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Abstract

The recent success of machine learning sys-
tems on various QA datasets could be inter-
preted as a significant improvement in mod-
els’ language understanding abilities. How-
ever, using various perturbations, multiple re-
cent works have shown that good performance
on a dataset might not indicate performance
that correlates well with human’s expectations
from models that “understand" language. In
this work we consider a top performing model
on several Multiple Choice Question Answer-
ing (MCQA) datasets, and evaluate it against a
set of expectations one might have from such a
model, using a series of zero-information per-
turbations of the model’s inputs. Our results
show that the model clearly falls short of our
expectations, and motivates a modified train-
ing approach that forces the model to better at-
tend to the inputs. We show that the new train-
ing paradigm leads to a model that performs
on par with the original model while better sat-
isfying our expectations.1

1 Introduction

Question answering (QA) has been a prevalent for-
mat for gauging advances in language understand-
ing. Recent advances in contextual language mod-
elling have led to impressive results on multiple
NLP tasks, including on several multiple choice
question answering (MCQA, depicted in Fig. 1)
datasets, a particularly interesting QA task that pro-
vides a flexible space of candidate answers along
with a simple evaluation.

However, recent work (Khashabi et al., 2016;
Jia and Liang, 2017; Si et al., 2019; Gardner et al.,
2019, inter alia) has questioned the interpretation of
these QA successes as progress in natural language
understanding. Indeed, they exhibit, in various task

1Resources for this work are available at:
http://cogcomp.org/page/publication_view/913

Figure 1: An example from ARC Easy dataset (Clark
et al., 2018) showing the three MCQA task inputs.

settings, the brittleness of neural models to various
perturbations. They also show (Kaushik and Lip-
ton, 2018; Gururangan et al., 2018) how models
could learn to latch on to spurious correlations in
the data to achieve high performance on a given
dataset. In this paper we continue this line of work
with a careful analysis of the extent to which the
top performing MCQA model satisfies one’s expec-
tation from a model that “understands" language.

We formulate the following set of (non-
exhaustive) expectation principles that a MCQA
model should satisfy.
Monotonicity Expectation: Model performance
should not drop if an incorrect option is changed
to make it even less likely to be correct.
Sanity Expectation: Model should perform
poorly given trivially insufficient input.
Reading Expectation: Model should only choose
an answer that is supported by the provided con-
text (and thus perform poorly in the absence of
informative context).

While we view the first two expectation princi-
ples as necessary axioms, the third could depend
on one’s definition of the MCQA task. An alter-
nate definition could expect the MCQA model to
answer questions using the provided context or, in
its absence, using its internal knowledge. In this
work, however, we use the Reading Expectation as

http://cogcomp.org/page/publication_view/913
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phrased above; we believe that requiring a model
to rely on externally supplied context better gauges
its language understanding abilities, and levels the
playing field among models with varying levels of
internal knowledge.

Guided by these expectation principles we for-
mulate concrete input perturbations to evaluate
whether a model satisfies these expectations. We
show that the top MCQA model fails to meet any of
the expectation principles described above. Our re-
sults point to the presence of dataset artifacts which
the model uses to solve the datasets, rather than the
underlying task.

With goals and insights, we then propose (a)
a different training objective – which encourages
the model to score each candidate option on its
own merit, and (b) an unsupervised data augmen-
tation technique – which aims at “explaining” to
the model the necessity of simultaneously attend-
ing to all inputs, to help the model solve the task.
Our experiments on three popular MCQA datasets
indicate that a model trained using our proposed
approach better satisfies the expectation principles
described above, while performing competitively
as compared to the baseline model.

2 Multi-choice Question Answering

In this section, we briefly describe the multiple-
choice question answering (MCQA) task, and the
model and datasets we use in this work.2

MCQA Task In a k-way MCQA task, a model
is provided with a question q, a set of candidate
options O = {O1, . . . , Ok}, and a supporting con-
text for each option C = {C1, . . . , Ck}. The model
needs to predict the correct answer option that is
best supported by the given contexts. Figure 1
shows an example of a 4-way MCQA task.

