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Abstract

An adverse drug event (ADE) is an injury re-
sulting from medical intervention related to
a drug. ADE detection from text can be ei-
ther fine-grained (ADE entity recognition) or
coarse-grained (ADE assertive sentence classi-
fication), with limited efforts leveraging inter-
dependencies among these two granularities.
We instead design a multi-grained joint deep
network model MGADE to concurrently solve
both ADE tasks MGADE takes advantage of
their symbiotic relationship, with a transfer of
knowledge between the two levels of granular-
ity. Our dual-attention mechanism constructs
multiple distinct representations of a sentence
that capture both task-specific and semantic in-
formation in the sentence, providing stronger
emphasis on the key elements essential for sen-
tence classification. Our model improves state-
of-art F1-score for both tasks: (i) entity recog-
nition of ADE words (12.5% increase) and (ii)
ADE sentence classification (13.6% increase)
on MADE 1.0 benchmark of EHR notes.

1 Introduction

Background. Adverse drug events (ADEs), in-
juries resulting from medical intervention, are a
leading cause of death in the United States and cost
around $30˜$130 billion every year (Donaldson
et al., 2000). Early detection of ADE incidents aids
in the timely assessment, mitigation and preven-
tion of future occurrences of ADEs. Natural Lan-
guage Processing techniques have been recognized
as instrumental in identifying ADEs and related
information from unstructured text fields of sponta-
neous reports and electronic health records (EHRs)
and thus in improving drug safety monitoring and
pharmacovigilance (Harpaz et al., 2014).

Fine-grained ADE detection identifies named
ADE entities at the word-level, while coarse-
grained ADE detection (also ADE assertive text
classification) identifies complete sentences de-
scribing drug-related adverse effects. (Gurulin-
gappa et al., 2011)’s system for identification of
ADE assertive sentences in medical case reports
targets the important application of detecting under-
reported and under-documented adverse drug ef-
fects. Lastly, multi-grained ADE detection identi-
fies ADE information at multiple levels of granu-
larity, namely, both entity and sentence level.

As example, Figure 1 displays ADE and non-
ADE sentences. The first is an ADE sentence where
the mentions of Drugname and ADE entities have
the appropriate relationship with each other. Sec-
ond and third sentences show that the mention of
an ADE entity by itself is not sufficient to assert a
drug-related adverse side effect.

Recently, deep learning-based sequence ap-
proaches have shown some promise in extracting
fine-grained ADEs and related named entities from
text (Liu et al., 2019). However, the prevalence
of entity-type ambiguity remains a major hurdle,
such as, distinguishing between Indication entities
as the reason for taking a drug versus ADE entities
as unintended outcomes of taking a drug. Coarse-
grained sentence-level detection performs well in
identifying ADE descriptive sentences, but is not
equipped to detect fine-grained information such
as words associated with ADE related named enti-
ties. Unfortunately, when the interaction between
these two extraction tasks is ignored, we miss the
opportunity of the transfer of knowledge between
the ADE entity and sentence prediction tasks.

Attention-based neural network models have
been shown to be effective for text classification
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Figure 1: Each sentence is classified as ADE sentence (binary yes/no). Each word is labeled using beginning of an
entity (B-...) vs inside an entity (I-...) for ADE related named entities (multiple classes). O denotes no entity tag.

tasks (Luong et al., 2015; Bahdanau et al., 2014)
from alignment attention in translation (Liu et al.,
2016) to supervising attention in binary text clas-
sification (Rei and Søgaard, 2019). Previous ap-
proaches typically apply only a single round of
attention focusing on simple semantic information
In our ADE detection task, instead, key elements
of the sentence can be linked to multiple categories
of task-specific semantic information of the named
entities (ADE, Drug, Indication, Severity, Dose
etc.). Thus, single attention is insufficient in explor-
ing this multi-aspect information and consequently
risks losing important cues.
Proposed Approach. In our work, we tackle the
above shortcomings by designing a dual-attention
based neural network model for multi-grained joint
learning, called MGADE, that jointly identifies
both ADE entities and ADE assertive sentences.
The design of MGADE is inspired by multi-task
Recurrent Neural Network architectures for jointly
learning to label tokens and sentences in a binary
classification setting (Rei and Søgaard, 2019). In
addition, our model makes use of a supervised self-
attention mechanism based on entity-level predic-
tions to guide the attention function – aiding it in
tackling the above entity-type ambiguity problem.
We also introduce novel strategies of constructing
multiple complementary sentence-level represen-
tations to enhance the performance of sentence
classification.

