obtains lower stableness.
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Figure 4: Illustration of stiffness and stableness of
ROUGE-1 F1 scores for various models. Yellow bars
stand for extractive models and grey bars stand for ab-
stractive models.

6 Experiment

In what follows, we analyze different summariza-
tion systems in terms of semantic equivalence and
factuality. Moreover, the results are studied in holis-
tic and fine-grained views based on the measures
defined above. Holistic results are showed in Fig. 4
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analysis aspect Architecture Generation way
model type EXT ABS LSTM BERTSUM

compare models BERTmatch vs. BERTnon BERTnon vs. Transnon L2Lptr vs. L2L L2Lcov
ptr vs. L2Lptr LSTMnon vs. L2L BERTnon vs. BE2T

holistic analysis
stiff. : 32.27 vs. 28.98 stiff. : 28.98 vs. 28.02 stiff. : 20.74 vs. 18.03 stiff. : 22.81 vs. 20.74 stiff. : 28.51 vs. 18.03 stiff. : 28.98 vs. 23.49

stable. : 91.98 vs. 88.93 stable. : 88.93 vs. 99.05 stable. : 68.63 vs. 66.93 stable. : 70.71 vs. 68.63 stable. : 87.00 vs. 66.93 stable. : 88.93 vs. 62.93
fine-grain analysis CNN. Xsum Pubm. Patent b Red. avg CNN. Xsum Pubm. Patent b Red. avg CNN. Xsum Pubm. Patent b Red. avg CNN. Xsum Pubm. Patent b Red. avg CNN. Xsum Pubm. Patent b Red. avg CNN. Xsum Pubm. Patent b Red. avg

R
O

U
G

E
o
ri

g
in

CNN. 1.6 4.1 4.5 3.0 4.7 3.6

2.9 3.2 3.5 1.6 5.7 3.4

0.9 4.0 2.4 0.2 8.7 3.3

4.6 3.1 3.5 3.0 3.7 3.6

3.3 4.2 3.5 -1.4 3.5 2.6

2.6 3.7 3.5 1.3 5.3 3.3

(a) (b) (c) (d) (e) (f)

Xsum
Pubm.

Patent b
Red.
avg

n
o
rm

a
li

.

CNN.

(g) (h)

0.0 -1.0 4.8 8.7 -9.9 0.5

1.8 0.0 0.7 12.2 -13.8 0.2

23.3 5.6 0.0 8.4 1.6 7.8

-1.6 -5.8 -0.4 0.0 -14.5 -4.4

1.9 8.7 3.4 8.4 0.0 4.5

5.1 1.5 1.7 7.5 -7.3 1.7

(i) (j)

0.0 28.4 -0.7 -7.9 -4.8 3.0

18.3 0.0 15.8 2.0 6.6 8.5

36.8 44.3 0.0 12.5 35.1 25.7

39.6 35.2 31.4 0.0 17.8 24.8

44.7 52.9 58.4 35.1 0.0 38.2

27.9 32.2 21.0 8.3 10.9 20.1

(k)

0.0 31.5 5.2 11.1 9.0 11.4

28.4 0.0 45.0 37.8 19.9 26.2

38.7 42.0 0.0 14.5 11.5 21.3

49.9 53.7 37.2 0.0 34.1 35.0

40.1 48.4 50.2 41.5 0.0 36.1

31.4 35.1 27.5 21.0 14.9 26.0

(l)

Xsum
Pubm.

Patent b
Red.
avg

Table 4: The difference of ROUGE-1 F1 scores between different model pairs. Every column of the table represents
the compared results of one pair of models. The line of holistic analysis displays the overall stiffness and stableness
of compared models. The rest of the table is fine-grained results, the first line of which is the origin compared results
(UA−UB for model pairsA andB) and the second line is the normalized compared results (ÛA−ÛB for model
pairsA andB). For all heatmap, ‘grey’ and ‘red’ represent positive and negative respectively. Here we only display
compared results for limited pairs of models, all other results are displayed in appendix.

and Fig. 5. On the other hand, Tab. 4 and Tab. 5
display the fine-grained observations. Tab. 2 dis-
palys the in-dataset results of all models on five
benchmark datasets.

6.1 Semantic Equivalence Analysis

We conduct pair-wise Wilcoxon Signed-Rank sig-
nificant test with α = 0.05. The null hypothesis
is that the expected performances (stiffness and
stableness) of a pair of summarization models are
identical. We report the observations that are statis-
tically significant.

6.1.1 Architecture
Match based reranking improves stiffness sig-
nificantly BERTmatch, which using semantic
match scores to rerank candidate summaries en-
hances the stiffness of model significantly in Fig. 4a
while obtaining comparable stableness with other
extractive models in Fig. 4b. This indicates that
BERTmatch not only increases the absolute perfor-
mance but also retaining robustness.

BERTmatch is not stable when transferred from
other datasets to Bigpatent B As Tab. 4g
shows, when compared to BERTnon, BERTmatch
obtains larger in-dataset and cross-dataset perfor-
mance gap when tested in Bigpatent B. This
is because Bigpatent B possesses higher sen-
tence fusion score and higher repetition compared
with other datasets as Sec. 4.4 demonstrates. When
served as test set, such dataset brings great chal-
lenge for BERTmatch to correctly rank the can-

didate summaries while it provides more train-
ing signals when served as training set. Thus the
in-dataset (Bigpatent b) trained model obtain
much higher score compared with cross-dataset
models which trained from other datasets and cause
lower stableness.

