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Abstract
We present a probabilistic framework for mul-
tilingual neural machine translation that en-
compasses supervised and unsupervised se-
tups, focusing on unsupervised translation. In
addition to studying the vanilla case where
there is only monolingual data available, we
propose a novel setup where one language in
the (source, target) pair is not associated with
any parallel data, but there may exist auxiliary
parallel data that contains the other. This auxil-
iary data can naturally be utilized in our proba-
bilistic framework via a novel cross-translation
loss term. Empirically, we show that our ap-
proach results in higher BLEU scores over
state-of-the-art unsupervised models on the
WMT’14 English-French, WMT’16 English-
German, and WMT’16 English-Romanian
datasets in most directions.

1 Introduction

The popularity of neural machine translation sys-
tems (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014; Bahdanau et al., 2015; Wu et al.,
2016) has exploded in recent years. Those systems
have obtained state-of-the-art results for a wide col-
lection of language pairs, but they often require
large amounts of parallel (source, target) sentence
pairs to train (Koehn and Knowles, 2017), mak-
ing them impractical for scenarios with resource-
poor languages. As a result, there has been in-
terest in unsupervised machine translation (Ravi
and Knight, 2011), and more recently unsuper-
vised neural machine translation (UNMT) (Lample
et al., 2018; Artetxe et al., 2018), which uses only
monolingual source and target corpora for learning.
Unsupervised NMT systems have achieved rapid
progress recently (Lample and Conneau, 2019;
Artetxe et al., 2019; Ren et al., 2019; Li et al.,
2020a), largely thanks to two key ideas: one-the-fly
back-translation (i.e., minimizing round-trip trans-
lation inconsistency) (Bannard and Callison-Burch,
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Figure 1: Different setups for English (En), French
(Fr) and Romanian (Ro). The dashed edge indicates
the target language pair. Full edges indicate the exis-
tence of parallel training data.

2005; Sennrich et al., 2015; He et al., 2016; Artetxe
et al., 2018) and pretrained language models (Lam-
ple and Conneau, 2019; Song et al., 2019). Despite
the difficulty of the problem, those systems have
achieved surprisingly strong results.

In this work, we investigate Multilingual UNMT
(M-UNMT), a generalization of the UNMT setup
that involves more than two languages. Multilin-
guality has been explored in the supervised NMT
literature, where it has been shown to enable in-
formation sharing among related languages. This
allows higher resource language pairs (e.g. English–
French) to improve performance among lower re-
source pairs (e.g., English–Romanian) (Johnson
et al., 2017; Firat et al., 2016). Yet multilingual
translation has only received little attention in the
unsupervised literature, and the performance of
preliminary works (Sen et al., 2019; Xu et al.,
2019) is considerably below that of state-of-the-
art bilingual unsupervised systems (Lample and
Conneau, 2019; Song et al., 2019). Another line
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of work has studied zero-shot translation in the
presence of a “pivot” language, e.g., using French-
English and English-Romanian corpora to model
French-Romanian (Johnson et al., 2017; Arivazha-
gan et al., 2019; Gu et al., 2019; Al-Shedivat and
Parikh, 2019). However, zero-shot translation is
not unsupervised since one can perform two-step
supervised translation through the pivot language.

We introduce a novel probabilistic formulation
of multilingual translation, which encompasses not
only existing supervised and zero-shot setups, but
also two variants of Multilingual UNMT: (1) a
strict M-UNMT setup in which there is no par-
allel data for any pair of language, and (2) a novel,
looser setup where there exists parallel data that
contains one language in the (source, target) pair
but not the other. We illustrate those two variants
and contrast them to existing work in Figure 1. As
shown in Figures 1(c) and 1(d), the defining feature
of M-UNMT is that the (source, target) pair of in-
terest is not connected in the graph, precluding the
possibility of any direct or multi-step supervised
solution. Leveraging auxiliary parallel data for
UNMT as shown in Figure 1(d) has not been well
studied in the literature. However, this setup may
be more realistic than the strictly unsupervised case
since it enables the use of high resource languages
(e.g. En) to aid translation into rare languages.

For the strict M-UNMT setup pictured in Fig-
ure 1(c), our probabilistic formulation yields a
multi-way back-translation objective that is an intu-
itive generalization of existing work (Artetxe et al.,
2018; Lample et al., 2018; He et al., 2020). We
provide a rigorous derivation of this objective as
an application of the Expectation Maximization
algorithm (Dempster et al., 1977). Effectively uti-
lizing the auxiliary parallel corpus pictured in Fig-
ure 1(d) is less straightforward since the common
approaches for UNMT are explicitly designed for
the bilingual case. For this setting, we propose two
algorithmic contributions. First, we derive a novel
cross-translation loss term from our probabilistic
framework that enforces cross-language pair con-
sistency. Second, we utilize the auxiliary parallel
data for pre-training, which allows the model to
build representations better suited to translation.

