
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2869–2876
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2869

FENAS: Flexible and Expressive Neural Architecture Search

Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill

{ram, mbansal}@cs.unc.edu

Abstract

Architecture search is the automatic process
of designing the model or cell structure that
is optimal for the given dataset or task. Re-
cently, this approach has shown good im-
provements in terms of performance (tested on
language modeling and image classification)
with reasonable training speed using a weight
sharing-based approach called Efficient Neu-
ral Architecture Search (ENAS). In this work,
we propose a novel architecture search algo-
rithm called Flexible and Expressible Neural
Architecture Search (FENAS), with more flex-
ible and expressible search space than ENAS,
in terms of more activation functions, input
edges, and atomic operations. Also, our FE-
NAS approach is able to reproduce the well-
known LSTM and GRU architectures (unlike
ENAS), and is also able to initialize with them
for finding architectures more efficiently. We
explore this extended search space via evolu-
tionary search and show that FENAS performs
significantly better on several popular text clas-
sification tasks and performs similar to ENAS
on standard language model benchmark. Fur-
ther, we present ablations and analyses on our
FENAS approach.

1 Introduction

Architecture search enables automatic ways of find-
ing the best model architecture and cell structures
for the given task or dataset, as opposed to the
traditional approach of manually tuning among dif-
ferent architecture choices. Recently, this idea has
been successfully applied to the tasks of language
modeling and image classification (Zoph and Le,
2017; Zoph et al., 2018; Cai et al., 2018; Liu et al.,
2018a,b). The first approach of architecture search
involved an RNN controller which samples a model
architecture and uses the validation performance
of this architecture trained on the given dataset as
feedback (or reward) to sample the next architec-

1

3

2

h[t]

0

x[t]

h[t-1]

tanh
(1)

ReLU
(2)

add
(3)

h[t-1]x[t]

x[t]

tanh ReLU

tanh

1

1

0

0

. . .

Node 1 Node 2

<start>1

3

2
x[t]

h[t-1]

0

h[t] h[t]

h[t-1]

(a) (b) (c)

Figure 1: An example showing the recurrent cell in FE-
NAS search space. (a) The DAG represents a recurrent
cell with the red edges representing the flow of infor-
mation; (b) The recurrent cell constructed from (a).

ture. However, this process is computationally very
expensive, making it infeasible to run on a single
GPU in a reasonable amount of time. Some recent
attempts have made architecture search more com-
putationally feasible (Negrinho and Gordon, 2017;
Baker et al., 2017), with further performance im-
provements by Pham et al. (2018) who introduced
Efficient Neural Architecture Search (ENAS) and
achieved strong results on language modeling and
image classification tasks.

In this work, we present a new architecture
search approach called Flexible and Expressible
Neural Architecture Search (FENAS) with less re-
strictive and more flexible search space than ENAS.
FENAS search space has more number of acti-
vation functions (e.g., skip-based tanh, ReLU)
and new atomic-level operations (e.g., addition,
element-wise multiplication), as shown in Fig. 1.
Importantly, unlike ENAS, FENAS can represent
previous well-known human-designed architec-
tures such as the Gated Recurrent Unit (GRU) and
Long Short-Term Memory (LSTM) in its search
space, allowing it to have flexible number of input
edges. Unlike ENAS, we do not use weight-sharing
strategy during the architecture search, but instead
use evolutionary search (Real et al., 2019) and ini-
tialize the population with known human-designed
RNN architectures to search the space efficiently.

We conduct several experiments on a standard
language modeling benchmark (PTB) and text clas-
sification tasks from GLUE benchmark (Wang



2870

et al., 2019). To the best of our knowledge, we
are the first ones to compare NAS methods on the
full GLUE benchmark. Comparing our FENAS
approach with the previous NAS approaches, FE-
NAS performs similarly on PTB and significantly
better on several downstream GLUE tasks. Fi-
nally, we provide various advantages of FENAS
over ENAS, and also analyze the learned FENAS
cell structure for PTB, e.g., learned cell has fewer
skip-connections and less network complexity.

2 Related Work

Neural architecture search (NAS) (Zoph and Le,
2017) has been shown to achieve better perfor-
mance than the human-designed deep networks for
image classification (Liu et al., 2018b; Ahmed and
Torresani, 2018; Chen et al., 2018; Liu et al., 2019;
Ying et al., 2019; Hu et al., 2019; Cai et al., 2019;
Xie et al., 2019) and language modeling (Zoph and
Le, 2017; Pham et al., 2018; Liu et al., 2019; Cai
et al., 2018; Li and Talwalkar, 2019). Several sam-
pling strategies have been explored for finding the
NAS optimal cell in the context of reinforcement
learning (Zoph and Le, 2017; Zoph et al., 2018;
Pham et al., 2018), evolutionary algorithms (Xie
and Yuille, 2017; Real et al., 2017; Lu et al., 2019;
Miikkulainen et al., 2019; Real et al., 2019; So
et al., 2019), and performance predictors (Rusu
et al., 2016).

