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Abstract

In specific domains, such as procedural scien-
tific text, human labeled data for shallow se-
mantic parsing is especially limited and expen-
sive to create. Fortunately, such specific do-
mains often use rather formulaic writing, such
that the different ways of expressing relations
in a small number of grammatically similar
labeled sentences may provide high coverage
of semantic structures in the corpus, through
an appropriately rich similarity metric. In
light of this opportunity, this paper explores an
instance-based approach to the relation predic-
tion sub-task within shallow semantic parsing,
in which semantic labels from structurally sim-
ilar sentences in the training set are copied to
test sentences. Candidate similar sentences are
retrieved using SciBERT embeddings. For la-
bels where it is possible to copy from a simi-
lar sentence we employ an instance level copy
network, when this is not possible, a globally
shared parametric model is employed. Exper-
iments show our approach outperforms both
baseline and prior methods by 0.75 to 3 F1 ab-
solute in the Wet Lab Protocol Corpus and 1
F1 absolute in the Materials Science Procedu-
ral Text Corpus.

1 Introduction

Being able to represent natural language descrip-
tions of scientific experiments in a structured form
promises to allow tackling a range of challenges
from automating biomedical experimental proto-
cols (Kulkarni et al., 2018) to gaining materials
science insight by large scale mining of the lit-
erature (Mysore et al., 2019). To facilitate these
applications, recent work has created datasets an-
notated with sentence level semantic structure for
procedural scientific text from experimental biol-
ogy (Kulkarni et al., 2018) and materials science
(Mysore et al., 2019). However, these corpora, the
Wet Lab Protocols corpus (WLP) and the Materials

Query: “Centrifuge the sample at
14,000xg for 5 minutes.”
Neighbor: “Centrifuge supernatant at

12,000xg for 10 minutes.”
Query: “Add 700µl 70% ethanol to the
tube and invert several times to wash the
DNA pellet.”
Neighbor: “Add 200µl 70% ethanol

and invert the tube twice to wash the pellet.”

Figure 1: Example sentences from the WLP corpus,
and their nearest neighbours based on sentence repre-
sentations obtained from SCIBERT.

Science Procedural Text (MSPT) corpus remain
small. This motivates approaches to parsing that
are likely to generalize given limited labelled data.

We propose an instance-based edge-factored ap-
proach for the relation prediction sub-problem of
shallow semantic parsing. To predict a possible re-
lation between two entities, our approach retrieves
a set of sentences similar to the target sentence, and
learns to copy relations in those sentences to the
target sentence (Figure 1 shows some examples).

However, using only a nearest-neighbours ap-
proach over similar sentences poses a coverage
problem, as some edge labels may have zero in-
stances in the set of nearest neighbour sentences.
To address this, we employ a parametric approach
which can score a label when it is not possible to
copy that label from any of the neighbours. There-
fore, we combine a local, instance-level approach
with a global, parametric approach.

Our instance-based approach is motivated by
the observation that text in the WLP and MSPT
corpora, both of which describe experimental pro-
tocols, follow domain-specific writing conventions
(sometimes referred to as a sublanguage (Grish-
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man, 2001; Grishman and Kittredge, 1986)) result-
ing in text that is repetitive and semi-structured. In
such restricted domains we postulate that a low-
bias instance-level approach may generalize better
compared to a parametric approach, which is likely
to suffer from a lack of training data.

In evaluations of the proposed approach we find
the proposed local and global approach to outper-
form baseline methods based on parametric ap-
proaches by 0.75 F1 absolute in WLP and 1 F1
absolute in MSPT and prior work by 2.69 F1 abso-
lute (12.7 % error reduction) on the WLP corpus.
We also present first results for relation prediction
on the MSPT corpus. Code and data for our experi-
ments is available.1

2 Task Setup and Notation

Given a sentence X = 〈x1, . . . xi, . . . xL〉 from a
dataset D, let x denote tokens, and (m, t) entity
mentions and their entity types, where m ∈ C,
where C is the set of all possible contiguous token
spans in X .2 In a sentence, we denote the set of
all entity mentions with M . Given this, we focus
on the task of relation prediction which outputs a
set of directed edges E such that, e = (ms,md, r)
with e ∈ E ⊂ M × M , where ms,md denote
source and destination mentions, r ∈ {R ∪ ∅}
denotes a relation edge label,R denotes the set of
relation labels defined for the dataset and ∅ denotes
the absence of a relation.