Our key contributions include:
1. Joint Model. We jointly model ADE entity recog-

nition as a multi-class sequence tagging problem
and ADE assertive text classification as binary clas-
sification. Our model leverages the mutually ben-
eficial relationships between these two tasks, e.g.,
ADE sentence classification can influence ADE en-
tity recognition by identifying clues that contribute
to ADE assertiveness of the sentence and match
them to ADE entities.

2. Dual-Attention. Our novel method for generating
and pooling multiple attention mechanisms pro-

duces informative sentence-level representations.
Our dual-attention mechanisms based on word-
level entity predictions construct multiple repre-
sentations of the same sentence. The dual-attention
weighted sentence-level representations capture
both task-specific and semantic information in a
sentence, providing stronger emphasis on key ele-
ments essential for sentence classification.

3. Label-Awareness. We introduce an augmented
sentence-level representation comprised of pre-
dicted entity labels which adds label-context to
the proposed dual-attention sentence-level repre-
sentation for better capturing the word-level label
distribution and word dependencies within the sen-
tence. This further boosts the performance of the
sentence classification task.

4. Model Evaluation. We compare our joint model
with state-of-art methods for the ADE entity recog-
nition and ADE sentence classification tasks. Ex-
periments on MADE1.0 benchmark of EHR notes
demonstrate that our MGADE model drives up
the F1-score for both tasks significantly: (i) entity
recognition of ADE words by 12.5% and by 23.5%
and (ii) ADE sentence classification by 13.6% and
by 23.0%, compared to state-of-art single task and
joint-task models, respectively.

2 Related Work

Fine-grained ADE Detection. Jagannatha and
Yu (2016b) have employed a bidirectional LSTM-
CRF model to label named entities from electronic
health records of cancer patients. Pandey et al.
(2017) proposed a bidirectional recurrent neural
network with attention to extract ADRs and clas-
sify the relationship between entities from Medline
abstracts and EHR datasets. Wunnava et al. (2019)
presented a three-layer deep learning architecture
for identifying named entities from EHRs, consist-
ing of a Bi-LSTM layer for character-level encod-
ing, a Bi-LSTM layer for word-level encoding, and
a CRF layer for structured prediction.
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Coarse-grained ADE Detection. Huynh et al.
(2016) applies Convolutional Neural Networks us-
ing pre-trained word embeddings to detect sen-
tences describing ADEs. Tafti et al. (2017) utilized
a feed-forward ANN to discover ADE sentences on
PubMed Central data and social media. Dev et al.
(2017) developed a binary document classifier us-
ing logistic regression, random forests and LSTMs
to classify an AE case as serious vs. non-serious.
Multi-grained ADE Detection. Zhang et al.
(2018) developed a multi-task learning model that
combines entity recognition with document clas-
sification to extract the adverse event from a case
narrative and classify the case as serious or non-
serious. However, they fall short in tackling our
problem. Not only do their targeted labels not fall
into the drug-related adverse side effects category
in which a causal relationship is suspected and re-
quired, but their attention model is only simple
self-attention. As consequence, MGADE outper-
forms their model by 23.5% in F1 score for entity
recognition and 23.0% for assertive text classifica-
tion as seen in Section 4.

3 The Proposed Model: MGADE

3.1 Task Definition

In the ADE and medication related information de-
tection task, the entities are ADE, Drugname, Dose,
Duration, Frequency, Indication, Route, Severity
and Other Signs & Symptoms. The no-entity tag
is O. Because some entities (like weight gain) can
have multiple words, we work with a BIO tagging
scheme to distinguish between beginning (tag B-...)
versus inside of an entity (tag I-...). The notation we
use is given in Fig 2. Given a sentence (a sequence
of words), task one is the multi-class classification
of ADE and medication related named entities in
the text sequence, i.e., entity recognition. Task two
is the binary classification of a sentence as ADE
assertive text. The overall goal is to minimize the
weighted sum of entity recognition loss and sen-
tence classification loss.