Empirically, we evaluate both setups, demon-
strating that our approach of leveraging auxiliary
parallel data offers quantifiable gains over existing
state-of-the-art unsupervised models on 3 language
pairs: En´Ro, En´Fr, and En´De. Finally, we

perform a series of ablation studies that highlight
the impact of the additional data, our additional loss
terms, as well as the choice of auxiliary language.

2 Background and Overview

Notation: Before discussing our approach, we
introduce some notation. We denote random vari-
ables by capital letters X , Y , Z, and their re-
alizations by their corresponding lowercase ver-
sion x, y, z. We abuse this convention to com-
pactly write objects like the conditional density
ppY “ y|X “ xq as ppy|xq or the marginalized
distributions ppX “ xq as ppxq, with the under-
standing that the lowercase variables are connected
to their corresponding uppercase random variables.
Given a random variable X , we write Ex„X to
mean the expectation with respect to x, where x
follows the distribution of X . We use a similar
convention for conditional distributions e.g. we
write Ey„pp¨|xq to denote the expectation of Y con-
ditioned on X “ x. Similarly, we write HpXq
or Hpppxqq to denote the entropy of the random
variable X i.e. HpXq “ Ex„Xr´ log ppxqs. We
reserve the use of typewriter font for languages e.g.
X.

Neural Machine Translation: In bilingual su-
pervised machine translation we are given a train-
ing dataset Dx,y. Each px, yq P Dx,y is a (source,
target) pair consisting of a sentence x in language
X and a semantically equivalent sentence y in lan-
guage Y. We train a translation model using maxi-
mum likelihood:

Lsuppθq “
ÿ

px,yqPDx,y

log pθpy|xq

In neural machine translation, pθpy|xq is mod-
elled with the encoder-decoder paradigm where
x is encoded into a set of vectors via a neural
network encθ and a decoder neural network de-
fines pθpy|encθpxqq. In this work, we use a trans-
former (Vaswani et al., 2017) as the encoder and
decoder network. At inference time, computing the
most likely target sentence y is intractable since it
requires enumerating over all possible sequences,
and is thus approximated via beam search.

Unsupervised Machine Translation: The re-
quirement of a training dataset Dx,y with source-
target pairs can often be prohibitive for rare or low
resource languages. Bilingual unsupervised trans-
lation attempts to learn pθpy|xq using monolingual
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corpora Dx and Dy. For each sentence x P Dx,
Dy may not contain an equivalent sentence in Y,
and vice versa.

State of the art unsupervised methods typically
work as follows. They first perform pre-training
and learn an initial set of parameters θ based on a
variety of language modeling or noisy reconstruc-
tion objectives (Lample and Conneau, 2019; Lewis
et al., 2019; Song et al., 2019) over Dx and Dy. A
fine-tuning stage then follows which typically uses
back-translation (Sennrich et al., 2016; Lample and
Conneau, 2019; He et al., 2016) that involves trans-
lating x to the target language Y, translating it back
to a sentence x1 in X, and penalizing the reconstruc-
tion error between x and x1.

Overview of our Approach: The following sec-
tions describe a probabilistic MT framework that
justifies and generalizes the aforementioned ap-
proaches. We first model the case where we have
access to several monolingual corpora, pictured in
Figure 1(c). We introduce light independence as-
sumptions to make the joint likelihood tractable and
derive a lower bound, obtaining a generalization
of the back-translation loss. We then extend our
model to include the auxiliary parallel data pictured
in Figure 1(d). We demonstrate the emergence of
a cross-translation loss term, which binds distinct
pairs of languages together. Finally, we present our
complete training procedure, based on the EM al-
gorithm. Building upon existing work (Song et al.,
2019), we introduce a pre-training step that we run
before maximizing the likelihood to obtain good
representations.