3 Local and Global Model for Relation
Prediction

The proposed relation prediction approach is a
combination of two components: a local, instance-
based component which predicts the relation r of
one edge (ms,md) by copying a label from a set of
nearest neighbor edges en = (mns,mnd, rn) ∈ N ,
and a second component making a prediction from
a globally shared set of parameters. The set of
nearest neighbor edges N is obtained from sim-
ilar sentences in the training set (§3.2). This is
formulated as follows:

Plg(ri|ms,md, N) ={
1
Z e

El(ri,ms,md,N) if ri ∈ labels(N)
1
Z e

Eg(ri,ms,md) if ri /∈ labels(N)
(1)

1https://github.com/bajajahsaas/
knn-srl-procedural-text

2Non-contiguous entities in WLP (< 1%) are excluded.

Here, Eg represents the globally shared scor-
ing function and El the local scoring function,
here we drop additional arguments to these func-
tions for brevity. Z denotes the normalization
constant where: Z =

∑
rk∈labels(N) e

El(rk) +∑
rj /∈labels(N) e

Eg(rj). In computing the score
from El per label, an instance level score from
Ec(ri,ms,md, en) is aggregated for every la-
bel present in the neighbours N as: El =
logsumexplabel(en)=ri

Ec This represents making
a soft maximum selection of a neighbour edge most
similar to the test edge for a given label ri. Here,
labels(N) returns the set of labels present in N
and label(en), returns the neighbour edge label.

Equation 1 represents a model which is biased
first to copy edge labels from N and in the absence
of a label in N rely on a global model. This is
in contrast to a model which trades off local and
global models in a data dependent manner, the ap-
proach taken in the copy-generate model of See
et al. (2017). The proposed formulation imposes
an inductive bias in the model to copy edge labels
which we believe helps perform well in our small
data regime. In practice, our approach uses the
local model for more frequently occurring labels
and the global model for rare labels. Conceptu-
ally, this is once again, in contrast to the models
of See et al. (2017) and Gu et al. (2016) which use
a copy-model for long-tail or low-frequency phe-
nomena. We believe this contrast is reasonable due
to the formulaic nature of the text and the small
data regime. Here, a local instance-level approach
is able to generalize better by copying labels while
the global model suffers from a lack of training data
to learn the majority label patterns. Low frequency
labels would see comparable performance for the
global and instance level models. We confirm these
intuitions empirically in §4. Next we define the
neural-network parameterization of the model.

3.1 Edge Representation and Scoring
Function Parameterization

We define the instance level scoring function Ec

and Eg for the global model as follows:

Ec(en) = FFNR([eq; en; rn]) (2a)

eq = FFNe([ms;md; ts; td;ds,d])) (2b)

en = FFNe([mns;mnd; tns; tnd;dns,nd])
(2c)

Here, FFNR is a feed-forward network which re-
turns a scalar, eq the vector representations for the

https://github.com/bajajahsaas/knn-srl-procedural-text
https://github.com/bajajahsaas/knn-srl-procedural-text
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query/test edge, en the neighbour edge and rn the
neighbours relation. Network FFNe produces a
vector representations for eq or en. And, m repre-
sents a contextualized representation for the source
and destination entity mentions, t and d represents
a vector representations of the entity type and the
distance between the source and destination. The
parameters t, r and d are learned as model param-
eters and contextualized mention representations
are obtained from SCIBERT (Beltagy et al., 2019)
(word-pieces averaged) without fine-tuning. Next,
the global scoring function is formulated as:

Eg(ri) = FFNR([eq; eri ; ri]) (3)

While most notation remains the same as in Equa-
tion 2, eri represents a globally shared “prototype”
edge representation per label, learned as model pa-
rameters. Note that eri is only used in the global
model and is the same kind of object as en.