3.2 Input Embedding Layer

The input of this layer is a sentence represented by
a sequence of words S = 〈w1, w2, ..., wN 〉, where
N is sentence length. The words are first broken
into individual characters and character-level repre-
sentations which capture the morphology of a word
computed with a bidirectional-LSTM over the se-
quence of characters in the input words. We employ

the pre-trained word vector, GloVe (Pennington
et al., 2014), to obtain a fixed word embedding
of each word. A consolidated dense embedding,
comprised of pre-trained word embedding concate-
nated with a learned character-level representation,
is used to represent a word. The output of this layer
is X = [x1, x2, ..., xN ].

3.3 Contextual Layer
LSTM is a type of recurrent neural network that
effectively captures long-distance sequence infor-
mation and the interaction between adjacent words
(Hochreiter and Schmidhuber, 1997). The word
representations xt are given as input to two sep-
arate LSTM networks (Bi-LSTM) that scan the
sequence forward and backward, respectively. The
hidden states learned by the forward and backward
LSTMs are denoted as

−→
h t and

←−
h t, respectively.

−→
h t = LSTM

(
xt,
−→
h t−1

)
(1)

←−
h t = LSTM

(
xt,
←−
h t+1

)
(2)

The output of this layer is a sequence of hidden
states H = [h1, h2, ..., hN ], where ht is a concate-
nation of

−→
h t and

←−
h t. This way, the hidden state ht

of a word encodes information about the tth word
and its context:

ht =
[−→
h t;
←−
h t

]
(3)

3.4 Word-level (NER) Output Layer
The hidden states ht are passed through a non-
linear layer and then with the softmax activation
function to k output nodes, where k denotes the
number of entity-types (classes). Entity-type labels
are the named entities in the BIO format. Each
output node belongs to some entity-type and out-
puts a score for that entity-type. The output of the
softmax function is a categorical probability distri-
bution, where output probabilities of each class is
between 0 and 1, and the total sum of all output
probabilities is equal to 1.

a
(i)
t =

exp
(
e
(i)
t

)
∑k

j=1 exp
(
e
(j)
t

) (4)

Data is classified into a entity-type that has the
highest probability value.

ât = max
i∈{1,2,...,k}

a
(i)
t (5)
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Figure 2: The architecture of the proposed Multi-Grained ADE Detection Network (MGADE)

3.5 Dual-Attention Layer

The purpose of the attention mechanism in the sen-
tence classification task is to select important words
in different contexts to build informative sentence
representations. Different words have different im-
portance for ADE sentence classification task. For
instance, key elements (words/phrases) in the ADE
detection task are linked to multiple aspects of se-
mantic information associated with the named en-
tity categories - ADE, Drugname, Severity, Dose,
Duration, Indication. . . etc. It is necessary to assign
the weight for each word according to its contribu-
tion to the ADE sentence classification task.

Moreover, certain named entities are task-
specific and are considered essential for ADE sen-
tence classification. There exists a direct correspon-
dence between such task-specific named entities
and the sentence. Hence, we anticipate that there
would be at least one word of the same label as the
sentence-level label. For instance, a sentence that
is labeled as an ADE sentence has a corresponding
ADE entity word. Although other named entity
words detect important information and contribute
to the ADE sentence-level classification task, a
stronger focus should be on task-specific ADE
words indicative of the ADE sentence core mes-
sage. A single attention distribution tends to be
insufficient to explore the multi-aspect information
and consequently may risk losing important cues
(Wang et al., 2017).

We address this challenge by generating and us-

ing multiple attention distributions that offer ad-
ditional opportunities to extract relevant semantic
information. This way, we focus on different as-
pects of an ADE sentence to create a more infor-
mative representation. For this, we introduce a
novel dual-attention mechanism, which in addition
to selecting the important semantic areas in the
sentence (henceforth referred as supervised self-
attention (Bahdanau et al., 2014; Yang et al., 2016;
Rei and Søgaard, 2019)), it also provides stronger
emphasis on task-specific semantic aspect areas
(henceforth referred as task-specific attention). The
task-specific attention promotes the words impor-
tant to the ADE sentence-classification task and
reduces the noise introduced by words which are
less important for the task.

