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Abstract

End-to-end models in NLP rarely encode ex-
ternal world knowledge about length of time.
We introduce two effective models for du-
ration prediction, which incorporate external
knowledge by reading temporal-related news
sentences (time-aware pre-training). Specifi-
cally, one model predicts the range/unit where
the duration value falls in (R-PRED); and the
other predicts the exact duration value (E-
PRED). Our best model – E-PRED, substan-
tially outperforms previous work, and captures
duration information more accurately than R-
PRED. We also demonstrate our models are
capable of duration prediction in the unsuper-
vised setting, outperforming the baselines.

1 Introduction

Understanding duration of event expressed in text
is a crucial task in NLP (Pustejovsky and Verhagen,
2009; Zhou et al., 2019). It facilitates downstream
tasks such as story timeline construction (Ning
et al., 2018; Leeuwenberg and Moens, 2019) and
temporal question answering (Llorens et al., 2015).
It is challenging to make accurate prediction mainly
due to two reasons: (1) duration is not only asso-
ciated with event word but also the context. For
example, “watch a movie” takes around 2 hours,
while “watch a bird fly” only takes about 10 sec-
onds; (2) the compositional nature of events makes
it difficult to train a learning-based system only
based on hand annotated data (since it’s hard to
cover all the possible events). Thus, external knowl-
edge and commonsense are needed to make further
progress on the task.

However, most current approaches (Pan et al.,
2011; Gusev et al., 2011; Vempala et al., 2018)
focus on developing features and cannot utilize ex-
ternal textual knowledge. The only exception is the
web count based method proposed by Gusev et al.
(2011), which queries search engine with event

word (e.g., “watch”) and temporal units, and make
predictions based on hitting times. However, this
method achieves better performance when query
only with the event word in the sentence, which
means it does not enable contextualized understand-
ing.

To benefit from the generalizability of learning-
based methods and utilizing external temporal
knowledge, we introduce a framework, which in-
cludes (1) a procedure for collecting duration-
related news sentences, and automatic labeling the
duration unit in it (Section 2.1); 1 (2) two effective
end-to-end models that leverage external temporal
knowledge via pre-training (Section 2.2). Specifi-
cally, our first model (R-PRED) predicts the most
likely temporal unit/range for the event, with a
classification output layer; and the other model (E-
PRED) predicts the exact duration value, with a
regression output layer. Our best model (E-PRED)
achieves state-of-the-art performance on the Time-
Bank dataset and the McTACO duration prediction
task. In addition, in the unsupervised setting, our
model (E-PRED) trained with only collected web
data outperforms the supervised BERT baseline by
10.24 F1 score and 9.68 Exact Match score on Mc-
TACO duration prediction task. We also provide
detailed comparisons and analysis between the re-
gression objective (E-PRED) and the classification
objective (R-PRED).

2 Our Framework

2.1 Duration-relevant Sentences Collection
and Automatic Labeling

We use multiple pattern-based extraction rules to
collect duration-relevant sentences. To avoid the
potential data sparsity problem, we extract them

1We’ll release these weakly supervised duration-relevant
sentences in https://github.com/ZonglinY/Impr
oving-Event-Duration-Prediction-via-Time
-aware-Pre-training.git

https://github.com/ZonglinY/Improving-Event-Duration-Prediction-via-Time-aware-Pre-training.git
https://github.com/ZonglinY/Improving-Event-Duration-Prediction-via-Time-aware-Pre-training.git
https://github.com/ZonglinY/Improving-Event-Duration-Prediction-via-Time-aware-Pre-training.git
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raw news sentence: 
...The mania has last for 23 years…

Input sentence:
[CLS] ...The mania has last for [MASK] [MASK] …[SEP]

label (range pred):  decade (1 decade < 23 years < 1 century)
value (exact pred):   23 years --> 725328000 seconds --> 20.4