3.2 Training and Sentence Retrieval

The proposed approach is trained by maximizing
the log likelihood of the observed relations, r∗ in
the dataset: L =

∑
D
∑

E log Plg(r
∗)

In this work, we obtain the set of near-
est neighbour sentences to obtain N based
on representations obtained from SciBERT. Ev-
ery sentence is represented by the average of
the token (word-piece) representations: vX =
1
L

∑L
i=1 SciBERT(xi). K nearest neighbours of

the query sentence Xq were ranked by scores ob-
tained as: cosine sim(vXq,vXn). We set K = 5
at training time to obtain the set of edges, N . At
test time we use K = 40 and K = 20 for WLP
and MSPT respectively. In experiments, we work
with approximate nearest neighbours obtained from
the annoy package.3 Complete model hyper-
parameter and training details are presented in Ap-
pendix A.4.

4 Results and Analysis

We evaluate the proposed approach on two datasets
of procedural scientific text: the Materials Science
Procedural Text (MSPT) corpus and the Wet Lab
Protocols (WLP) corpus. In both corpora we focus
on the sentence level relation prediction task given
gold entity mention spans. The experimental setup
is detailed in Appendix A.1.

3https://github.com/spotify/annoy

4.1 Baselines

We compare the proposed approach to several base-
line approaches as well as prior work:

KULKARNI18: The best approach proposed in
prior work on the WLP corpus. This is an edge
factored parametric approach using lexical, depen-
dency and entity-type features.

COPYGEN: This is the copy-generate model
proposed in (See et al., 2017), modified for a rela-
tion prediction task. The method differs from ours
in trying to predict a copy probability, α using a
mixing network which trades off the copy/instance
or generate/global component in a data-dependent
manner. The model is detailed in Appendix A.2.1.

STRINGCOPY: This approach attempts to copy
the relation for a query edge (mqs,mqd) from
a neighbour edge (mns,mnd), from the nearest
neighbours N , first based on exact string matches
of the mention and next the entity type t. If this is
not possible it predicts ∅.

GLOBALMODEL: A parametric model ap-
proach without an instance learning component:
Pg(r|ms,md) = Softmax(FFNg(eq)). Since
this is the dominant approach for relation prediction
we believe it is the most reasonable relation predic-
tion model to compare against to demonstrate the
benefits of an instance learning approach.

LOCALMODEL: Instance based local approach
(Eq 1) without the global model.

4.2 Results

Overall results: Table 1 presents performance of
the proposed approach against a host of baseline
methods and prior work. From row I, we note
that the inductive bias to copy is better suited to
WLP than to MSPT, and that simple rule-based ap-
proaches don’t perform at any useful level. Also
note the proposed approach outperforms prior work
on WLP (II vs VI). Next, we note that the paramet-
ric and the instance based approach (IV, V) trade
off precision and recall as we would expect and
that the proposed approach (VI) outperforms both
these approaches. Also note the ablation of model
components provided in this result (IV, V, VI).