Similar to (Rei and Søgaard, 2019; Yang et al.,
2016), we use a self-attention mechanism where,
based on softmax probabilities and normalization,
attention-weights are extracted from word-level
prediction scores. The difference between the two
attention mechanism is that the supervised self-
attention recognizes word-level prediction scores of
all named entities while the task-specific attention
recognizes word-level prediction scores w.r.t only
selective named entities (one which correspond to
the ADE sentence and ignores other named enti-
ties). Specifically, the weights of the supervised
self-attention and task-specific attention are calcu-
lated as follows:

Word-level prediction w.r.t the task-specific
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named entity (i.e.,) ADE:

a
(ADEentity)
t =

exp
(
e
(ADEentity)
t

)
∑k

j=1 exp
(
e
(j)
t

) (6)

Task-specific Attention Weight, normalized to
sum up to 1 over all values in the sentence, is:

αt =
a
(ADEentity)
t∑N

n=1

(
a
(ADEentity)
n

) (7)

Supervised Self-Attention Weight, normalized
to sum up to 1 over all values in the sentence:

βt =
ât∑N

n=1 ân
(8)

Fig 3 shows the examples of the supervised self-
attention and task-specific attention distributions
generated from our attention layer. The color depth
expresses the degree of importance of the weight
in attention vector. As depicted in Fig. 3, the task-
specific attention emphasizes more on the parts
relevant to the ADE sentence classification task.

Attention-based Sentence Representations.
To generate informative and more accurate sen-
tence representations, we construct two different
sentence representations as a weighted sum of the
context-conditioned hidden states using the task-
specific attention weight αt and supervised self-
attention weight βt, respectively.

1. Task-specific attention weighted sentence rep.:

TSS =
N∑
t=1

αtht (9)

2. Supervised self-attention weighted sentence rep.:

SSS =

N∑
t=1

βtht (10)

Attention Pooling A combination of multiple sen-
tence representations obtained from focusing on
different aspects captures the overall contextual
semantic information about a sentence. The two
attention-based representations are concatenated to
form a dual-attention contextual sentence represen-
tation:

CS = [TSS ;SSS ] (11)

3.6 Entity Prediction Embedding Layer

ADE detection is a challenging task. Understand-
ing the co-occurrence of named entities (labels)
is essential for ADE sentence classification. Al-
though we implicitly capture long-range label de-
pendencies with Bi-LSTM in the contextual layer,
and make even more informative sentence-level
representations with the help of the dual-attention
layer, explicitly integrating information on the
label-distribution in a sentence is further helpful to
understand the label co-occurrence structure and
dependencies in the sentence. The idea is to further
improve the performance of ADE sentence classifi-
cation task by learning the output word-level label
knowledge. For a better representing of the word-
level label distribution and to capture potential label
dependencies within each sentence, we propose En-
tity Prediction Embedding (EPE), a sentence-level
vector representation of entity labels predicted at
the word-level output layer (Sec. 3.4).

l̂t = argmax
i∈{0,1,2,...,k}

a
(i)
t (12)

LS = [v0, v1, v2, ..., vk] ; vi ∈ {0, 1} (13)

3.7 Sentence Encoding Layer

A final sentence representation that captures the
overall contextual semantic information and label
dependencies within the sentence is constructed
by combining the dual-attention weighted sentence
representation and Entity Prediction Embedding,
respectively.

S = [CS ;LS ] (14)

3.8 Sentence Classification Output Layer

Finally, we apply a fully connected function and
use sigmoid activation to output the sentence pre-
diction score.