Log Space

Figure 1: An Example of Automatic Labeling

from a relatively large corpus. In particular, we use
articles in DeepMind Q&A dataset (Hermann et al.,
2015) which contains approximately 287k docu-
ments extracted from CNN and Daily Mail news
articles. To avoid introducing potential bias from a
single pattern, we design multiple patterns for ex-
traction. Specifically, if a sentence contains words
or its variants as “for”, “last”, “spend”, “take”,
“over”, “duration”, “period”, and within certain
number of words there exists a numerical value and
a temporal unit (including second, minute, hour,
day, week, month, year, decade) , then we consider
the sentence as containing duration information
and keep the sentence. Further, we design rules
to filter sentences with certain patterns to avoid
common misjudgements of the patterns to reach
higher precision in retrieving sentences with du-
ration information. More details are illustrated in
Appendix A.2.

We apply rules to create the labels (Figure 1),
specifically, given a candidate sentence, we extract
the duration expression (23 years) which consists
of a number and unit, then we normalize it to “sec-
ond” space. We use the logarithm of the normalized
value as label for E-PRED; and use the closest tem-
poral unit as label for R-PRED model. Then for the
sentence itself, we replace its duration expression
with [MASK]s.

2.2 Models for Duration Prediction
The structure of E-PRED and R-PRED is shown in
Figure 2. We first pass the input sentence through
BERT (Devlin et al., 2019) to obtain contextual-
ized embedding for the masked tokens, x0, x1,
..., xk. Then we add a linear layer on top of the
BERT representations for prediction. We propose
two variations – E-PRED (with a regression layer)
predicts the exact duration value v;

v = We

k∑
i=0

xi

R-PRED (with a cross-entropy layer) predicts the

Figure 2: Models: R-PRED and E-PRED

range r.

r = softmax(Wr

k∑
i=0

xi)

3 Experiments and Analysis

3.1 Datasets and Evaluation Metrics

We evaluate our models on two duration-prediction
benchmarks – TimeBank (Pan et al., 2011) and
McTACO-duration (Zhou et al., 2019). Time-
Bank2 annotates 48 non-Wall-Street-Journal ar-
ticles (non-WSJ) and 10 WSJ articles. Specifi-
cally, it annotates duration for an event trigger (e.g.,
“watched”) in the sentence (e.g., I watched a movie
yesterday). Non-WSJ articles are splitted to gener-
ate train set and test set, and WSJ articles are used
to generate testWSJ set, serving as an additional
evaluation set. The Coarse-Grained task requires
predicting whether the event takes less than a day
or longer than a day; the Fine-Grained task requires
predicting the most likely temporal unit (e.g., sec-
ond, minute, hour, etc.). To transform the sentences
into the input format of our models. We insert du-
ration pattern (“, lasting [MASK] [MASK], ”) after
event word and use the new sentence as the input
sequence. For example, one sentence in TimeBank
is “Philip Morris Cos, adopted a defense measure
...”. Our method will convert it to “Philip Morris
Cos, adopted, lasting [MASK] [MASK], a defense
measure ...”. Our strategy of directly adding dura-
tion pattern is possible to help pre-trained model to
utilize learned intrinsic textual representation for
duration prediction (Tamborrino et al., 2020).

McTACO is a multi-choice question answering
dataset. McTACO-duration3 is a subset of Mc-

2We use Gusev et al. (2011)’s split and obtain
1663/469/147 events in Train/Test/TestWSJ set respectively.

3In practice we collect context-question-answer triples
that questions are about event duration and answers can be
transformed to a duration value. We get 1060/2827 triples for
dev/test set respectively (out of 1112/3032).
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Coarsed-Grained (Test) Coarsed-Grained (TestWSJ) Fine-Grained
Model

<day F1 >day F1 Acc. <day F1 >day F1 Acc. Acc. (Test) Acc. (TestWSJ)