Next consider specifically the results on MSPT.
Note here, the high-recall result of COPYGEN. We
explain this as follows: First we note that given the
formulaic nature of the data, the proposed approach
is biased to have a higher precision given that it can
copy labels. The COPYGEN and GLOBALMODELS

lack this bias. The MSPT dataset has a sparser set

https://github.com/spotify/annoy
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WLP MSPT
ID Model Precision Recall F1 Precision Recall F1
I STRINGCOPY 6.99 35.45 11.68 1.42 15.71 2.61
II KULKARNI18 80.98 77.04 78.96 - - -
III COPYGEN 81.17 80.59 80.88 66.33 72.14 69.11
IV GLOBALMODEL 81.06 80.77 80.91 66.93 70.66 68.75
V LOCALMODEL 81.32 78.75 80.01 68.72 64.16 66.36
VI OUR METHOD 82.29 81.02 81.65 70.04 69.48 69.76

Table 1: Our methods compared against baseline approaches and prior work on the test sets of the Web Labs
Protocols (WLP) and Material Science Procedural Text (MSPT) corpora. Results assume access to gold entity
mentions and represent microaveraged performance.

of relations when considering all pairs of edges
between entity mentions (1916/45732 = 4.1%)
than WLP (8264/60338 = 13.6%). To perform
well on a sparsely labelled dataset a model must be
biased for precision (a conservative model biased
for precision would label the true-positives and
given the sparsity, have high recall and overall F1),
since the COPYGEN/GLOBALMODELS models are
not biased for precision they make predictions more
liberally leading to higher recalls but see significant
hits to precision, in contrast to the proposed method.
Finally, we note the gap between CopyGen and
GlobalModel in MSPT and attribute it to training
variance given the smaller size of MSPT.

Finally, we also compare to an alternative data-
dependent method for combining a parametric and
instance based approach (III vs VI) from See et al.
(2017). Our approach with a stronger inductive
bias to copy relations outperforms this. We also
note that this approach performs similarly to GLOB-
ALMODEL (III vs IV). Examination of the pre-
dicted copy-probability (α) on development exam-
ples in COPYGEN shows these values to be very
small (MSPT mean: 10−5, WLP mean: 10−5) con-
firming that the model always chooses to “generate”
(i.e. use a parametric model) and lacks sufficient
inductive bias to copy in our datasets. In contrast,
in OUR METHOD the local model makes edge pre-
dictions in 1852 of 1916 edges (96%) in MSPT and
8131 of 8264 edges (98%) in WLP development
sets. Confirming the intended and significant invo-
cation of the local model in the proposed approach.

Breakdown by label: As discussed in §3, given
our small data regime, we believe a model with
a simple inductive bias such as the local model
generalizes better while the global model suffers
a lack of training data to learn the majority label
patterns, while in the case of very low frequency

Data % 5 10 20 50 100

WLP
GM 69.18 72.72 76.78 78.76 80.91
OM 70.32 73.64 77.12 79.24 81.65

MSPT
GM 48.87 57.96 61.88 65.83 68.75
OM 50.8 59.17 60.82 66.42 69.76

Table 2: Performance of GLOBALMODEL (GM) com-
pared against the OUR METHOD (OM) with varying
amounts of training data on test F1.

labels the global component would perform at par
with a simple parametric approach. We see this
behaviour in Table 3. While this behaviour re-
verses the trend of methodologically similar in-
stance based approaches (See et al., 2017; Snell
et al., 2017; Khandelwal et al., 2020), we believe it
to be reasonable specifically due to the formulaic
writing in our corpora.

Varying training data: Finally, in Table 2
we note that the the proposed approach outper-
forms the parametric approach, GLOBALMODEL,
at nearly all levels of training data. Demonstrat-
ing that the gains from copying labels from similar
sentences in the training data hold out even as the
pool of sentences to copy from shrinks, once again
demonstrating the advantage of a model leveraging
formulaic writing.