3 Multilingual Unsupervised Machine
Translation

In this section, we formulate our approach for M-
UNMT. We restrict ourselves to three languages,
but the arguments naturally extend to an arbitrary
number of languages. Inspired by the recent style
transfer literature (He et al., 2020) and some ap-
proaches from multilingual supervised machine
translation (Ren et al., 2018), we introduce a gen-
erative model of which the available data can be
seen as partially-observed samples. We first in-
vestigate the strict unsupervised case, where only
monolingual data is available. Our framework nat-
urally leads to an aggregate back-translation loss
that generalizes previous work. We then incorpo-
rate the auxiliary corpus, introducing a novel cross-
translation term. To optimize our loss, we leverage

the EM algorithm, giving a rigorous justification for
the stop-gradient operation that is usually applied
in the UNMT and style transfer literature (Lample
and Conneau, 2019; Artetxe et al., 2019; He et al.,
2020).

3.1 M-UNMT - Monolingual Data Only
We begin with the assumption that we have three
sets of monolingual data, Dx,Dy,Dz for languages
X,Y and Z respectively. We take the viewpoint
that these datasets form the visible parts of a larger
dataset Dx,y,z of triplets px, y, zq which are transla-
tions of each other. We think of these translations
as samples of a triplet pX,Y, Zq of random vari-
ables and write the observed data log-likelihood
as:

Lpθq “ LDx ` LDy ` LDz

Our goal however is to learn a conditional trans-
lation model pθ. We thus rewrite the log likelihood
as a marginalization over the unobserved variables
for each dataset as shown below:

Lpθq “
ÿ

xPDx

log E
py,zq
„pY,Zq

pθpx|y, zq (1)

`
ÿ

yPDy

log E
px,zq
„pX,Zq

pθpy|x, zq (2)

`
ÿ

zPDz

log E
px,yq
„pX,Y q

pθpz|x, yq (3)

Learning a model for pθpx|y, zq is not practical
since the translation task is to translate z Ñ x
without access to y, or y Ñ x without access to z.
Thus, we make the following structural assumption:
given any variable in the triplet pX,Y, Zq, the re-
maining two are independent. We implicitly think
of the conditioned variable as detailing the content
and the two remaining variables as independent
manifestations of this content in the respective lan-
guages. Using the fact that pθpx|y, zq “ pθpx|yq “
pθpx|zq under this assumption, we rewrite the sum-
mand in p1q as follows:

log E
py,zq
„pY,Zq

pθpx|y, zq “ log E
py,zq
„pY,Zq

a

pθpx|yqpθpx|zq.

Next, note that all these expectations in Eq. 1, 2,
and 3 are intractable to compute due to the num-
ber of possible sequences in each language. We
address this problem through the Expectation Max-
imization (EM) algorithm (Dempster et al., 1977).
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We first use Jensen’s inequality1:

log E
py,zq
„pY,Zq

pθpx|y, zq “ log E
py,zq
„pY,Zq

pθpx|y, zq

pθpy, z|xq
pθpy, z|xq

“ log E
py,zq

„pθpy,z|xq

pθpx|y, zq

pθpy, z|xq
ppy, zq

“ E
py,zq

„pθpy,z|xq

rlog pθpx|y, zq ` log ppy, zqs

`Hppθpy, z|xqq

Since the entropy of a random variable is always
non-negative, we can bound the quantity on the
right from below as follows:

log E
py,zq
„pY,Zq

pθpx|y, zq ě E
py,zq

„pθpy,z|xq

rlog pθpx|y, zqs

` E
py,zq

„pθpy,z|xq

rlog pθpy, zqs

“
1

2
E

y„pθpy|xq
log pθpx|yq

`
1

2
E

z„pθpz|xq
log pθpx|zq

` E
py,zq

„pθpy,z|xq

log ppy, zq

Applying the above strategy to p2q and p3q and
rearranging terms gives us:

Lpθq ě 1

2
E

y„pθp¨|xq
log pθpx|yq

`
1

2
E

z„pθp¨|xq
log pθpx|zq `

1

2
E

x„pθp¨|yq
log pθpy|xq

`
1

2
E

z„pθp¨|yq
log pθpy|zq `

1

2
E

y„pθp¨|zq
log pθpz|yq

`
1

2
E

x„pθp¨|zq
log pθpz|xq ` E

py,zq
„pθp¨,¨|xq

log ppy, zq

` E
px,zq

„pθp¨,¨|yq

log ppx, zq ` E
px,yq

„pθp¨,¨|zq

log ppx, yq

(4)

This lower-bound contains two types of terms.
The back-translation terms, e.g.,

E
y„pθp¨|xq

log pθpx|yq, (5)

1This is actually an equality in this case since
pθpx|y,zq
pθpy,z|xq

ppy, zq “ ppxq and hence the expectant does not
actually depend on y or z.