ŷsentence = p
(
y(j=1) | S

)
(15)

3.9 Optimization objective

The objective is to minimize the mean squared
error between the predicted sentence-level score
ŷ(sentence) and the gold-standard sentence label
y(sentence) across all m sentences:

Lsentence =
∑
m

(
y(m) − ŷ(m)

)2
(16)

The objective is to minimize the cross-entropy
loss between the predicted word-level probability



3419

(a) Task-specific Attention (b) Supervised Self-attention

(c) Distribution of attention weights.
Figure 3: Attention Visualizations: Highlighted words indicate attended words. Stronger color denotes higher fo-
cus of attention. (a) Task-specific attention: Recognizes task-specific semantic aspect areas of sentence, with focus
on ADE entity words essential for ADE sentence classification task. (b) Supervised Self-attention: Recognizes all
important areas in the sentence. (c) Distribution of Task-specific attention and Supervised Self-attention weights.

score ŷ(entity) and the gold-standard sentence label
y(entity) across all N words in the sentence:

Lword = −
∑
m

N∑
t=1

k∑
i=1

[
a
(m)
ti log

(
â
(m)
ti

)]
(17)

Similar to (Rei and Søgaard, 2019), we also
add another loss function for joining the sentence-
level and word-level objectives that encourages the
model to optimize for two conditions on the ADE
sentence (i) an ADE sentence must have at least
one ADE entity word, and (ii) ADE sentence must
have at least one word that is either non-ADE entity
or a no-entity word.

Lattn =
∑
m

(
min

(
â
(m)
t,ADE

)
− 0
)2
+∑

m

(
max

(
â
(m)
t,ADE

)
− y(m)

)2 (18)

We combine different objective functions using
weighting parameters to allow us to control the
importance of each objective. The final objective
that we minimize during training is then:

L = λsent · Lsent + λword · Lword + λattn · Lattn

(19)
By using word-level entity predictions as attention
weights for composing sentence-level representa-
tions, we explicitly connect the predictions at both
levels of granularity. When both objectives work in
tandem, they help improve the performance of one
another. In our joint model, we give equal impor-
tance to both tasks and set λword = λsentence = 1.

4 Experimental Study

4.1 Data Set
MADE1.0 NLP challenge for detecting medication
and ADE related information from EHR (Jagan-

natha and Yu, 2016a) used 1089 de-identified EHR
notes from 21 cancer patients (Training: 876 notes,
Testing: 213 notes). The annotation statistics of the
corpus are provided (Jagannatha et al., 2019).

Named Entity Labels. The notes are annotated
with several categories of medication information.
Adverse Drug Event (ADE), Drugname, Indication
and Other Sign Symptom and Diseases (OtherSSD)
are specified as medical events that contribute to
a change in a patient’s medical status. Severity,
Route, Frequency, Duration and Dosage specified
as attributes describe important properties about
the medical events. Severity denotes the severity of
a disease or symptom. Route, Frequency, Duration
and Dosage as attributes of Drugname label the
medication method, frequency of dosage, duration
of dosage, and the dosage quantity, respectively.

Sentence Labels. MADE 1.0 text has each
word manually annotated with ADE or medication
related entity types. For words that belong to the
ADE entity type, an additional relation annotation
denotes if the ADE entity is an adverse side effect
of the prescription of the Drugname entity. Since
MADE 1.0 dataset does not have sentence-level
annotations, we use the relation annotation with the
word annotation to assign each sentence a label as
ADE or nonADE. In this work, the relation labels
are used only to assign the sentence labels, but they
are not used in the supervised learning process.

4.2 Hyper-parameter Settings

The model operates on tokenized sentences. To-
kens were lower-cased, while the character-level
component receives input with the original capital-
ization to learn the morphological features of each
word. As input, the pre-trained publicly available
Glove word embeddings of size 300 (Pennington
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(a) Single Task-specific Attention (b) Dual Task-specific attention

(c) Single Supervised Self-attention (d) Dual Supervised Self-attention

(e) Distribution of attention weights (f) Sentence prediction scores
Figure 4: Single v.s. dual attention distribution. The color intensity corresponds to the weight given to each word.
Attention weight of each word are given in the parenthesis. Single attention-based models (a) and (c) fail to capture
sufficient attention weight on the key semantic areas of the sentence. The dual-attention based model where the
two attention distributions are combined, accurate weights are assigned (b) and (d).

et al., 2014). The size of the learned character-level
embedding are 100 dimensional vectors. The size
of LSTM hidden layers for word-level and char-
level LSTM are size 300 and 100 respectively. The
hidden combined representation ht was set to size
200; the attention weight layer et was set to size
100. The attention-weighted sentence representa-
tions TSS and SSS , are 200 dimensional vectors
and therefore their combination context vector CS

is 400 dimensional. The Entity Prediction Em-
bedding (EPE) LS is of size k entities that are in
BIO format. Hence EPE is a size 19 dimensional
binary vector (eighteen entities plus the no entity
tag). The final concatenated sentence-level S vec-
tor is thus size 419. To avoid over-fitting, we apply
a dropout strategy (Ma and Hovy, 2016; Srivastava
et al., 2014) of 0.5 for our model. All models were
trained with a learning rate of 0.001 using Adam
(Kingma and Ba, 2014).