5 Related Work

Instance-based learning approaches have been ap-
plied to a rage number of information extrac-
tion tasks such as Semantic Role Labeling (SRL),
Named Entity Recognition (NER), and Part of
Speech (POS) tagging. Akbik and Li (2016) and
Wiseman and Stratos (2019) presents closest re-
lated work in terms of the task instance level meth-
ods are applied to. Akbik and Li (2016) apply a
nearest-neighbors model for the SRL tasks of pred-
icate and argument labeling based on pre-defined
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WLP Acts-on Using Mod-Link Meronym Creates Count

Count 2589 1015 708 345 93 80
OUR METHOD 86.51 72.34 88.72 53.66 23.44 82.76

GLOBALMODEL 85.71 70.75 87.84 58.06 35.48 81.38
MSPT Participant Amount Precursor Condition Target Type

Count 395 375 196 135 84 33
OUR METHOD 64.54 78.42 54.16 29.91 51.46 76.67

GLOBALMODEL 61.09 77.53 58.99 20.1 50.85 80

Table 3: Per label performance for OUR METHOD compared against the GLOBAL MODEL on a random subset of
labels in each dataset sorted by test set count/frequency. Total label instances, WLP: 8563, MSPT: 3119

feature representations of predicate-argument pairs;
our work presents an instance level approach for the
argument-labeling sub-task. Wiseman and Stratos
(2019) applied instance-based methods to the se-
quence labeling tasks of NER and POS tagging,
copying nearest neighbor labels from a set of can-
didate sentences as in the current work but applied
to text spans. More generally, instance-based meth-
ods have also proven useful for language model-
ing (Khandelwal et al., 2020), knowledge base rea-
soning tasks (Das et al., 2020), and few-shot classi-
fication (Snell et al., 2017; Sung et al., 2018) and
regression (Quinlan, 1993) problems.

Works in text generation such as summariza-
tion (See et al., 2017; Gu et al., 2016) have also
incorporated “copy” mechanisms, pointing at long-
tail phenomena from text to be summarized or
translated rather than directly predicting them.
These methods bear close methodological similar-
ity to the proposed approach while differing in hav-
ing a weaker inductive bias to copy labels. Also
similar, are retrieve-and-edit approaches which
have been applied instance based methods for gen-
erating complex structured outputs and text genera-
tion (Hashimoto et al., 2018; Guu et al., 2018).

6 Conclusion

We propose an edge factored instance based ap-
proach to the relation prediction sub-task within
shallow semantic parsing for procedural scientific
text. Our approach leverages the highly formu-
laic writing of procedural scientific text to achieve
better generalization than baseline methods with
weaker inductive biases to copy and prior ap-
proaches which represent parametric approaches
on two corpora of English scientific text. While our
work has only looked at predicting relations in an
edge factored manner future work might explore
ways of predicting higher order groups of edges.

Other extensions might consider jointly predicting
spans and edges as in Akbik and Li (2016). Future
work might also consider questions of characteriz-
ing and measuring formulaicity in text and how a
range of information extraction tasks may be tai-
lored to these texts. Finally, our approach relies
on a static retrieval of sentences, there may also be
potential for this aspect to be improved upon with
a dynamic retrieval model trained along side the
label prediction models similar to Guu et al. (2020),
we expect this would be feasible particularly given
the small dataset sizes in this domain.
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A Appendix

A.1 Experimental Setup
WLP: We perform experiments with the splits pro-
vided by Kulkarni et al. (2018). In processing the
dataset, we also exclude the “Misc-Link” as recom-
mended, and cross sentence relations and relations
with non-contiguous entities (< 0.1%).
MSPT: We use data and sfex splits provided as
the alongside Mysore et al. (2019).4 A small num-
ber of relations labelled across sentences (< 1%)
were removed.

A.2 Baseline Descriptions
A.2.1 Copy-Generate Based Relation

Prediction
The COPYGEN forms one of our baseline ap-
proaches and bears similarity to the pointer-
generator network proposed by See et al. (2017)
for text summarization.