Supervised Setting

Majority class - 76.90 62.47 - 76.99 62.58 59.28 52.38
Maximum Entropy (Pan et al., 2011)† - - 73.30 - - 73.50 62.20 61.90
Maximum Entropy++ (Gusev et al., 2011)† - - 73.00 - - 74.80 62.40 66.00
LSTM ensemble (Vempala et al., 2018) 64.29 82.69 76.69 73.20 87.78 83.21 - -
TACOLM (Zhou et al., 2020) 80.58 88.88 85.86 76.01 88.14 84.12 - -

R-PRED 82.08 87.72 85.43 70.15 81.12 76.87 82.09 76.19
w/o pre-training 80.94 86.19 84.01 73.46 79.93 77.32 80.38 78.46

E-PRED 80.63 89.46 86.35 70.67 85.39 80.50 82.52 78.46
w/o pre-training 78.73 88.16 84.79 73.50 86.21 81.86 80.34 77.02

Unsupervised Setting

Majority - 76.90 62.47 - 76.99 62.58 59.28 52.38
Web count, yesterday (Gusev et al., 2011)† - - 70.70 - - 74.80 - -
Web count, bucket (Gusev et al., 2011)† - - 72.40 - - 73.50 66.50 68.70

R-PRED 63.19 80.39 74.41 5.19 66.36 50.34 69.72 43.54
E-PRED 60.14 82.52 75.69 2.86 69.64 53.74 71.00 41.50

Table 1: Performance on TimeBank. Results marked with † are reported in Gusev et al. (2011).

TACO whose questions are about event duration.
Each data item includes a context sentence, a ques-
tion, an answer (a duration expression) and a label
indicating whether the answer is correct or not. To
obtain the input sequence for our model, we con-
vert the question to a statement using rule based
method, and insert the same “, lasting [MASK]
[MASK].” to the end of the statement sentence.
For example, one question in McTACO-duration
is “How long would they run through the fields?”,
our method will convert it to “they run through
the fields, lasting [MASK] [MASK].” We then join
the context sentence and newly obtained statement
sentence as the input sequence.

We report F1 and accuracy for TimeBank Coarse-
Grained task and accuracy for TimeBank Fine-
Grained task. We report F1 and Exact Match (EM)
for McTACO-duration.

3.2 Additional Dataset Details

In TimeBank Coarse-grained task, given an input
event sentence, if prediction of E-PRED is smaller
than 86400 seconds or prediction of R-PRED is
“second” or “minute” or “hour”, prediction will
be “< day”; Otherwise prediction will be “> day”.
All models in TimeBank Fine-Grained task uses
approximate agreement (Pan et al., 2011) during
evaluation. In approximate agreement, temporal
units are considered to match if they are the same
temporal unit or adjacent ones. For example, “sec-
ond” and “minute” match, but “minute” and “day”
do not. It is proposed because human agreement
on exact temporal unit is low (44.4%).

For McTACO-duration task, E-PRED uses
range as a hyper-parameter to define whether the
answer is correct or not. Specifically, if the predic-
tion of E-PRED is d, then only answers in d±range
in logarithmic second space are predicted as cor-
rect. We tune range in development set. Here the
range we use is 3.0. R-PRED uses approximate
agreement to predict correctness.

3.3 Baselines

We compare to strong models in the literature. For
TimeBank, Majority Class always select “month”
as prediction (“week”, “month” and “year” are
all considered as match because of approximate
agreement). In the supervised setting, Maxi-
mum Entropy (Pan et al., 2011) and Maximum
Entropy++ (Gusev et al., 2011) are two mod-
els which utilize hand-designed time-related fea-
tures. Difference is that Maximum Entropy++ uses
more features than Maximum Entropy. LSTM
ensemble (Vempala et al., 2018) is an ensemble
LSTM (Hochreiter and Schmidhuber, 1997) model
which utilize word embeddings. TACOLM (Zhou
et al., 2020) is a concurrent work to our meth-
ods that also utilize unlabeled data. It uses a
transformer-based structure and is also pre-trained
on automatically labeled temporal sentences. Dif-
ferent from our model, TACOLM focuses on classi-
fication model and providing better representation
instead of directly generating predicted duration.
Here TACOLM forms Coarse-Grained task as a se-
quence classification task and uses the embedding
of the first token of transformer output to predict
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from “< day” or “> day”.
For McTACO-duration, BERT_QA (Zhou et al.,