Non-autoregressive decoder is more robust
than autoregressive for extractive models. Re-
garding the decoder of extractive systems, as shown
in Fig. 4a and Fig. 4b, the non-autoregressive ex-
tractive decoder (Transnon) is more stable while
it possesses lower stiffness than its autoregressive
counterpart (Transauto).

Pointer network and coverage mechanism are
instrumental in improving stiffness and stable-
ness of abstractive systems. The pointer net-
work and coverage mechanism do enhance the ab-
solute performance of abstractive system as Fig. 4a
demonstrates (rµ(L2Lcovptr )> rµ(L2Lptr)> rµ(L2L)).
Also, the stableness results of L2Lptr and L2L in
Fig. 4b reveals that once removing the pointer
mechanism, the value of rσ for L2Lptr decreases,
which suggests that the system will be more stable
if it’s augmented the ability to directly extract text
spans from the the source document.

However, pointer network brings trivial im-
provement when tested in Xsum and Reddit
The absolute model performance improvement of
pointer network is trival when tested in xsum and
Reddit as showed in Tab. 4c, which is in line
with expectations because these two datasets are
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more abstractive as analyzed in Sec. 4.4.

On the other hand, coverage is not that help-
ful when tested in Reddit and Xsum and even
harmful when trained in Xsum. The heatmap
of L2Lcovptr vs. L2Lptr in Tab.4d) shows that when
tested in Reddit and Xsum, the improvement of
coverage mechanism is trivial. These two datasets
possess less repetition, thus coverage can not pro-
vide much help when transferred to these datasets.
Moreover, when trained in Xsum, L2Lcovptr gets
lower stiffness compared with L2Lptr, which is
in accordance with the normalized result in Tab. 4j.
This is because the gold summaries of Xsum
exhibit lower repetition score (as analyzed in
Sec. 4.4), thus can’t provide enough learning sig-
nals for coverage mechanism.

BERT sometimes brings unstableness. As
shown in Fig. 4a, there is no doubt that once sum-
marizers (extractive or abstractive) are equipped
with pre-trained encoder, the stiffness will increase
significantly (e.g., rµ(BE2T >> rµ(T2T), suggest-
ing that the overall cross-dataset performance has
been improved. However, we are surprised to find
(from Fig. 4b) that BERT sometimes leads to unsta-
bleness (i.e. rσ(Transnon) > rσ(BERTnon)). This
result enlightens us to search for other architec-
tures or learning schemas to offset the unstableness
brought by BERT.

As the heatmap of BERTnon vs. Transnon in
Tab. 4h shows, BERT brings unstableness espe-
cially when tested in Reddit and Xsum.

BERT sometimes can even harm the absolute
cross-dataset performance. BERTnon performs
worse than Transnon in some cells (e.g., trained in
Xsum and tested in CNNDM) in Tab. 4b

BART shows superior performance in terms
of stiffness and stableness. As Fig. 4a shows,
BART obtains the highest stiffness among all ab-
stractive models, and is even comparable with
BERTmatch. In addition, BART is also outstanding
in terms of stableness when compared with other
abstractive models (Fig. 4b). The performance gap
between BART and BE2T proves that for abstrac-
tive models, pre-training the whole sequence to
sequence model works better than using the pre-
trained model in either side of encoder or decoder.

6.1.2 Generation ways
Extractive models are superior to abstractive
models in terms of stiffness and robustness.
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Figure 5: Illustration of stiffness and stableness of fac-
tuality scores for various models. Yellow bars stand for
extractive systems and grey bars stand for abstractive
systems.

Extractive models show superior advantage of ab-
solute performance as shown in Fig. 4a. Moreover,
comparing the stableness of abstractive and extrac-
tive models in Fig. 4b, we surprisingly find that
abstractive approaches except for BART are ex-
tremely brittle since their rσ value is much lower
than any extractive approaches with a maximum
margin of 37%, and the gap can be reduced by in-
troducing pointer network. This observation poses
a great challenge to the development of the abstrac-
tive systems, encouraging research to pay more at-
tention to improve the generalization ability. Also,
we have provided hints for the solution, such as
enabling the model to extract granular information
from the source document or using the well pre-
trained sequence to sequence model (e.g., BART).

When tested in Xsum and Reddit, abstractive
systems possess comparable or even better per-
formance. The supremacy of extractive models
is not retained in all datasets (Tab. 4f and Tab. 4e)
Though extractive models obtain higher stiffness
scores when tested in CNNDM and PubMed, ab-
stractive approaches (BE2T, L2L) obtained higher
or comparable stiffness scores when tested at XSUM
and Reddit. This is because Xsum and Reddit
are more abstractive as analyzed in Sec. 4.4.