4.3 Results

4.3.1 ADE Assertive Sentence Classification
Table 1 compares our model against two baselines
of individual ADE sentence classification models.
(i) Similar to (Dernoncourt et al., 2017), LAST is a
Bi-LSTM based sentence classification model that
uses the last hidden states for sentence composi-
tion; (ii) Similar to (Yang et al., 2016), ATTN is a B-
LSTM model that used simple attention weights for
sentence composition. Our full model, MGADE
succeeds to improve the F1 scores by 13.6% over
the LAST baseline in testing. We also compare
with a model similar to (Zhang et al., 2018) joint-

Table 1: ADE sentence classification: F1 scores.
Model F1
Baseline Individual Models
LAST (Dernoncourt et al., 2017) 0.66
ATTN (Yang et al., 2016) 0.63
Baseline Joint Model
(Zhang et al., 2018) 0.61
MGADE 0.75

task model based on self-attention. MGADE out-
performs their model by 23.0% for sentence classi-
fication.

Table 2: ADE entity recognition: F1 scores.
Model F1
Baseline Individual Models
Bi-LSTM (Wunnava et al., 2019) 0.56
Bi-LSTM + CRF (Wunnava et al., 2019) 0.63
Baseline Joint Model
(Zhang et al., 2018) 0.51
MGADE 0.63

4.3.2 ADE Named Entity Recognition
Table 2 compares our model against the best per-
forming models on MADE1.0 benchmark in the
literature (Wunnava et al., 2019) for ADE entity
recognition. The entity recognition component of
our MGADE is similar to their Bi-LSTM model.
MGADE improves the F1 score by 12.5% over
their Bi-LSTM only model. Our model achieved
comparable results with their Bi-LSTM + CRF
combination model. The models with CRF layer
predict the label sequence jointly instead of pre-
dicting each label individually which is helpful to
predict sequences where the label for each word
in a sequence depends on the label of the previous
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Table 3: Effect of dual-attention layer. † denotes models with single-attention with Task-specific attention removed
from Supervised Self-attention model, and vice versa.

ADE Entity Recognition ADE Sentence Classification
Model P R F1 P R F1
MGADE-SelfA † 0.58 0.52 0.55 0.84 0.55 0.67
MGADE-TaskA † 0.62 0.50 0.55 0.82 0.64 0.72
MGADE-DualA 0.68 0.55 0.61 0.87 0.65 0.74
MGADE 0.70 0.57 0.63 0.86 0.67 0.75

word. Adding an CRF component to our model
might further improve the performance of the entity
recognition task. We also compare with a model
similar to (Zhang et al., 2018) joint-task model
based on self-attention. MGADE outperforms their
model by 23.5% for entity recognition.

4.3.3 Ablation Analysis
To evaluate the effect of each part in our model,
we remove core sub-components and quantify the
performance drop in F1 score.
Types of Attention. Table 3 studies the two types
of attention we generate: Supervised self-attention
(β) and Task-specific attention (α) for composing
sentence-level representations. † denotes the mod-
els with single-attention. As shown in the table,
models that used only a single attention compo-
nent, be it Supervised Self-Attention based (SSS)
or Task-specific attention based sentence represen-
tation (TSS) achieved the same F1-score for the
entity recognition task. However, their sentence
classification task performance varies, demonstrat-
ing that the two attentions capture different aspects
of information in the sentence. The type of at-
tention captured plays a critical role in compos-
ing an informative sentence representation. Both
single-attention models performed better than the
baseline individual sentence-classification models
LAST and ATTN (see Table 1). TSS achieved
superior sentence classification performance over
SSS . Intuitively, stronger focus should be placed
on the words indicative of the sentence type, and
TSS which emphasizes more on the parts relevant
to the ADE sentence classification task is more
accurate in identifying ADE sentences.
Single Attention v.s. Dual-Attention. Table 3
studies impact of dual-attention component. As
seen, the model with dual-attention sentence repre-
sentation which combines two attention-weighted
sentence representations CS outperforms the mod-
els with single-attention (denoted by †) in both
entity recognition and sentence classification tasks.
Label-Awareness. Table 3 studies the effect
of adding the label-awareness component in im-