En Ro
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argmaxzro pθpzro|xenq

2. Likelihood
pθpxen|ẑroq

(a) Back-translation
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Fr

Ro

1. Translation
argmaxzro

pθpzro|xenq

2. Likelihood
pθpyfr|ẑroq

(b) Cross-translation

Figure 2: Illustration of the back-translation and cross-
translation losses. Stop gradient is applied on step 1.

enforce that reciprocal translation mod-
els are consistent. The joint terms e.g.
Epx,yq„pθp¨,¨|zq log ppx, yq will vanish in our
optimization procedure, as explained next.

We use the EM algorithm to maximize Eq. 4.
In our setup, the E-step at iteration t amounts
to computing the expectations against the condi-
tional distributions evaluated at the current set of
parameters θ “ θptq. We approximate this by
removing the expectations and replacing the ran-
dom variable with the mode of its distribution
i.e. E

y„p
θptq

p¨|xq
log pθptqpx|yq « pθptqpx|ŷq where

ŷ “ argmaxy pθptqpy|xq. In practice, this amounts
to running a greedy decoding procedure for the
relevant translation models.

The M-step then corresponds to choosing the
θ which maximizes the resulting terms after we
perform the E-step. Notice that for this step, the
last three terms in Eq. 4 no longer possess a θ de-
pendence, as the expectation was computed in the
E-step with a dependence on θptq. These terms can
therefore be safely ignored, leaving us with only
the back-translation terms. By our approximation
to the E-step, these expressions become exactly
the loss terms that appear in the current UNMT
literature (Artetxe et al., 2019; Lample and Con-
neau, 2019; Song et al., 2019), see Figure 2(a) for
a graphical depiction. Since computing the argmax
is a difficult task, we perform a single gradient up-
date for the M-step and define θpt`1q inductively
this way.

3.2 Auxiliary parallel data

We now extend our framework with an auxiliary
parallel corpus (Figure 1(d)). We assume that we
wish to translate from X to Z, and that we have
access to a parallel corpus Dx,y that maps sentences
from X to Y. To leverage this source of data, we
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augment the log-likelihood L as follows:

Laugpθq “ Lpθq `
ÿ

px,yq
PDx,y

log E
z„Z

pθpx, y|zq (6)

Similar to how we handled the monolingual terms,
we can utilize the EM algorithm to obtain an ob-
jective amenable to gradient optimization. By us-
ing the EM algorithm, we can substitute the dis-
tribution of Z in Eq. 6 with the one given by
pθpz|x, yq. The structural assumption we made
in the case of monolingual data still holds: given
any variable in the triplet pX,Y, Zq, the remain-
ing two are independent. Using this assumption,
we can rewrite the distribution pθpz|x, yq as ei-
ther pθpz|xq or pθpz|yq. Since we can decompose
log pθpx, y|zq “ log pθpx|zq` log pθpy|zq, we can
leverage both formulations with an argument anal-
ogous to the one in §3.1:

log E
z„Z

pθpx, y|zq “ log E
z„Z

pθpx|zqpθpy|zq

ě E
z„pθp¨|yq

log pθpx|zq

` E
z„pθp¨|xq

log pθpy|zq

` E
z„pθp¨|yq

log ppzq ` E
z„pθp¨|xq

log ppzq

(7)

A key feature of this lower bound is the emer-
gence of the expressions:

E
z„pθp¨|yq

log pθpx|zq and E
z„pθp¨|xq

log pθpy|zq.

(8)
Intuitively, those terms ensure that the models can
accurately translate from Y to Z, then Z to X (resp.
X to Z, then Z to Y). Because they enforce cross-
language pair consistency, we will refer to them
as cross-translation terms. In contrast, the back-
translation terms, e.g., Eq. 5, only enforced mono-
lingual consistency. We provide a graphical depic-
tion of these terms in Figure 2(b).

As in the case of monolingual data, we optimize
the full likelihood with EM. During the E-step, we
approximate the expectation with evaluation of the
expectant at the mode of the distribution. As with
§3.1, the last two terms in Eq. 7 disappear in the
M-step.

3.3 Connections with supervised and zero
shot methods

So far, we have only discussed multilingual un-
supervised neural machine translation setups. We

now derive the other configurations of Figure 1, that
is, supervised and zero-shot translation, through
our framework.

Supervised translation: Deriving supervised
translation is straightforward. Given the parallel
data dataset Dx,y, we can rewrite the likelihood as:

ÿ

px,yqPDx,y

log pθpx, yq “
ÿ

px,yq
PDx,y

log pθpy|xq`log ppxq

where the second term is a language model that
does not depend on θ.