2019) is the BERT sentence pair (question and an-
swer) classification model trained with McTACO-
duration; BERT_QA full is the same model
trained with all of McTACO examples. TACOLM
here shares the same structure with BERT_QA
but uses transformer weights pre-trained on col-
lected data. To be fair, train data for TACOLM
is McTACO-duration, the same as R-PRED and
E-PRED. For the unsupervised setting, for Time-
Bank, we compare to Web count-yesterday and
Web count-bucket (Gusev et al., 2011). They are
rule-based approaches which rely on search engine.

3.4 Results

Table 1 presents results for TimeBank. In the su-
pervised setting E-PRED achieves the best perfor-
mance in Coarse-Grained task (“Test set”) and
Fine-Grained task, while it receives a lower per-
formance than TACOLM in Coarse-Grained task
(“TestWSJ”). In addition, E-PRED achieves best
performance in Test set in unsupervised setting
while it receives lower performance in TestWSJ
set. However, Test set has a similar distribution
with train set, while TestWSJ’s is different (from
a different domain). Therefore, performance on
Test set should be a more important indicator for
comparison.

We attribute the possible limitation of our mod-
els in TimeBank (especially TestWSJ set) experi-
ments to reporting bias, relatively limited number
of automatically collected data and mismatch of
our duration pattern and TimeBank style annota-
tion. More details are explained in Section 3.5.
TACOLM’s better performance in Coarse-Grained
task in TestWSJ set might caused by its more com-
patible input format with TimeBank (it marks each
event word that has a duration annotation in col-
lected data) and its larger number of collected data
from more sources.

Table 2 presents result on McTACO-duration. In
supervised setting, E-PRED achieves the best per-
formance. This table indicates that pre-training for
incorporating external textual knowledge is help-
ful for both R-PRED and E-PRED. Plus, E-PRED

which is trained with only web collected data still
outperforms BERT_QA by a large margin.

We observe that E-PRED and R-PRED does not
receive much performance gain from task-specific
training. We attribute it to the noise introduced dur-

Model F1 EM

Supervised setting

BERT_QA 51.95 30.32
BERT_QA full 56.98 32.26
TACOLM (Zhou et al., 2020) 57.60 33.50

R-PRED 55.36 25.48
w/o pre-training 50.05 22.58

E-PRED 63.63∗ 39.68∗

w/o pre-training 45.31 25.48

Unsupervised Setting

R-PRED 54.14 25.16
E-PRED 62.19 40.00

Table 2: Performance on McTACO-duration. * indi-
cates that the difference compared to BERT_QA is sta-
tistically significant (p < 0.01) using Bootstrap method
(Berg-Kirkpatrick et al., 2012)

ing transforming the QA data to fit in our models’
input-output format. Specifically, we use the aver-
age of all correct answers as duration value label.
This process is not guaranteed to get the expected
duration value for each input event sentence.

3.5 Analysis

E-PRED or R-PRED? We provide insights on
why BERT with regression loss generally outper-
forms BERT with a classification loss.

Firstly, we observe empirically that E-PRED gen-
erally outperforms R-PRED in TimeBank experi-
ments. We attribute that E-PRED can catch more
nuance information than R-PRED. For example, if
the duration mentioned in the text is 40 min, then
the generated label for R-PRED is “minute”. While
for E-PRED, the generated label is 40 minutes (1
min v.s. 40 min).

Secondly, E-PRED is more flexible and have a
tunable range to predict the correctness (one of
main reasons that E-PRED outperforms R-PRED

largely in Table 2), while R-PRED can only use
single bucket prediction or approximate agreement.

Effect of Time-aware Pre-training We observe
that time-aware pre-training can lead to 5~18 F1
score improvement in McTACO-duration; while in
TimeBank Coarse-Grained task, it can only lead
to 1%~3% accuracy improvement in Test set, and
causes around 1% accuracy drop in TestWSJ set.