Early NAS approach (Zoph and Le, 2017) took
many days and thousands of GPU hours to train on
simple datasets like PTB (Marcus et al., 1994) and
CIFAR-10 (Krizhevsky and Hinton, 2009). Re-
cently, a weight-sharing strategy among search
space parameters has been proposed by Pham et al.
(2018), which reduced resource requirements to a
few GPU days. Later, various variations of this ap-
proach have been proposed, e.g., Liu et al. (2019)
replaced RL with gradient descent. Li and Tal-
walkar (2019) and Sciuto et al. (2020) showed that
a simple random search approach can give best
results. In our work, we propose a new approach
with a better search space making NAS flexible and
expressible in comparison to Pham et al. (2018).

3 FENAS Method Details

Similar to ENAS, our method has two stages. In
stage-1, we search for an optimal cell, and in stage-
2, we train a model using the optimal cell structure.
For the rest of this section, we describe our method
and the search approach for learning optimal cell.

3.1 Search Space
ENAS’s search space is restrictive, i.e., every node
has only one input from the previous nodes (we
refer to Pham et al. (2018) for more details). In our
work, we introduce Flexible and Expressive Neural
Architecture Search (FENAS), which assumes that
every node has one or two inputs from the previous
nodes and also has three levels of operational func-
tions (details in next paragraph), and hence is more
flexible and expressible than the ENAS. Next, we
describe the FENAS cell in detail.

At a structural level, FENAS is similar to
ENAS cell, where it has edges that represent
weights and nodes which represent functions (see
Fig. 1). Unlike the ENAS cell, FENAS has
more number of node functions which are divided
into three types: (1) atomic functions (addition,
subtraction, and element-wise-product); (2) ac-
tivation functions (tanh, ReLU, identity, and
sigmoid); and (3) skip-based activation functions
(tanh-skip, ReLU-skip, and sigmoid-skip). In
comparison to ENAS, atomic functions and skip
connection-based activation functions are new in
FENAS. Note that ENAS uses skip connections
at every computational node, whereas we allow
FENAS to self-learn which computational nodes
require skip connections. Edge weights are used
when the nodes choose skip-activation functions.
Nodes with activation functions can choose to have
edge weights or not (means just identity function);
in other cases, edge weights are replaced with the
identity function (these are green edges in Fig 1(b)).
Let x(t) and h(t− 1) be the inputs to the FENAS
cell at time step t, and h(t) is the corresponding
output from the FENAS cell. Let htk be the node k
output at time step t of the cell. Let hti and htj be
the outputs of nodes i and j, where i,j < k, then
the node functions are described as follows:

• addition (+): htk = hti + htj
• subtraction (−): htk = hti − htj
• element-wise-product (�): htk = hti � htj
• activations:
htk = fa(wi→kh

t
i + wj→kh

t
j + bi,j→k)

• activations with no edge weights:
htk = fa(h

t
i + htj)

• skip-activations:
ĥtk = fa(wi→kh

t
i + wj→kh

t
j + bi,j→k)

ctk = sigmoid(wc
i→kh

t
i + wc

j→kh
t
j + bci,j→k)

htk = (1− ctk) · (hti + htj) + ctk · ĥtk

where, fa is any of the four activation func-



2871

x[t] h[t-1]

σ
(2)

σ
(1)

mul
(4)

h[t]

sub

add

0

identity
(3)

identity
(5)

mul
(7)

(8)

mul
(9)

(10)

(6)
tanh

(a) GRU cell

x[t]0 h[t-1]c[t-1]

σ
(1) (4)

σ
(2)

σ
(3)

mul
(5)

mul
(6)

add
(7)

mul
(9)

h[t]c[t]

tanh
(8)

tanh

(b) LSTM cell

Figure 2: GRU/LSTM represented in FENAS space.