6.2 Factuality Analysis

1) All extractive models can achieve higher factual-
ity scores while all abstractive models obtain quite
lower ones (Fig. 5a). One interesting observation
is, for extractive models, not all factuality scores
under the in-dataset setting are 100% in Tab. 5 (on-
diagonal values), which reveals the limitation of
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EXT models
Transnon BERTmatch

CNN. XSUM Pubm. Patent B Red. avg CNN. XSUM Pubm. Patent B Red. avg

CNN 100.0 100.0 98.0 99.1 100.0 99.4 99.8 99.4 92.9 95.7 99.1 97.4
XSUM 99.8 100.0 97.4 98.2 100.0 99.1 99.7 99.5 93.2 95.1 98.8 97.3
Pubm. 97.7 98.8 95.1 94.7 100.0 97.3 99.7 99.2 93.1 95.2 99.3 97.3

Patent B 98.3 99.8 96.3 97.4 99.5 98.3 99.7 99.0 93.0 94.5 98.4 96.9
Reddit 90.3 94.1 94.1 86.7 96.3 92.3 99.7 99.3 93.1 96.1 99.3 97.5

avg 97.2 98.6 96.2 95.2 99.2 97.3 99.7 99.3 93.0 95.3 99.0 97.3

ABS models
T2T BART

CNN. XSUM Pubm. Patent B Red. avg CNN. XSUM Pubm. Patent B Red. avg

CNN 72.4 75.7 71.5 71.8 70.5 72.4 69.9 77.9 87.4 84.1 90.2 81.9
XSUM 9.7 22.6 10.8 9.9 19.1 14.4 35.5 24.7 36.1 50.1 50.7 39.4
Pubm. 58.5 59.3 56.2 72.3 34.9 56.2 69.5 61.5 58.4 61.3 94.1 69.0

Patent B 79.2 81.2 84.4 68.7 73.9 77.5 52.1 53.8 69.0 67.4 76.8 63.8
Reddit 34.8 35.7 50.6 44.6 52.5 43.6 59.6 50.3 69.1 49.3 44.2 54.5

avg 50.9 54.9 54.7 53.5 50.2 52.8 57.3 53.6 64.0 62.4 71.2 61.7

Table 5: Cross-dataset factuality scores for extractive
and abstractive models.

existing factuality checker.
2) BART can significantly improve the ability to
generate factual summaries compared with other
abstractive models as showed in Fig. 5a, even com-
pared with L2Lptr which equipped with pointer
network and tend to copy from source document.
3) Abstractive models obtain higher stableness of
factuality scores in Fig. 5b which surpass 100%.
This is because when tested in abstractive datasets
(e.g., Xsum as Sec. 4.4 shows), abstractive sum-
marizers trained in-dataset tend to be more ab-
stractive and obtain lower factuality score while
it gets higher factuality score when trained on other
datasets which are more extractive (e.g., CNNDM).
The superiority of cross-dataset results over in-
dataset results thus leads to higher stableness.

7 Related Work

Our work is connected to the following threads of
topics of NLP research.

Cross-Dataset Generalization in NLP Re-
cently, more researchers shift their focus from indi-
vidual dataset to cross-dataset evaluation, aiming
to get a comprehensive understanding of system’s
generalization ability. Fried et al. (2019) explores
the generalization ability of different constituency
parsers. Talmor and Berant (2019), on the other
hand, shows the generalization ability of reading
comprehension models can be improved by pre-
training on one or two other reading comprehen-
sion datasets. Fu et al. (2020) studies the model
generalization in the field of NER. They point out
the bottleneck of the existing NER systems through
in-depth analyses and provide suggestions for fur-
ther improvement. Different from the above works,
we attempt to explore generalization ability for
summarization systems.

Diagnosing Limitations of Existing Summariza-
tion Systems Beyond ROUGE, some recent
works try to explore the weaknesses of existing sys-
tems from divese aspects. Zhang et al. (2018) tries
to figure out to what extent the neural abstractive
summarization systems are abstractive and discov-
ers many of abstractive systems tend to perform
near-extractive. On the other hand, Cao et al. (2018)
and Kryściński et al. (2019) study the factuality
problem in modern neural summarization systems.
The former puts forward one model that combining
source document and preliminary extracted fact de-
scription and prove the effectiveness of this model
in terms of factuality correctness. While the lat-
ter contributes to design a model-based automatic
factuality evaluation metric. Abstractiveness and
factuality error the above works studied are orthog-
onal to this work and can be easily combined with
cross-dataset evaluation framework in this paper as
Sec. 6.2 shows. Moreover, Wang et al. (2019); Hua
and Wang (2017) attempt to investigate the domain
shift problem on text summarization while they fo-
cus on a single generation way (either abstractive
or extractive) We also investigate the generaliza-
tion of summarizers when transferring to different
datasets, but include more datasets and models.

8 Conclusion

By performing a comprehensive evaluation on
eleven summarization systems and five mainstream
datasets, we summarize our observations below:

1) Abstractive summarizers are extremely brit-
tle compared with extractive approaches, and the
maximum gap between them reaches 37% in terms
of the measure stableness (ROUGE) defined in this
paper. 2) BART (SOTA system) is superior over
other abstractive models and even comparable with
extractive models in terms of stiffness (ROUGE).
On the other hand, it is robust when transferring
between datasets as it possesses high stableness
(ROUGE). 3) BERTmatch (SOTA system) performs
excellently in terms of stiffness, while still lacks sta-
bleness when transferred to Bigpatent B from
other datasets. 4) The robustness of models can
be improved through either equipped the model
with ability to copy span from source document
(i.e., Lebanoff et al. (2019)) or make use of well
trained sequence to sequence pre-trained model
(BART). 5) Simply adding BERT on encoder could
improve the stiffness (ROUGE) of model but will
cause larger cross-dataset and in-dataset perfor-
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mance gap, a better way should be found to merge
BERT into abstractive model, or a better training
strategy should be applied to offset the negative
influence it brings. 6) Existing factuality checker
(Factcc) is limited in predictive power of positive
samples (Sec.6.2). 7) Out-of-domain systems can
even surpass in-domain systems in terms of factu-
ality. (Sec.6.2)
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A Appendices