We attribute the relatively limited effect of time-
aware pre-training in TimeBank to reporting bias
(Gordon and Van Durme, 2013) and data difference
between McTACO-duration and TimeBank. Specif-
ically, annotated events in McTACO-duration are
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Figure 3: Times of event words that are predicted in-
correctly by E-PRED in TimeBank TestWSJ set in un-
supervised setting (only showing the 15 most frequent
event words).

mainly description of concrete events, while anno-
tated events in TimeBank are mainly abstract single
words in the sentence. We consider that events in
McTACO are more similar to events in our auto-
matically collected data, while events in TimeBank
are far less similar. Specifically, Figure 3 shows the
most frequent single words annotated in TestWSJ
that are predicted wrongly by E-PRED in unsu-
pervised setting. We observe that event words in
Figure 3 are mainly abstract and not durative, and
people usually do not describe the duration of them
in text (reporting bias). However, a larger collec-
tion of automatically collected data from different
sources might alleviate this problem. More details
on error analysis in TimeBank experiments can be
found in Appendix A.4.

Another reason could be the mismatch of our
designed duration pattern and TimeBank annota-
tion style. Directly adding duration pattern after
the annotated word might not comply with the sen-
tences seen in pre-training data and might cause
ambiguous reference of event.

Influence of Data Collection and Search Pat-
terns We investigate how pre-training data col-
lection affects the performance of our models. Ta-
ble 3 shows performance of E-PRED in unsuper-
vised setting pretrained w/ data collected with
different methods. Specifically, we collect dura-
tion sentences from News or Wikipedia articles;
sentences are collected by only the “for” pattern
or “for|take|spend|last|lasting|duration|period” pat-
terns (7 patterns). We find that E-PRED pre-trained
with the three data collecting methods all achieves
state-of-the-art performance in TimeBank Test (un-
supervised setting) and get higher F1 score than

TimeBank McTACO-duration

Test TestWSJ F1 EM
Wiki (7 patterns) 70.15 46.26 57.34 36.77
News (only “for”) 67.80 43.54 58.89 36.77
News (7 patterns) 71.00 41.50 62.19 40.00

Table 3: Effect of Data Collection and Search Patterns.

BERT_QA supervised baseline. We find that pre-
training with collected sentences can robustly in-
crease our model’s understanding of duration, and
using more patterns for data collection is beneficial.

4 Additional Related Work

For supervised duration prediction, Pan et al.
(2011) annotates duration length of a subset of
events in TimeBank (Pustejovsky et al., 2003).
New features and learning based models are pro-
posed for TimeBank (Pan et al., 2011; Gusev et al.,
2011; Samardzic and Merlo, 2016; Vempala et al.,
2018). In particular, aspectual (Vendler, 1957;
Smith, 2013) features have been proved to be use-
ful. Concurrent to our work, Zhou et al. (2020) also
utilize unlabeled data. Different from our work,
they focus on temporal commonsense acquisition
in a more general setting (for frequency, typical
time, duration, etc.) and the models predict the
discrete temporal unit, while we propose two mod-
els (classification and regression-based). In addi-
tion, they focus on providing better representation
instead of directly generating duration prediction.
For the unsupervised setting, Williams and Katz
(2012); Elazar et al. (2019) use rule-based method
on web data and generate collections of mapping
from verb/event pattern to numeric duration value.
Kozareva and Hovy (2011); Gusev et al. (2011)
develop queries for search engines and utilize the
returned snippets / hitting times to make prediction.

5 Conclusion

We propose a framework for leveraging free-form
textual knowledge into neural models for duration
prediction. Our best model (E-PRED) achieves
state-of-the-art performance in various tasks. In
addition, our model trained only with externally-
obtained weakly supervised news data outperforms
supervised BERT_QA baseline by a large margin.
We also find that model trained with exact duration
value seems to better capture duration nuance of
event, and has more tunable range that is more flex-
ible to make prediction for quantitative attributes
such as duration.