Zero-shot translation: We can also connect the
cross-translation term to the zero-shot MT ap-
proach from Al-Shedivat and Parikh (2019). Sim-
plifying their setup, they consider three languages
X,Y and Z with parallel data between X and Y as
well as X and Z. In addition to the usual cross-
entropy objective, they also add agreement terms
i.e. Ez„pθp¨|xq log ppz|yq and Ez„pθp¨|yq log ppz|xq.
We show that these agreement terms are opera-
tionally equivalent to the cross-translation terms i.e.
Eq. 8. We first obtain the following equality by a
simple application of Bayes’ theorem:

log pθpy|zq “ log pθpz|yq ` log ppyq ´ log ppzq.

We then apply the expectation operation E
z„pθp¨|xq

to

both sides of this equation. From an optimization
perspective, we are only interested in terms involv-
ing the learnable parameters so we can dispose of
the term involving log ppyq on the right. Applying
the same argument to log pθpx|zq, we obtain:

E
z„pθp¨|xq

log pθpy|zq ` E
z„pθp¨|yq

log pθpx|zq

“ E
z„pθp¨|xq

log pθpz|yq ` E
z„pθp¨|yq

log pθpz|xq

´ E
z„pθp¨|xq

log ppzq ´ E
z„pθp¨|yq

log ppzq

By adding the quantity E
z„pθp¨|xq

log ppzq `

E
z„pθp¨|yq

log ppzq to both sides of this inequality,

the left-hand side becomes the lower bound intro-
duced in the previous subsection, consisting of the
cross-translations terms. The right-hand side con-
sists of the agreement terms from Al-Shedivat and
Parikh (2019). We tried using this term instead
of our cross-translation terms, but found it to be
unstable. This could be attributed to the fact that
we lack XØ Z parallel data, which is available in
the setup of Al-Shedivat and Parikh (2019).
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Algorithm 1 PRE-TRAINING
Input: Datasets D , number of stepsN
1: Initialize θ Ð θ0
2: for step in 1, 2, 3, ...,N do
3: Choose datasetD at random from D.
4: ifD consists of monolingual data then
5: Sample batch x fromD.
6: Masked version of x: xM Ð MASKpxq
7: MASS Loss: ml Ð log pθpx|xM q
8: Update: θ Ð optimizer updatepml, θq
9: else ifD consists of parallel data then
10: Sample batch px, yq fromD.
11: tl Ð log pθpy|xq ` log pθpx|yq
12: θ Ð optimizer updateptl, θq
13: end if
14: end for

4 Training algorithms

We now discuss how to train the model end-to-end.
We introduce a pre-training phase that we run be-
fore the EM procedure to initialize the model. Pre-
training is known to be crucial for UNMT (Lample
and Conneau, 2019; Song et al., 2019). We make
use of an existing method, MASS, and enrich it
with the auxiliary parallel corpus if available. We
refer to the EM algorithm described in §3 as fine-
tuning for consistency with the literature.

4.1 Pre-training

The aim of the pre-training phase is to produce
an intermediate translation model pθ, to be refined
during the fine-tuning step. We pre-train the model
differently based on the data available to us. For
monolingual data, we use the MASS objective
(Song et al., 2019). The MASS objective con-
sists of masking randomly-chosen contiguous seg-
ments2 of the input then reconstructing the masked
portion. We refer to this operation as MASK. If we
have auxiliary parallel data, we use the traditional
cross-entropy translation objective. We describe
the full procedure in Algorithm 1.

4.2 Fine-tuning

During the fine-tuning phase, we utilize the objec-
tives derived in Section 3. At each training step we
choose a dataset (either monolingual or bilingual),
sample a batch, compute the loss, and update the
weights. If the corpus is monolingual, we use the
back-translation loss i.e. Eq. 5. If the corpus is
bilingual, we compute the cross-translation terms
i.e. Eq. 8 in both directions and perform one update

2We choose the starting index to be 0 or the total length
of the input divided by two with 20% chance for either sce-
nario otherwise we sample uniformly at random then take the
segment starting from this index and replace all tokens with a
[MASK] token.

Algorithm 2 FINE-TUNING
Input: Datasets D, languages L, initialize parameters from pre-training
θ0
1: Initialize θ Ð θ0
2: while not converged do
3: forD in D do
4: ifD consists of monolingual data then
5: lD Ð Language ofD.
6: Sample batch x fromD.
7: for l in L, l ‰ lD do
8: ŷl ÐDecode pθpŷl|xq.
9: btlD,l Ð log pθpx|ŷlq.