A.1 Detailed Dataset introduction

CNN/DailyMail The CNN/DailyMail ques-
tion answering dataset (Hermann et al., 2015) mod-
ified by Nallapati et al. (2016) is commonly used
for summarization. The dataset consists of online
news articles with paired human-generated sum-
maries. For the data preprocessing, we use the non-
anonymized data as See et al. (2017), which doesn’t
replace named entities.
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XSUM XSUM (Narayan et al., 2018) is a dataset
consists of the articles and the single-sentence an-
swers of the question “What is the article about?”
as summary. It is more abstractive compared with
CNN/DailyMail.

PUBMED PUBMED (Cohan et al., 2018) is drawn
from scientific papers specifically medical journal
articles from the PubMed Open Access Subset. We
use the introduction as source document and the
abstract as summary here.

BIGPATENT BIGPATENT (Sharma et al., 2019)
consists of 1.3 million records of U.S. patent doc-
uments and the corresponding summaries are cre-
ated by human. According to Cooperative Patent
Classification (CPC), the dataset is divided to nine
categories. One of the nine categories is chosen as
a dataset in difference domain in our experiment
(Category B: Performing Operations; Transport-
ing).

REDDIT TIFU REDDIT TIFU (Kim et al.,
2019) is a dataset with less formal posts compared
with datasets mentioned above which mostly use
formal documents as source. It is collected from the
online discussion forum Reddit. They regard the
body text as source, the title as short summary, and
the TL;DR summary as long summary, thus mak-
ing two sets of datasets: TIFU-short and TIFU-long.
TIFU-long is used in this paper.

A.2 Dataset statistics
The detailed dataset statistics are presented in Tab.
6

Datasets Statistics Topics Oracle Lead-k

CNNDM 2,764/123/107M News 55.21 40.32
Xsum 1126/60/59M News 30.41 16.38
Pubmed 644/36/38M Scientific 46.21 37.52
BigPatent B 4,812/265/262M Patents 51.53 31.85
Reddit 206/3.3/3.6M Posts 36.47 11.09

Table 6: Detailed statistics of five datasets. Lead-k in-
dicates ROUGE-1 F1 score of the first k sentences in
the document and Oracle indicates the globally opti-
mal combination of sentences in terms of ROUGE-1 F1
scores with ground truth, the latter represents the upper
bound of extractive models.

A.3 Experimental setup
A.3.1 Extractive Summarizers
We use the same training setup in (Zhong et al.,
2019a). We use cross entropy as loss function to

train LSTMnon and Transauto. The hidden state di-
mension of LSTM in LSTMnon is set to 512 and the
hidden state dimension of Transformer in Transauto
is 2048. We use Transformer with 8 heads.

BERTnon and Transnon is constructed according
to Liu and Lapata (2019). All documents and sum-
maries are truncated to 512 tokens when training.
BERTnon and Transnon are trained for 50000 steps,
the gradient is accumulated every two steps. We
use Adam as optimizer and the learning rate is set
to 2e-3.

BERTmatch is trained as in Zhong et al. (2020).
It uses the base version of BERT as base model. We
use Adam optimizer with warming up. The learning
rate schedule follows Vaswani et al. (2017).

A.3.2 Abstractive Summarizers

L2L, L2Lptr and L2Lcovptr are trained using the py-
torch reproduced version code of See et al. (2017).
We use the same size of vocabulary(50k), hidden
state dimension (256) and word embedding dimen-
sion (128) as in the paper. All of three models are
trained with 650000 maximum training steps, We
use Adagrad to train the models with learning rate
of 0.15.

BE2T and T2T is constructed according to Liu
and Lapata (2019). We use two separate optimizers
for the decoder and encoder regarding BE2T to off-
set the mismatch of encoder and decoder, since the
former is pre-trained while the latter is not. Learn-
ing rates for the optimizers of encoder and decoder
are 0.002 and 0.2 respectively. On the other hand,
BE2T and T2T are trained with gradient accumu-
lation every five steps, training step for which is
200000.

BART uses the large pre-trained sequence to se-
quence model in Lewis et al. (2019). The total learn-
ing step when fine-tuning is set to 20000 with 500
steps warming up. We use Adam as optimizer and
learning rate is 3e-05.

A.4 In-dataset ROUGE results for all models

Tab. 7 displays in-dataset ROUGE-1 F1 ,ROUGE-2
F1 ,ROUGE-L F1 scores.

A.5 The ROUGE-1 F1 score difference of all
model pairs which are meaningful to
compare

The holistic and fine-grained results of pair-wise
comparison are displayed in Tab. 10.
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Models
CNNDM XSUM PubMed Bigpatent b Reddit

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL

Ext.