Datasets We use the following MCQA datasets:

1. RACE (Lai et al., 2017): A reading compre-
hension dataset containing questions from the
English exams of middle and high school Chi-
nese students. The context for all options is the
same input paragraph.

2. QASC (Khot et al., 2020): An MCQA dataset
containing science questions of elementary and
middle school level, which require composition
of facts using common-sense reasoning.

2All results are reported on the dev split of the datasets.

3. ARISTO: A collection of non-diagram science
questions from standardized tests as used by
Clark et al. (2019).3

For QASC and ARISTO, the context for an option
is a set of top retrieved sentences as suggested by
Khot et al. (2020) and Clark et al. (2019).

Baseline Model We use the RoBERTa large
model (Liu et al., 2019) for our experiments. Given
the task inputs, the model learns to predict a distri-
bution over the candidate options O; which is com-
puted by normalizing the scores for each candidate
(using softmax) and the model is trained using cross
entropy loss. To compute the score for the i-th can-
didate option Oi, the RoBERTa model is fed with
the sequence “[CLS] Ci [SEP] q [SEP] Oi [SEP]”
as input, and the representation of the [CLS] token
is projected to a logit score (Clark et al., 2019).

For ARISTO and QASC, we first fine-tune the
RoBERTa model on RACE, as suggested by Clark
et al. 2019; Khot et al. 2020, and then on the re-
spective datasets. More details on the training pro-
cedure can be found in the appendix.

3 Model vs. Our Expectations

In this section, we define the perturbations we de-
sign to evaluate a model against our expectation
principles (defined in §1). We then analyze how
well the baseline model satisfies these expectations.

Monotonicity Expectation: The following set-
ting tests whether a model is fooled by an obvi-
ously incorrect option, one with high word overlap
between its inputs.
• Perturbed Incorrect Option (PIO): The op-

tion description for an incorrect option is
changed to the question itself and its correspond-
ing context is changed to 10 concatenations of
the question.4

Sanity Expectation: The following settings test
how the model’s performance changes when given
an unreasonable input, for which it should not be
possible to predict the correct answer.
• No option (NO): The option descriptions for all

candidate options is changed to empty, “<s>".

• No question (NQ): The question (for all its can-
didate options O) is changed to empty , “<s>".

3Containing questions from the ARC datasets (Clark et al.,
2018), NY Regents exams and OBQA(Mihaylov et al., 2018).

4To approximately simulate a typical context’s length.
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Reading Expectation: The following setting
tests how crucial the context is for the model to
correctly answer the questions.
• No context (NC): The contexts for all candidate

options is changed to empty, “<s>".

Baseline model performance Table 1 shows
that the model achieves impressive accuracy on
all three dataset; RACE (84.8), QASC (85.2), and
ARISTO (78.3), which suggests that the model
should satisfy the expectations laid out for a good
MCQA model.

Evaluating expectations When evaluating the
model by modifying an incorrect option and its
context (PIO), we find that its performance drops
notably across all three datasets, for example, from
85.2→ 7.9 for QASC. This shows that the model
is not able to cope with an incorrect option con-
taining high word overlap with the question, even
when it is trivially wrong and the correct option
and its context are present. The baseline model
thus fails to satisfy the Monotonicity Expectation.

Given an unreasonable input, where a pivotal
component of the input is missing, we find that
the baseline model still performs surprisingly well.
For example, in ARISTO, removal of the ques-
tion (NQ) only leads to a performance drop from
78.3 → 55.3, and removal of the options (NO),
from 78.3→ 46.8. This suggests that the datasets
contain unwanted biases that the model relies on
to answer correctly. This shows that the baseline
model fails to satisfy the Sanity Expectation.

The model achieves reasonable performance on
the removal of the contexts; thus failing our Read-
ing Expectation, e.g., performance only drops from
78.3 → 63.8 in ARISTO. To achieve this perfor-
mance the model must rely on its inherent knowl-
edge (Petroni et al., 2019) or, more likely, on
dataset artifacts as suggested previously.