10: θ Ð optimizer updatepbtlD,l, θq.
11: end for
12: else ifD consists of parallel data then
13: Sample batch px, yq fromD.
14: lx Ð Language of x.
15: ly Ð Language of y.
16: for l in L, l ‰ lx, ly do
17: ẑl ÐDecode pθpẑl|xq
18: ct Ð log pθpy|ẑlq
19: θ Ð optimizer updatepct, θq
20: end for
21: end if
22: end for
23: end while

for each term. We detail the steps in Algorithm 2.

5 Experiments

We conduct experiments on the language triplets
English-French-Romanian with English-French
parallel data, English-Czech-German with English-
Czech parallel data and English-Spanish-French
with English-Spanish parallel data, with the unsu-
pervised directions chosen solely for the purposes
of comparing with previous recent work (Lample
and Conneau, 2019; Song et al., 2019; Ren et al.,
2019; Artetxe et al., 2019).

5.1 Datasets and preprocessing

We use the News Crawl datasets from WMT as
our sole source of monolingual data for all the lan-
guages considered. We used the data from years
2007-2018 for all languages except for Romanian,
for which we use years 2015-2018. We ensure
the monolingual data is properly labeled by us-
ing the fastText language classification tool (Joulin
et al., 2016) and keep only the lines of data with
the appropriate language classification. For paral-
lel data, we used the UN Corpus (Ziemski et al.,
2016) for English-Spanish, the 109 French-English
Gigaword corpus3 for the English-French and the
CzEng 1.7 dataset (Bojar et al., 2016) for English-
Czech. We preprocess all text by using the tools
from Moses (Koehn et al., 2007), and apply the
Moses tokenizer to separate the text inputs into
tokens. We normalize punctuation, remove non-

3https://www.statmt.org/wmt10/training-giga-fren.tar
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printing characters, and replace unicode symbols
with their non-unicode equivalent. For Romanian,
we also use the scripts from Sennrich4 to normal-
ize the scripts and remove diacretics. For a given
language triplet, we select 10 million lines of mono-
lingual data from each language and use Senten-
cePiece (Kudo and Richardson, 2018) to create
vocabularies containing 64,000 tokens of each. We
then remove lines with more than 100 tokens from
the training set.

5.2 Model architectures
We use Transformers (Vaswani et al., 2017) for our
translation models pθ with a 6-layer encoder and
decoder, a hidden size of 1024 and a 4096 feedfor-
ward filter size. We share the same encoder for all
languages. Following XLM (Lample and Conneau,
2019), we use language embeddings to differentiate
between the languages by adding these embeddings
to each token’s embedding. Unlike XLM, we only
use the language embeddings for the decoder side.
We follow the same modification as done in Song
et al. (2019) and modify the output transformation
of each attention head in each transformer block in
the decoder to be distinct for each language. Be-
sides these modifications, we share the parameters
of the decoder for every language.

5.3 Training configuration
For pre-training, we group the data into batches of
1024 examples each, where each batch consists of
either monolingual data of a single language or par-
allel data, but not both at once. We pad sequences
up to a maximum length of 100 SentencePiece
tokens. During pre-training, we used the Adam
optimizer (Kingma and Ba, 2015) with initial learn-
ing rate of 0.0002 and weight decay parameter of
0.01, as well as 4,000 warmup steps and a linear de-
cay schedule for 1.2 million steps. For fine-tuning,
we used Adamax (Kingma and Ba, 2015) with the
same learning rate and warmup steps, no weight
decay, and trained the models until convergence.
We used Google Cloud TPUs for pre-training and
8 NVIDIA V100 GPUs with a batch size of 3,000
tokens per GPU for fine-tuning.

5.4 Results
Evaluation We use tokenized BLEU to measure
the performance of our models, using the multi-
bleu.pl script from Moses. Recent work (Post,

4https://github.com/rsennrich/wmt16-scripts

2018) has shown that the choice of tokenizer and
preprocessing scheme can impact BLEU scores
tremendously. Bearing this in mind, we chose to
follow the same evaluation procedures used6 by the
majority of the baselines that we consider, which
involves the use of tokenized BLEU as opposed
to the scores given by sacreBLEU. Given the rise
of popularity of SacreBLEU (Post, 2018), we also
include BLEU scores computed from sacreBLEU7

on the detokenized text for French and German. We
exclude Romanian since most works in the litera-
ture traditionally use additional tools from Sennrich
not used in sacreBLEU.