LSTMnon 41.36 18.81 37.73 19.51 3.10 14.50 42.98 16.59 38.28 39.29 13.07 32.61 20.46 5.05 16.33
Transnon 40.84 18.23 37.09 15.74 1.67 11.58 38.45 13.28 34.16 34.41 10.05 28.75 16.25 2.60 12.57
Transauto 41.35 18.77 37.75 19.29 2.80 14.21 42.74 16.34 38.05 38.76 12.60 32.17 18.55 3.44 14.62
BERTnon 42.69 19.88 38.99 21.76 4.24 16.00 38.74 13.62 34.48 35.85 11.05 29.97 21.84 5.21 17.15
BERTmatch 44.26 20.58 40.40 24.97 4.76 18.48 41.19 14.91 36.73 38.89 12.82 32.48 25.32 6.16 20.17

Abs.

L2L 32.80 12.84 30.34 28.31 8.71 22.30 27.84 7.45 25.69 30.46 9.76 27.61 16.89 1.24 13.63
L2Lptr 37.06 15.96 33.74 29.67 9.58 23.40 32.04 10.38 28.97 31.03 9.92 25.35 21.32 4.46 17.14
L2Lcov

ptr 39.95 17.54 36.25 28.83 8.83 22.62 35.27 11.89 31.92 35.90 12.31 32.78 21.28 4.39 17.22
T2T 39.90 17.66 37.08 29.01 9.13 22.77 30.71 8.10 27.97 42.94 16.75 37.06 19.96 3.36 15.60
BE2T 41.34 18.98 38.41 38.99 16.64 31.23 37.11 13.38 33.72 43.10 17.11 37.34 26.66 7.00 21.21
BART 44.75 21.69 41.46 44.73 21.99 37.02 45.02 16.94 41.17 45.78 18.31 38.98 34.00 11.88 26.91

Table 7: Representative summarizers we have studied in this paper and their correspond performance (ROUGE-1
F1, ROUGE-2 F1, ROUGE-L F1) on different datasets.

A.6 Cross-dataset factuality results of all
models

The cross-dataset factcc results for abstractive mod-
els are shown in Tab. 8 and the factcc results of
extractive models are demonstrated in Tab. 9.

A.7 Code urls
A.7.1 Training code urls
The models and their training code urls are listed
below:

LSTMnon and Transauto are trained from
the code in Zhong et al. (2019a), the code
url is https://github.com/maszhongming/Effective
Extractive Summarization.

We use the code from Liu and Lapata (2019) for
BERTnon, Transnon, BE2T and T2T. Code url is
https://github.com/nlpyang/PreSumm.

BERTmatch uses the code from Zhong et al.
(2020) and the code url is https://github.com/
maszhongming/MatchSum.

L2L, L2Lptr and L2Lcovptr are trained from the
code of See et al. (2017), code url is https://github.
com/atulkum/pointer summarizer.

We use code in fairseq (Ott et al., 2019) to
fine-tune BART, the code url is https://github.com/
pytorch/fairseq/tree/master/examples/bart.

A.7.2 Evaluation code urls
The evaluation metrics code urls are listed below:

We use pyrouge (https://github.com/
bheinzerling/pyrouge) to evaluate the ROUGE
performance of models.

The url for Factcc (Kryściński et al., 2019) is
https://github.com/salesforce/factCC.

The url for other metrics for dataset bias
is https://github.com/zide05/CDEvalSumm/tree/
master/Data-bias-metrics.

https://github.com/maszhongming/Effective_Extractive_Summarization
https://github.com/maszhongming/Effective_Extractive_Summarization
https://github.com/nlpyang/PreSumm
https://github.com/maszhongming/MatchSum
https://github.com/maszhongming/MatchSum
https://github.com/atulkum/pointer_summarizer
https://github.com/atulkum/pointer_summarizer
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/bheinzerling/pyrouge
https://github.com/bheinzerling/pyrouge
https://github.com/salesforce/factCC
https://github.com/zide05/CDEvalSumm/tree/master/Data-bias-metrics
https://github.com/zide05/CDEvalSumm/tree/master/Data-bias-metrics
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ABS models
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CNN 68.6 71.1 73.3 69.9 53.9 67.4 89.4 91.3 92.2 91.7 83.5 89.6 95.9 94.5 90.9 96.9 94.6 94.6 72.4 75.7 71.5 71.8 70.5 72.4 78.7 83.9 87.7 92.1 78.7 84.2 69.9 77.9 87.4 84.1 90.2 81.9
XSUM 13.4 23.5 18.1 13.2 31.0 19.8 6.3 17.8 9.0 8.2 23.2 12.9 7.4 18.1 11.0 7.6 6.5 10.1 9.7 22.6 10.8 9.9 19.1 14.4 14.5 21.1 29.8 8.7 31.3 21.1 35.5 24.7 36.1 50.1 50.7 39.4
Pubm. 61.0 70.0 62.8 78.6 46.6 63.8 77.6 80.7 81.5 75.1 85.9 80.2 70.7 75.6 76.6 67.9 75.4 73.2 58.5 59.3 56.2 72.3 34.9 56.2 55.4 58.7 70.8 71.7 56.4 62.6 69.5 61.5 58.4 61.3 94.1 69.0