4 Proposed Training Approach

To address the aforementioned limitations, and re-
duce the tendency of the model to exploit dataset
artifacts, we propose the following modifications
to the training methodology.

4.1 MCQA as Binary Classification

Treating MCQA as a multi-class classification prob-
lem requires the model to minimally differentiate
the correct option from the incorrect options, thus

Eval. Setting ARISTO RACE QASC

Original (↑) 78.3 84.8 85.2

Perturbed Inco-
25.4 45.8 7.9rrect Option (↑)

No Option (↓) 46.8 − 50.2
No Question (↓) 55.3 62.8 34.3
No Context (↓) 63.8 49.1 55.8

Table 1: Accuracy of the respective RoBERTa models
on RACE, ARISTO and QASC datasets for the differ-
ent evaluation settings detailed in Section A. The No
Option setting is not applicable for RACE as all options
would have the same inputs. The arrows denote the
expected performance where ↑ denotes higher is better
and ↓ denotes that lower performance is better.

making the training sensitive to the relative diffi-
culty between the options. We propose to prevent
this by training the model to predict the correctness
of each candidate option separately, by converting
the k-way MCQA task into k binary classification
tasks. The model is trained to predict a high proba-
bility for the correct option triplet (q,Og, Cg), and
low for the other k − 1 options.

4.2 Unsupervised data augmentation

We introduce an unsupervised data augmentation
technique to discourage the model from exploiting
spurious correlations between pairs of inputs and
encourage it to read all the inputs. During train-
ing, given an MCQA instance (q,O, C), for each
of the option triplet (q,Oi, Ci), we generate new
examples (each with negative label) by performing
one of the following perturbations with a certain
probability (details in the appendix):
Option: Oi is changed to one of (a) empty (“<s>")
or (b) Oj ∈ O; j 6= g.
Context: Ci is changed to one of (a) empty (“<s>")
or (b) Cj ∈ C; j 6= g.
Question: q, for all options O is changed to one
of (a) empty (“<s>") or (b) another question from
the training set.
No change: The triple is left as is.

This is an automatic data augmentation and re-
quires no manual annotation.

5 Results

The performance of our proposed training approach
(+ Our Training) along with the baseline model are
presented in Table 2. The new model performs
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Dataset Model Original Perturbed No No No
Incorrect Option Option Question Context

(O)(↑) (PIO)(↑) (NO)(↓) (NQ)(↓) (NC)(↓)

ARISTO
RoBERTa 78.3 25.4 46.8 55.3 63.8
+ Our Training 75.8 55.5 26.9 35.4 42.4

RACE
RoBERTa 84.8 45.8 − 62.8 49.1
+ Our Training 83.9 72.4 − 12.4 20.6

QASC RoBERTa 85.2 7.9 50.2 34.3 55.8
+ Our Training 82.6 38.0 13.7 12.3 34.7

Table 2: Comparison of a model trained using our proposed training approach with the baseline model on RACE,
ARISTO and QASC datasets. The evaluation settings used are described in Section A.

competitively (within 2.6 points) with the baseline
on all three datasets suggesting that our proposed
training approach only has minor impact on the
overall model performance.

In our PIO setting, the new model outperforms
the baseline on all three datasets by a large margin
(55.5 compared to baseline’s 25.4 on ARISTO in-
dicating an improvement over the baseline with
regard to our Monotonicity Expectation. Even
though the data augmentation did not augment
examples with this perturbation, our training ap-
proach helps the model better read the inputs and
avoid distractor options.

When evaluating over unreasonable inputs in the
NO and NQ settings, the resulting model performs
poorly compared to the baseline (13.7 vs. 50.2 and
12.3 vs. 34.3 on QASC), showing that our training
approach helps the model to not rely on dataset
bias and satisfy the Sanity Expectation.