tions (ReLU, tanh, identity, sigmoid), and wi→k

(wc
i→k) and wj→k (wc

j→k) are the edge weights
(skip-weights) from nodes i and j, respectively to
node k. FENAS also has an additional ‘zero’ node
so as to allow single input to the node. Hence, every
node has one or two input parent nodes (unlike one
parent node in ENAS). Architectures with more
than two input nodes can be derived by increas-
ing the node count. Also, FENAS architecture is
flexible such that its search space contains known
architectures. For example, Fig. 2a presents the
GRU cell represented in the FENAS search space,
where the inputs are x(t) and h(t− 1). FENAS’s
search space requires 10 computational nodes to
represent the GRU cell. Note that even though
ENAS has two inputs, it cannot represent GRU cell
in its search space because of the skip connections
and single input to its computational nodes, sug-
gesting that it has a restrictive search space, and
our FENAS approach has more expressive power
than ENAS. FENAS can also represent the popular
LSTM cell (Fig. 2b) by extending to 3-input nodes
(x(t), h(t−1), and c(t−1)), and two outputs (h(t)
and c(t)). For this, we allow our approach to con-
sider three inputs and also sample a computational
node at the end which represents the output c(t).

3.2 Evolutionary Search for FENAS

In this work, we use evolutionary search (ES) algo-
rithm to find the optimal cell. For this, we follow
the approach proposed in the previous work (Real
et al., 2019). During the ES, a population of
P trained models are kept throughout the search
phase, where initially, the population is initialized
with random architectures. In this setup, all the
architectures that are possible in the FENAS search
space are possible and equally likely. At each cycle,
we sample S random models from the population
where each of them is drawn uniformly at random
with replacement. The model with the highest val-

idation fitness in these S models is considered as
the next parent. A new architecture is constructed
which is a mutation of the selected parent archi-
tecture, we call it the child model. In FENAS, the
mutation is a simple random change in one of the
computational node operation. This child architec-
ture is trained, evaluated, and added to the popula-
tion. In order to keep the population size fixed, we
remove the oldest model in the population when
a new child model is added, this process is other-
wise called as aging evolution. Real et al. (2019)
suggested that aging evolution approach allows to
explore the search space better by not focusing on
good models too early. After the end of the cycles,
the architecture for the best trained model during
the whole search process is selected as the optimal.

Another advantage of ES with FENAS is that it
has human-designed cells (LSTM and GRU) in its
search space, and we can use these architectures as
one of the models in the initial population of the ES,
to start from a better state (experimental validation
in Sec. 5.1). We also tried RL based weight-sharing
(WS) strategy similar to ENAS during stage-1, but
did not get expected results,1 partly due to the rea-
soning discussed in Sciuto et al. (2020) that even
though ENAS is computationally very efficient, its
WS approach does not converge to local optima.

4 Experimental Setup

4.1 Datasets
Penn Treebank. The Penn Treebank (PTB) is a
standard English language modeling benchmark
dataset (Marcus et al., 1994). We use the stan-
dard pre-processing steps following Zaremba et al.
(2014); Pham et al. (2018), which include lower-
case, removing numbers and punctuation. The vo-
cabulary size is capped at 10,000 unique tokens.
GLUE Tasks. We choose all the 9 tasks from
GLUE benchmark (Wang et al., 2019):2 QNLI (Ra-
jpurkar et al., 2016), RTE (Dagan et al., 2005; Bar-
Haim et al., 2006; Giampiccolo et al., 2007; Ben-
tivogli et al., 2009), MNLI (Williams et al., 2018),
WNLI (Levesque et al., 2012), CoLA (Warstadt
et al., 2019), SST-2 (Socher et al., 2013), STS-
B (Cer et al., 2017), MRPC (Dolan and Brockett,
2005), and QQP.3 We use the standard splits from

1We achieved a test perplexity score of 59.2 with RL search
on PTB, while our evolution search (ES) based approach
achieved a better test perplexity score of 56.8 (see Table 1).

2https://gluebenchmark.com/tasks
3https://www.quora.com/q/quoradata/

First-Quora-Dataset-Release-Question-Pairs

https://gluebenchmark.com/tasks
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs


2872

Architecture Param
(million)

Valid
PPL

Test
PPL

LSTM+DropConnect (2018) 24 60.7 58.8
LSTM+MoS (2018) 22 58.1 56.0

NAS (2017) 25 N/A 64.0
ENAS (2018) 24 N/A 55.8
ENAS? (2018) 24 68.3 63.1
ENAS† (2019) 24 60.8 58.6
DARTS (2019) 23 58.1 55.7
Random Search WS (2019) 23 57.8 55.5
FENAS (ours) 24 58.9 56.8

Table 1: Results on Penn Treebank (PTB). ? are the re-
sults obtained using the code publicly released by Pham
et al. (2018). †: results obtained by Liu et al. (2019).

GLUE benchmark (Wang et al., 2019).