Patent B 94.4 94.3 89.0 71.9 91.0 88.1 65.2 60.3 70.9 62.8 71.0 66.0 67.0 63.3 64.6 61.6 77.4 66.8 79.2 81.2 84.4 68.7 73.9 77.5 85.4 88.4 80.3 66.5 82.0 80.6 52.1 53.8 69.0 67.4 76.8 63.8
Red. 20.9 40.2 11.1 13.2 50.9 27.3 37.2 21.5 55.2 62.6 61.1 47.5 27.4 23.5 42.9 49.7 62.2 41.1 34.8 35.7 50.6 44.6 52.5 43.6 17.2 25.7 25.1 30.0 50.3 29.6 59.6 50.3 69.1 49.3 44.2 54.5
avg 51.7 59.8 50.9 49.4 54.7 53.3 55.2 54.3 61.8 60.1 65.0 59.2 53.7 55.0 57.2 56.7 63.2 57.2 50.9 54.9 54.7 53.5 50.2 52.8 50.2 55.6 58.7 53.8 59.8 55.6 57.3 53.6 64.0 62.4 71.2 61.7

Table 8: factcc result for Abstractive models

EXT models
LSTMnon Transnon Transauto BERTnon BERTmatch
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CNN 99.2 99.9 96.0 99.1 95.2 97.9 100.0 100.0 98.0 99.1 100.0 99.4 98.1 100.0 91.3 93.5 100.0 96.6 99.6 99.9 97.3 98.2 98.6 98.7 99.8 99.4 92.9 95.7 99.1 97.4
XSUM 84.1 94.3 90.3 81.4 94.1 88.9 99.8 100.0 97.4 98.2 100.0 99.1 86.8 99.3 82.9 69.9 100.0 87.8 98.4 99.7 96.6 95.7 99.9 98.1 99.7 99.5 93.2 95.1 98.8 97.3
Pubm. 70.5 84.3 80.8 65.1 89.0 77.9 97.7 98.8 95.1 94.7 100.0 97.3 87.5 99.6 79.0 64.4 99.7 86.1 95.3 99.3 95.1 94.3 99.5 96.7 99.7 99.2 93.1 95.2 99.3 97.3

Patent B 86.1 96.0 90.9 74.1 96.0 88.6 98.3 99.8 96.3 97.4 99.5 98.3 90.7 99.8 85.5 68.8 99.7 88.9 97.0 99.0 96.0 94.8 99.1 97.2 99.7 99.0 93.0 94.5 98.4 96.9
Red. 81.0 92.1 86.9 64.6 90.2 83.0 90.3 94.1 94.1 86.7 96.3 92.3 79.4 98.7 79.6 56.4 98.1 82.5 97.0 98.9 95.3 91.9 98.8 96.4 99.7 99.3 93.1 96.1 99.3 97.5
avg 84.2 93.3 89.0 76.8 92.9 87.2 97.2 98.6 96.2 95.2 99.2 97.3 88.5 99.5 83.7 70.6 99.5 88.4 97.5 99.4 96.1 95.0 99.2 97.4 99.7 99.3 93.0 95.3 99.0 97.3

Table 9: factcc result for Extractive models

analysis aspect Architecture

model type ABS

compare models L2Lptr vs. L2L L2Lcov
ptr vs. L2Lptr T2T vs. L2L BE2T vs. T2T BART vs. BE2T BART vs. L2L BART vs. T2T

holistic analysis
stiff. : 20.74 vs. 18.03 stiff. : 22.81 vs. 20.74 stiff. : 19.79 vs. 18.03 stiff. : 23.49 vs 19.79 stiff. : 31.66 vs. 23.49 stiff. : 31.66 vs. 18.03 stiff. : 31.66 vs. 19.79

stable. : 68.63 vs. 66.93 stable. : 70.71 vs. 68.63 stable. : 62.12 vs. 66.93 stable. : 62.93 vs. 62.12 stable. : 73.83 vs. 62.93 stable. : 73.83 vs. 66.93 stable. : 73.83 vs. 62.12
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CNN. 4.3 0.5 5.3 3.2 1.5 3.0