Finally, the new model performs poorly when we
remove the contexts (e.g 20.6 on RACE), indicating
how it is able to meet our Reading Expectations.
The results also show the resulting model’s reliance
on the context for information required to correctly
answer questions. Moreover, it implies that the
resulting model is able to achieve performance sim-
ilar to the baseline by heavily relying on informa-
tion from the contexts, as opposed to the baseline
that exploits dataset artifacts (as previously shown).

Results showing the performance of the model
trained using binary classification loss, without the
data augmentation, are attached in the appendix.

6 Related work

Our work builds on numerous recent works that
challenge the robustness of neural language models
(Jin et al., 2020; Si et al., 2019) or, more generally,

neural models (Kaushik and Lipton, 2018; Jia and
Liang, 2017; Khashabi et al., 2016). Our evalua-
tion settings – hiding one of the three inputs to the
MCQA models – are similar to Kaushik and Lipton
2018’s partial input settings which were designed
to point out the existence of dataset artifacts in
reading comprehension datasets. However, we ar-
gue that our results additionally point to a need for
more robust training methodologies and propose
an improved training approach. Our data augmen-
tation approach builds on recent works (Khashabi
et al., 2020; Kobayashi, 2018; Kaushik et al., 2020;
Cheng et al., 2018; Andreas, 2020) that try to lever-
age augmenting training data to improve the perfor-
mance and/or robustness of models. However most
of these works are semi-automatic or require hu-
man annotation while our augmentation approach
requires no additional annotation.

7 Conclusion

We formulated three expectation principles that
a MCQA model must satisfy, and devised appro-
priate settings to evaluate a model against these
principles. Our evaluations on a RoBERTa-based
model showed that the model fails to satisfy any of
our expectations, and exposed its brittleness and re-
liance on dataset artifacts. To improve learning, we
proposed a modified training objective to reduce
the model’s sensitivity to the relative difficulty of
candidate options, and an unsupervised data aug-
mentation technique to encourage the model to rely
on all the input components of a MCQA problem.
The evaluation of our proposed training approach
showed that the resulting model performs competi-
tively with the original model while being robust
to perturbations; hence, closer to satisfying our
expectation principles.
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with 24GB of memory, one epoch on RACE,
ARISTO and QASC required 4 hours, 40 min-
utes and 55 minutes respectively.

B Data augmentation steps

During training (or prior to it), each example would
be modified using the following steps:

For option opt in all options:
If isCorrect(opt) and prob(0.2):

Flip label of option opt
With equal probability:

1. With equal probability:
context = "<s>"
context = incorrect context

2. With equal probability:
option = "<s>"
option = incorrect option

3. With equal probability:
question = "<s>"
question = previous question

If isIncorrect(opt) and prob(0.8)
With equal probability:

1. With equal probability:
context = "<s>"
context = incorrect context

2. With equal probability:
option = "<s>"
option = incorrect option

C Additional Results

Results showing the performance of the baseline
model trained using binary classification loss are
described in Table 3.
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Dataset Model Original Perturbed No No No
Incorrect Option Option Question Context

(O)(↑) (PIO)(↑) (NO)(↓) (NQ)(↓) (NC)(↓)

ARISTO
RoBERTa 78.3 25.4 46.8 55.3 63.8
+ Binary Classification 75.5 41.6 39.7 51.8 61.3
+ Our Training 75.8 55.5 26.9 35.4 42.4

RACE
RoBERTa 84.8 45.8 − 62.8 49.1
+ Binary Classification 83.9 75.1 − 60.0 49.4
+ Our Training 83.9 72.4 − 12.4 20.6

QASC RoBERTa 85.2 7.9 50.2 34.3 55.8
+ Binary Classification 84.1 11.1 45.8 39.2 54.6
+ Our Training 82.6 38.0 13.7 12.3 34.7

Table 3: Results contrasting the performance of the baseline model trained using binary classification loss to the
baseline model and the model trained using our proposed training approach on RACE, ARISTO and QASC datasets.
The evaluation settings used are described in the paper.