3375

Acknowledgments

We thank the anonymous reviewers for suggestions
and Ben Zhou for running experiments.

References
Taylor Berg-Kirkpatrick, David Burkett, and Dan

Klein. 2012. An empirical investigation of statistical
significance in nlp. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 995–1005.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Yanai Elazar, Abhijit Mahabal, Deepak Ramachandran,
Tania Bedrax-Weiss, and Dan Roth. 2019. How
large are lions? inducing distributions over quanti-
tative attributes. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3973–3983, Florence, Italy. Associa-
tion for Computational Linguistics.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 workshop on Automated knowledge
base construction, pages 25–30.

Andrey Gusev, Nathanael Chambers, Pranav Khaitan,
Divye Khilnani, Steven Bethard, and Dan Jurafsky.
2011. Using query patterns to learn the duration
of events. In Proceedings of the ninth international
conference on computational semantics, pages 145–
154. Association for Computational Linguistics.

Karl Moritz Hermann, Tomáš Kočiský, Edward Grefen-
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A Appendices

A.1 Hyper-Parameters
For pre-training BERT model with collected cheap
supervised data, we use the same hyper parameters
for time aware R-PRED and E-PRED:

• learning rate: 5e-5

• train batch size: 16

• optimizer: BertAdam (optimizer warmup pro-
portion: 0.1)

• loss: mean square error loss (for E-PRED);
cross entropy loss (for R-PRED)

For fine-tuning R-PRED or E-PRED with
McTACO-duration or TimeBank data or fine-
tuning BERT with McTACO-duration or TimeBank
data, the hyper-parameter we use is:

• learning rate: 2e-5

• train batch size: 32

• optimizer: BertAdam (optimizer warmup pro-
portion: 0.1)

• loss: mean square error loss (for E-PRED);
cross entropy loss (for R-PRED)

A.2 Duration Data Collecting Method
We firstly use regular expression pattern to retrieve
sentences that match with the pattern, then we use
filter patter to filter out sentences that match with
filter out pattern.

Regular expression pattern:
“(?:duration|period|for|last|lasting|spend
|spent|over|take|took|taken)[∧,.!?;]*\d+
(?:second|minute|hour|day|week|month|year|decade)”

Filter pattern:

• if the matched sub-sentence contains “at” or
“age” or “every” or “next” or “more than” or
“per”

• if the matched sub-sentence match with
“(?:first|second|third|fourth|fifth|sixth|seventh
|eighth|ninth) time”

• if the matched sentence matches with “|d+
secondary”

• if the matched sentence matches with
“(?:second|minute|hour|day|week|month|year
|decade)[s]? old”
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Figure 4: Times of event words that are predicted cor-
rectly in TimeBank TestWSJ set in unsupervised set-
ting (only shows most frequent 15 event words)

A.3 Additional Details on Processing
TimeBank and McTACO Data

Each annotated event trigger word in TimeBank
are labeled with two duration values, max duration
and min duration. We use the arithmetic mean of
the two values to generate labels.

For TimeBank Fine-grained task, we use 7 tem-
poral units as all possible labels (same setting with
previous work (Gusev et al., 2011) (Pan et al.,
2011)), including “second”, “minute”, “hour”,
“day”, “week”, “month”, “year”. For R-PRED in
McTACO task, we use 8 temporal units instead
(adding “decade”)

A.4 Details on Correctly and Incorrectly
Predicted Event Words in TimeBank
Experiment

As shown in Figure 4, Figure 5 and Figure 6, we
observe that correctly predicted words are generally
more concrete and more possible to be described
duration in text, which supports our analysis on
reporting bias.
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Figure 5: Times of event words that are predicted in-
correctly in TimeBank Test set in unsupervised setting
(only shows most frequent 15 event words)
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Figure 6: Times of event words that are predicted cor-
rectly in TimeBank Test set in unsupervised setting
(only shows most frequent 15 event words)