3.4 1.4 3.4 4.2 0.1 2.5

10.3 2.3 4.2 3.0 2.6 4.5

1.1 -1.1 2.5 0.6 -0.3 0.5

2.2 3.1 2.6 2.9 4.4 3.0

4.2 1.2 3.6 2.8 1.7 2.7

2.9 1.8 6.4 3.4 1.7 3.2

-0.8 -0.8 -4.5 -2.4 -0.1 -1.7

4.5 1.7 3.2 3.4 2.7 3.1

1.0 2.0 2.2 4.9 0.8 2.2

3.3 1.0 6.5 6.9 -0.0 3.5

2.2 1.1 2.8 3.2 1.0 2.1

7.1 2.4 7.2 5.2 5.4 5.4

0.4 0.7 -5.4 -4.5 -0.6 -1.9

1.6 -1.5 2.9 2.9 2.1 1.6

1.2 -2.5 3.0 12.5 -0.0 2.9

2.0 0.1 -0.9 -0.7 3.1 0.7

2.5 -0.1 1.3 3.1 2.0 1.8

1.4 0.2 1.1 1.4 1.1 1.0

2.1 10.0 3.2 4.3 5.1 4.9

6.7 3.1 6.4 8.4 1.4 5.2

1.1 0.4 2.0 0.2 2.4 1.2

5.6 3.5 7.9 7.0 6.7 6.1

3.4 3.4 4.1 4.3 3.3 3.7

3.7 2.0 1.3 1.8 0.8 1.9

4.5 6.0 7.4 9.7 5.8 6.7

14.1 9.2 7.4 4.1 6.1 8.2

17.6 12.9 12.1 2.7 7.9 10.6

17.7 10.0 18.5 14.3 6.6 13.4

11.5 8.0 9.3 6.5 5.4 8.2

12.3 4.5 9.6 8.3 7.3 8.4

7.0 16.7 5.1 9.6 10.3 9.7

22.4 10.8 16.7 15.4 9.7 15.0

19.9 10.9 17.1 15.4 10.2 14.7

25.3 13.7 25.5 20.7 16.4 20.3

17.4 11.3 14.8 13.9 10.8 13.6

5.2 2.1 2.4 3.1 1.9 3.0

6.6 16.0 10.6 14.1 10.9 11.6

20.8 12.3 13.8 12.5 7.5 13.4

18.7 13.3 14.0 2.9 10.3 11.8

23.3 13.5 26.4 21.3 13.3 19.6

14.9 11.5 13.4 10.8 8.8 11.9
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Patent b
Red.
avg
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CNN. 0.0 -1.0 4.8 8.7 -9.9 0.5

1.8 0.0 0.7 12.2 -13.8 0.2

23.3 5.6 0.0 8.4 1.6 7.8

-1.6 -5.8 -0.4 0.0 -14.5 -4.4

1.9 8.7 3.4 8.4 0.0 4.5

5.1 1.5 1.7 7.5 -7.3 1.7

0.0 8.1 9.6 -4.1 8.0 4.3

-6.7 0.0 -19.7 -18.0 -0.2 -8.9

6.7 7.4 0.0 -1.2 12.6 5.1

-0.1 8.1 0.8 0.0 3.7 2.5

5.6 4.9 14.8 11.7 0.0 7.4

1.1 5.7 1.1 -2.3 4.8 2.1

0.0 6.8 15.0 -14.3 14.5 4.4

-10.7 0.0 -24.9 -31.2 -13.4 -16.0

-2.9 -6.1 0.0 -13.8 2.7 -4.0

-3.8 -9.6 4.2 0.0 -9.9 -3.8

-1.0 -0.4 -6.4 -15.2 0.0 -4.6

-3.7 -1.9 -2.4 -14.9 -1.2 -4.8

0.0 -17.1 -14.9 2.9 -20.1 -9.8

3.3 0.0 -0.4 9.9 5.5 3.7

14.9 -1.6 0.0 19.4 -8.5 4.8

1.4 -8.4 -6.0 0.0 -4.6 -3.5

12.3 0.2 16.0 16.2 0.0 8.9

6.4 -5.4 -1.1 9.7 -5.5 0.8

0.0 -2.5 -11.9 -0.9 -12.9 -5.6

5.2 0.0 8.1 18.2 5.5 7.4

27.1 15.6 0.0 4.3 9.1 11.2

36.1 24.8 17.2 0.0 13.8 18.4

35.5 17.7 33.9 28.4 0.0 23.1

20.8 11.1 9.4 10.0 3.1 10.9

0.0 -12.8 -11.9 -12.2 -18.4 -11.1

-2.2 0.0 -17.1 -3.1 -2.4 -5.0

39.2 7.9 0.0 10.0 3.4 12.1

33.7 6.8 15.4 0.0 -0.7 11.0

46.8 17.4 43.4 29.3 0.0 27.4

23.5 3.9 6.0 4.8 -3.6 6.9

0.0 -19.6 -26.9 2.1 -32.9 -15.5

8.4 0.0 7.7 28.1 11.0 11.1

42.1 14.0 0.0 23.7 0.6 16.1

37.4 16.4 11.2 0.0 9.2 14.9

47.8 17.9 49.8 44.6 0.0 32.0

27.1 5.7 8.4 19.7 -2.4 11.7

Xsum
Pubm.

Patent b
Red.
avg

analysis aspect Architecture Generation way

model type EXT LSTM BERTSUM Transformer

compare models Transnon vs. LSTMnon Transauto vs. Transnon BERTmatch vs. BERTnon BERTnon vs. Transnon LSTMnon vs. L2L Transnon vs. T2T BERTnon vs. BE2T

holistic analysis
stiff. : 28.02 vs. 28.51 stiff. : 28.51 vs. 28.02 stiff. : 32.27 vs. 28.98 stiff. : 28.98 vs. 28.02 stiff. : 28.51 vs. 18.03 stiff. : 28.02 vs. 19.79 stiff. : 28.98 vs. 23.49

stable. : 99.05 vs. 87.00 stable. : 88.71 vs. 99.05 stable. : 91.98 vs. 88.93 stable. : 88.93 vs. 99.05 stable. : 87.00 vs. 66.93 stable. : 99.05 vs. 62.12 stable. : 88.93 vs. 62.93
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CNN. -0.5 -0.8 -1.8 -0.8 13.8 2.0