Baselines We list our results in Table 1. We also
include the results of six strong unsupervised base-
lines: (1) XLM (Lample and Conneau, 2019), a
cross-lingual language model fine-tuned with back-
translation; (2) MASS (Song et al., 2019), which
uses the aforementioned pre-training task with
back-translation during fine-tuning; (3) D2GPo (Li
et al., 2020a), which builds on MASS and leverages
an additional regularizer by use of a data-dependent
Gaussian prior; (4) The recent work of Artetxe et al.
(2019) which leverages tools from statistical MT
as well subword information to enrichen their mod-
els; (5) the work of Ren et al. (2019) that explic-
itly attempts to pre-train for UNMT by building
cross-lingual n-gram tables and building a new pre-
training task based on them; (6) mBART (Liu et al.,
2020), which pre-trains on a variety of language
configurations and fine-tunes with traditional on-
the-fly back-transaltion. mBART also leverages
Czech-English data for the Romanian-English lan-
guage pair.

Furthermore, we include concurrent work that
also uses auxiliary parallel data: (8) The work of
Bai et al. (2020), which performs pre-training and
fine-tuning in one stage and replaces MASS with
a denoising autoencoding objective; (9) the work
of Li et al. (2020b) which also leverage a cross-
translation term and additionally include a knowl-
edge distillation objective. We also include the
results of our model after pre-training i.e. no back-
translation or cross-translation objective, under the
title M-UNMT (Only Pre-Train).

Our models with auxiliary data obtain better
scores for almost all translation directions. Pre-
training with the auxiliary data by itself gives com-

6As verified by their public implementations.
7BLEU+case.mixed+lang.xx-xx+numrefs.1

+smooth.exp+test.wmtxx+tok.13a+version.1.4.14.
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En´ Fr Fr´ En En´ De De´ En En´ Ro Ro´ En
Models without auxiliary parallel data
XLM (Lample and Conneau, 2019) 33.4 33.3 27.0 34.3 33.3 31.8
MASS (Song et al., 2019) 37.5 34.9 28.3 35.2 35.2 33.1
D2GPo (Li et al., 2020a) 37.9 34.9 28.4 35.6 36.3 33.4
Artetxe et al. (2019) 36.2 33.5 26.9 34.4 - -
Ren et al. (2019) 35.4 34.9 27.7 35.6 34.9 34.1
mBART (Liu et al., 2020) - - 29.8 34.0 35.0 30.5
M-UNMT 36.3 33.50 25.5 32.3 34.87 32.1
Models with auxiliary parallel data
mBART (Liu et al., 2020) - - - - - 33.9
Bai et al. (2020) (Concurrent work) 36.5 33.4 26.6 30.1 35.1 31.6
Li et al. (2020b) (Concurrent work) - - - - 37.1 34.7
M-UNMT (Only Pre-Train) 29.2 33.8 18.3 29.0 25.3 32.6
M-UNMT (Fine-Tuned) 38.3 36.1 28.7 36.0 37.4 35.8

detok SacreBLEU 36.1 35.8 28.9 35.8 - -

Table 1: BLEU scores of various models for UNMT. M-UNMT refers to our approach. The En ´ Fr/Fr ´ En
directions were on newstest2014, while the En´ Ro/Ro´ En and and En´ De/De´ En directions were on new-
stest2016. To be consistent with previous work, we report tokenized BLEU. However, to aid future reproducibility,
we also report sacreBLEU scores. We do not report sacreBLEU scores for Romanian since it is common to in-
clude additional prepreprocessing from Sennrich5 (such as removing diacretics) which is not natively supported by
sacreBLEU. See 5.4 for details.

petitive results in two of the three X ´ En direc-
tions. Moreover, our approach outperforms all the
baselines which also which also leverage auxiliary
parallel data. This suggests that our improved per-
formance comes from both our choice of objectives
and the additional data.

6 Ablations

We perform a series of ablation studies to deter-
mine which aspects of our formulation explain the
improved performance.