proving the sentence representation. Our full
model MGADE, with both dual-attention and label-
aware components further improves the perfor-
mance of sentence classification and entity recog-
nition tasks by 1.0% and 2.0% respectively com-
pared to MGADE-DualA, the model with only
dual-attention component.
Case Study. Dual-attention is not only effec-
tive in capturing multiple aspects of semantic in-
formation in the sentence, but also in reducing the
risk of capturing incorrect or insufficient attention
when only one of the single attentions (either task-
specific or supervised self-attention) is used. Fig 4
shows such an example where single attention, ei-
ther task-specific or supervised self-attention, fails
to capture sufficient attention weight on the key
semantic areas of the sentence necessary to make
a correct prediction on the sentence. The incor-
rect distribution of attention weights assigned in
the single task-specific and single supervised self-
attention (Figures 4a and 4c) is addressed by the
dual-attention mechanism. The later corrects the
distribution and assigns appropriate weights to the
relevant semantic words as in Figures 4b and 4d.
In Figures 4e and 4f, we demonstrate the effective-
ness of the dual-attention mechanism by plotting
attention weight distributions and the sentence pre-
diction scores when specific type of attention is
composed into the sentence representation. The
bar chart depicts the ADE sentence-level classifi-
cation confidence scores w.r.t single-attention and
dual-attention models and confirms the utility of
dual-attention.

5 Conclusion

We propose a dual-attention network for multi-
grained ADE detection to jointly identify ADE enti-
ties and ADE assertive sentences from medical nar-
ratives. Our model effectively supports knowledge
sharing between the two levels of granularity, i.e.,
words and sentences, improving the overall quality
of prediction on both tasks. Our solution features
significant performance improvements over state-
of-the-art models on both tasks. Our MGADE
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architecture is pluggable, in that other sequential
learning models including BERT (Devlin et al.,
2019) or other models for sequence labelling and
text classification could be substituted in place of
the Bi-LSTM sequential representation learning
model. We leave this enhancement of our model
and its study to future work.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Franck Dernoncourt, Ji Young Lee, and Peter Szolovits.
2017. Neural networks for joint sentence classifica-
tion in medical paper abstracts. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2017, Valencia, Spain, April 3-7, 2017, Volume 2:
Short Papers, pages 694–700. Association for Com-
putational Linguistics.

Shantanu Dev, Shinan Zhang, Joseph Voyles, and
Anand S Rao. 2017. Automated classification of
adverse events in pharmacovigilance. In 2017
IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 905–909. IEEE.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Volume 1 (Long and Short Pa-
pers), pages 4171–4186. Association for Computa-
tional Linguistics.

Molla S. Donaldson, Janet M. Corrigan, Linda T. Kohn,
and Editors. 2000. To err is human: building a safer
health system, volume 6. National Academies Press.

Harsha Gurulingappa, Juliane Fluck, Martin Hofmann-
Apitius, and Luca Toldo. 2011. Identification of ad-
verse drug event assertive sentences in medical case
reports. In First international workshop on knowl-
edge discovery and health care management (KD-
HCM), European conference on machine learning
and principles and practice of knowledge discovery
in databases (ECML PKDD), pages 16–27.

Rave Harpaz, Alison Callahan, Suzanne Tamang, Yen
Low, David Odgers, Sam Finlayson, Kenneth Jung,
Paea LePendu, and Nigam H Shah. 2014. Text min-
ing for adverse drug events: the promise, challenges,
and state of the art. Drug safety, 37(10):777–790.

Sepp Hochreiter and Jurgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
1780.

Trung Huynh, Yulan He, Alistair Willis, and Stefan
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