3.2 -3.8 -2.5 4.2 2.9 0.8

4.5 -1.6 -4.5 -0.7 -3.0 -1.0

3.9 0.9 -2.6 -4.9 -2.2 -1.0

-4.4 -2.0 -3.4 -1.9 -4.2 -3.2

1.3 -1.5 -2.9 -0.8 1.5 -0.5

0.5 0.4 3.1 0.9 -12.9 -1.6

-3.2 3.5 4.6 -5.7 -2.3 -0.6

-0.7 1.2 4.3 2.2 0.1 1.4

-2.9 0.1 3.9 4.4 1.4 1.4

1.2 1.7 4.5 -0.5 2.3 1.8

-1.0 1.4 4.1 0.3 -2.3 0.5

1.6 4.1 4.5 3.0 4.7 3.6

2.9 3.2 3.5 1.6 5.7 3.4

0.9 4.0 2.4 0.2 8.7 3.3

4.6 3.1 3.5 3.0 3.7 3.6

3.3 4.2 3.5 -1.4 3.5 2.6

2.6 3.7 3.5 1.3 5.3 3.3

1.8 1.2 0.3 0.8 -10.9 -1.3

-0.9 6.0 0.1 -1.6 -0.7 0.6

2.5 1.4 0.3 0.6 -2.2 0.5

0.5 1.1 0.2 1.4 3.8 1.4

8.3 3.0 -0.1 1.6 5.6 3.7

2.4 2.5 0.2 0.6 -0.9 1.0

8.6 0.1 13.2 4.9 2.0 5.7

13.1 -8.8 18.3 7.1 3.8 6.7

18.6 4.8 15.1 11.1 9.0 11.7

19.7 2.8 22.8 8.8 5.9 12.0

21.4 7.3 30.7 18.0 3.6 16.2

16.3 1.2 20.0 10.0 4.9 10.5

0.9 -3.1 4.3 -1.1 10.3 2.3

15.9 -13.3 21.3 15.8 7.3 9.4

21.4 4.7 7.7 7.6 3.9 9.1

22.3 6.1 17.2 -8.5 3.7 8.2

15.0 5.1 28.2 16.8 -3.7 12.3

15.1 -0.1 15.7 6.1 4.3 8.2

1.3 -2.0 3.5 -1.8 -1.7 -0.1

12.9 -17.2 18.3 9.9 1.5 5.1

17.2 2.9 1.6 -0.3 0.3 4.3

21.8 6.7 15.4 -7.2 5.1 8.4

17.8 4.6 20.2 11.4 -4.8 9.8

14.2 -1.0 11.8 2.4 0.1 5.5

Xsum
Pubm.

Patent b
Red.
avg
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CNN. 0.0 16.7 5.8 9.2 104.9 27.3

8.9 0.0 4.5 22.8 37.1 14.6

12.0 11.0 0.0 9.9 4.4 7.4

10.5 25.2 4.2 0.0 7.4 9.5

-9.7 8.0 2.4 6.3 0.0 1.4

4.3 12.2 3.4 9.6 30.7 12.1

0.0 -17.7 -2.1 -7.9 -91.9 -23.9

-9.0 0.0 1.0 -25.6 -26.0 -11.9

-2.8 -12.2 0.0 -4.7 -10.9 -6.1

-8.0 -19.4 -0.6 0.0 -3.6 -6.3

2.0 -8.8 0.7 -11.2 0.0 -3.4

-3.6 -11.6 -0.2 -9.9 -26.5 -10.3

0.0 5.8 5.3 0.7 6.9 3.7

3.4 0.0 2.8 -2.7 11.5 3.0

-1.2 6.1 0.0 -6.5 26.5 5.0

7.3 1.8 2.8 0.0 3.3 3.0

4.4 6.2 2.9 -10.5 0.0 0.6

2.8 4.0 2.7 -3.8 9.6 3.1

0.0 -23.9 0.1 -1.5 -96.6 -24.4

-6.1 0.0 -0.5 -8.3 -31.8 -9.3

2.0 -21.0 0.0 -2.2 -33.7 -11.0

-2.6 -24.8 -0.2 0.0 -5.5 -6.6

16.3 -12.8 -1.0 1.0 0.0 0.7

1.9 -16.5 -0.3 -2.2 -33.5 -10.1

0.0 28.4 -0.7 -7.9 -4.8 3.0

18.3 0.0 15.8 2.0 6.6 8.5

36.8 44.3 0.0 12.5 35.1 25.7

39.6 35.2 31.4 0.0 17.8 24.8

44.7 52.9 58.4 35.1 0.0 38.2

27.9 32.2 21.0 8.3 10.9 20.1

0.0 38.3 -9.8 15.6 85.6 25.9

37.8 0.0 45.1 56.1 57.2 39.2

51.6 61.4 0.0 36.1 36.7 37.2

53.9 70.1 31.5 0.0 35.0 38.1

36.1 61.4 67.2 56.6 0.0 44.3

35.9 46.2 26.8 32.9 42.9 36.9

0.0 31.5 5.2 11.1 9.0 11.4

28.4 0.0 45.0 37.8 19.9 26.2

38.7 42.0 0.0 14.5 11.5 21.3

49.9 53.7 37.2 0.0 34.1 35.0

40.1 48.4 50.2 41.5 0.0 36.1

31.4 35.1 27.5 21.0 14.9 26.0

Xsum
Pubm.

Patent b
Red.
avg

Table 10: The difference of ROUGE-1 F1 scores between different models pairs. Every column of the table rep-
resents the compared result of one pair of models. The line of holistic analysis displays the overall stiffness and
stableness of compared models. The rest of the table is the fine-grained results, the first and third lines of which
are the origin compared result (UA − UB for models pairs A and B) and the second and fourth lines are the
normalized compared result (ÛA − ÛB for models pairs A and B). For all heatmap, ‘grey’ represents positive,
‘red’ represents negative and ‘white’ represents approximately zero.