Impact of the auxiliary data We first examine
the value provided by the inclusion of the auxil-
iary data, focusing on the triplet English-French-
Romanian. To that end, we study four types of
training configurations: (1) Our implementation
of MASS (Song et al., 2019), with only English
and Romanian data. (2) No auxiliary parallel data
during pre-training and fine-tuning with only the
multi-way back-translation objective (3) No paral-
lel data during the pre-training phase but available
during the fine-tuning phase, allowing us to lever-
age the cross-translation terms. (4) Auxiliary paral-
lel data available during both the pre-training and
the fine-tuning phases of training. We also include
the numbers reported in the original MASS paper
(Song et al., 2019) as well as the best-performing
model of the WMT’16 Romanian-English news
translation task (Sennrich et al., 2016) and report
them in Table 2.

The results show that leveraging the auxiliary
data induces superior performance, even surpass-
ing the supervised scores of Sennrich et al. (2016).
These gains can manifest in either pre-training or

Configuration En´ Ro Ro´ En
Bilingual configurations
MASS (Song et al., 2019) 35.20 33.10
MASS (Our implementation) 34.14 31.78
M-UNMT configurations
No auxiliary data. 34.87 32.10
Auxiliary data in fine-tuning 36.57 34.32
Auxiliary data in both phases 37.4 35.75
Supervised
(Sennrich et al., 2016) 28.2 33.9
mBART (Liu et al., 2020) 38.5 39.9

Table 2: En ´ Ro and Ro ´ En BLEU scores on new-
stest2016 for different ways of leveraging multilingual-
ity and the auxiliary parallel data. M-UNMT refers to
our approach.

Languages En´ Ro Ro´ En
En,Fr,Ro 37.21 35.5
En,Es,Ro 37.38 35.21
En,Cs,Ro 36.37 34.15

Table 3: En´Ro and Ro´En BLEU scores for varying
choices of auxiliary language on WMT newstest2016.

fine-tuning, with superior performance when the
auxiliary data is available in both training phases.

Impact of the additional objectives Given the
strong performance of our model just after the pre-
training phase, it would be plausible that the gains
from multilinguality arise exclusively during the
pre-training phase. To demonstrate that this is
not the case, we investigate three types of fine-
tuning configurations: (1) Disregard the auxiliary
language and fine-tune using only back-translation
with English and Romanian data as per Song et al.
(2019). (2) Finetune with our multi-way back-
translation objective. (3) Finetune with our multi-
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Figure 3: Back-translation losses and BLEU scores for
the three configurations on our modified version of the
WMT’16 dev set.

way back-translation objective and leverage the
auxiliary parallel data through the cross-translation
terms. We name these configurations BT, M-BT,
and Full respectively. We plot the results of train-
ing for 100k steps in Figure 3, reporting the num-
bers on a modified version of the dev set from the
WMT’16 Romanian-English competition where all
samples with more than 100 tokens were removed.

In the Ro ´ En direction, the BLEU score of
the Full setup dominates the score of the other ap-
proaches. Furthermore, the performance of BT
decays after a few training steps. In the En´ Ro
direction, the BLEU score for the BT and M-BT
reach a plateau about 1 point under Full. Those
charts illustrate the positive effect of the cross-
translation terms. We contrast the BLEU curves
with the back-translation loss curves in Figure 3(c)
and 3(d). We see that even that though the BT
configuration achieves the lowest back-translation
loss, it does not attain the largest BLEU score. This
demonstrates that using back-translation for the de-
sired (source, target) pair alone is not the best task
for the fine-tuning phase. We see that the multi-
linguality helps, as adding more back-translation
terms with other languages involved improves the
BLEU score at the cost of higher back-translation
errors. From this viewpoint, the multilinguality
acts as a regularizer, as it does for traditional super-
vised machine translation.

Impact of the choice of auxiliary language In
this study, we examine the impact of the choice
of auxiliary language. We perform the same pre-
training and fine-tuning procedure using either

French, Spanish or Czech as the auxiliary language
for the English-Romanian pair, with relevant paral-
lel data of this auxiliary language into English. To
isolate the effect of the language choice, we fixed
the amount of monolingual data of the auxiliary
language to roughly 40 million examples, as well
as roughly 12.5 million lines of parallel data in the
X-English direction. Table 3 shows the results, in-
dicating that using French or Spanish yields similar
BLEU scores. Using Czech induces inferior per-
formance, demonstrating that choosing a suitable
auxiliary language plays an important role for opti-
mal performance. The configuration using Czech
still outperforms the baselines, showing the value
of having any auxiliary parallel data at all.

7 Conclusion and Future Work

In this work, we explored a simple multilingual
approach to UNMT and demonstrated that multilin-
guality and auxiliary parallel data offer quantifiable
gains over strong baselines. We hope to explore
massively multilingual unsupervised machine trans-
lation in the future.
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