Here one component attempts to predict edges
given entity mentions ms,md ∈ M and an-
other which attempts to copy an edge relation
label for (ms,md) from a set of edges, en =
(mns,mnd, rn) ∈ N obtained from nearest neigh-
bour sentences to the current sentence from the
training set. This model is formulated as follows:

Pcg(ri|ms,md, N) = αPcopy(ri|ms,md, N)

+(1− α) Pgen(ri|ms,md)

α = σ(Em(ms,md, N))

Here, α ∈ [0, 1] denotes a mixing factor for the
copy and generate models, σ denotes the sigmoid
function, Em denotes the mixing network and Pcg,
Pcopy and Pgen denote the copy-generate, copy and
generate models respectively. These individual
models are defined as follows:

Pgen(ri|ms,md) =
eEg(ri,ms,md)∑|R|+1

j=1 eEg(rj ,ms,md)

Pcopy(ri|ms,md, N) =
∑

rnk=ri

Patt(ak|ms,md, N)

Patt(ak|ms,md, N) =
eEc(ak,ms,md,N)∑|N |
k=1 e

Ec(ak,ms,md,N)

Here, Eg and Ec denote the generate and copy
scoring functions respectively, and Patt denotes an
attention distribution over edges (N ) from the near-
est neighbour sentences. While Eg and Ec are

4https://github.com/olivettigroup/
annotated-materials-syntheses

formulated similar to those in Section 3.1, Em is
formulated as follows:

α = FFNm([eg;N])

N =

|N |∑
k=1

Patt(ak)enk

Here, FFNm yields scalar mixing scores based on
the current edge representation eg and a represen-
tation of the nearest neighbor set N obtained as a
attention weighted sum of the neighbor edge repre-
sentations.

A.3 Extended Results
While Table 1 presented test set results we include
performance on the development set in Table 4.

A.4 Hyperparameters and Compute Details
Table 5 shows the choice of hyper parameters.
We did not tune any hyperparameters other than
the number of nearest neighbors. We evalu-
ated the models for the following values of K:
{5, 10, 15, 20, 30, 40, 50} and chose the K with the
best validation set F1 score for each dataset. Dur-
ing training, we only use K = 5. We ran experi-
ments on server nodes with 256G RAM on a single
Nividia TITAN X GPU. Training models on the
MSPT and WLP corpora took about 3 and 3-5
hours respectively.

https://github.com/olivettigroup/annotated-materials-syntheses
https://github.com/olivettigroup/annotated-materials-syntheses
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WLP MSPT
Precision Recall F1 Precision Recall F1

STRINGCOPY 5.81 31.23 9.80 1.31 14.77 2.40
COPYGEN 80.83 79.95 80.39 66.45 72.49 69.34
GLOBALMODEL 80.75 79.06 79.9 67.22 69.95 68.56
LOCALMODEL 80.76 76.12 78.38 67.24 63.15 65.13
OUR METHOD 81.06 80.77 80.91 70.3 68.02 69.14

Table 4: Our methods compared against baseline approaches and prior work on the validation sets of the Web Labs
Protocols (WLP) and Material Science Procedural Text (MSPT) corpora. Results assume access to gold entity
mentions and represent microaveraged performance.

Parameter WLP MSPT
FFNR

∗∗ 768× 512× 256× 1 512× 256× 128× 1
FFNe

∗∗ 1920× 512× 256× 256 1920× 256× 128× 128
FFNm

∗∗ 256× 256× 126× 64× 1 128× 256× 126× 64× 1
FFNg

∗∗ 256× 512× 256× 14 128× 256× 128× 19
Distance Feature Buckets∗ 11 10

Number of Neighbors (Training) 5 5
Number of Neighbors (Testing) 40 20

Distance Feature Size (d) 128 128
Type Embedding Size (t) 128 128

Relation Embedding Size (r) 256 256
Learning rate 1× 10−4 1× 10−4

Weight decay 1× 10−4 1× 10−4

Optimizer ADAM ADAM

Table 5: Hyperparameter settings for models. ∗Number of tokens between source and destination entities are
bucketed. We take the range of distances up to the 90th percentile and divide it into equal buckets. Instances with
greater distance than this range fall into the largest bucket. ∗∗ All feed forward networks use ReLU non-linearities
between layers.