4.2 Metrics
For the language modeling tasks, we report the
perplexity (PPL) as the performance measure.
For GLUE tasks, we report the accuracy for
MNLI, QNLI, RTE, WNLI, and SST-2, accu-
racy and F1 for MRPC and QQP, Matthews cor-
relation (Matthews, 1975) for CoLA, and Pear-
son/Spearman correlation for STS-B.4

4.3 Training Details
In all our experiments, our hyperparameter choices
are based on validation perplexity for the language
modeling tasks and based on validation accuracy
for the text classification tasks. We do not perform
any extensive hyperparameter search. We manually
tune only dropout in the range [0.1, 0.5] for very
few tasks. We use 9 computational nodes in all of
our FENAS models. In stage-1, for both tasks, we
use evolution search algorithm (Real et al., 2019)
with a population size of 100, sample size of 25,
and a total of 5000 cycles for learning the FENAS
optimal cell structure.
Language Models. In stage-1 evolution search,
the child model hidden size and word embedding
size are set to 300. We train each child model
for 20 epochs with a learning rate of 0.001 using
Adam optimizer (Kingma and Ba, 2015). We clip
the norm of the gradient at 0.25, use l2 regulariza-
tion weighted by 8e-6, tie word embeddings and
softmax weights (Inan et al., 2017), and use vari-
ational dropout (Gal and Ghahramani, 2016) for
both stages. In stage-2, we use a hidden size of 900
and word embedding size of 900, and other settings
such as stage-2 optimizer, learning rate, dropout
are same as in previous work (Pham et al., 2018).

4https://www.scipy.org/index.html

x[
t]

0
h[
t-
1]

c[
t-
1]

σ
σ

m
ul

m
ul

ad
d m
ul

h[
t]

c[
t]

ta
nh
-s

ta
nh
-s

ta
nh
-s

Figure 3: Learned cell structure on PTB dataset.

Text Classification Models. All the baseline mod-
els on the GLUE benchmark have same settings
apart from the vocabulary size. Each model has
a two layer bidirectional LSTM-RNN with a hid-
den size of 1500, and a word embedding size of
300 which are initialized with glove embeddings.
The classifier is an MLP with a hidden size of 256.
In all our models, we use Adam optimizer with a
learning rate of 0.0001 and a dropout of 0.2, and
keep the maximum length of RNN to 50. We use a
batch size of 64. We refer to Appendix A for more
training details on FENAS and ENAS approaches.

5 Results and Analysis

5.1 Language Model on Penn Treebank

Table 1 presents the performance of various
state-of-the-art language models (both manually-
designed LSTM-based and architecture search
based models) on the standard Penn Treebank
(PTB) dataset. ENAS, DARTS, and Random
Search WS models use the same weight-sharing
strategy with different search approach in the stage-
1 to learn the optimal cell. Our FENAS method
performs similar w.r.t. these ENAS models.

Computational Complexity. FENAS search
space is larger than ENAS because of more activa-
tion functions and more inputs to the computational
nodes. Stage-1 search process for learning the opti-
mal cell takes 8 and 0.5 GPU days on Nvidia Tesla
P100s for FENAS and ENAS, respectively. For
stage-2, the training time of FENAS is similar to
the ENAS approach.

Random Search Baseline. It has been shown
that an architecture sampled uniformly from ENAS
search space can also perform reasonably well (Li
and Talwalkar, 2019; Liu et al., 2019). In fact, a
random search with weight-sharing approach per-
formed best on PTB (see Table 1). For FENAS
random baseline, we uniformly sampled 5 random
architectures from FENAS search space and trained
them on PTB. The average perplexity of these 5 ar-
chitectures is 126.67, which is substantially lower

https://www.scipy.org/index.html


2873

Architecture CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI AVG

LSTM 13.9 86.5 77.7 86.7 72.9 66.7 77.0 56.8 56.3 66.1
ENAS-RL 13.8 86.4 76.2 87.1 76.8 67.1 78.7 58.5 56.3 66.8
ENAS-RS 15.0 87.1 76.0 85.7 76.2 67.5 78.3 58.5 56.3 66.7
FENAS 17.5 87.2 78.4 87.1 77.8 67.4 79.2 59.9 57.7 68.0

Table 2: Results on GLUE task development sets. For MRPC and QQP, we report accuracy and F1. For STS-B,
we report Pearson correlation. For CoLA, we report Matthews correlation. For all other tasks we report accuracy.

Architecture CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE WNLI AVG

LSTM 17.1 86.9 71.0/78.9 83.2/62.7 67.8/65.6 64.9/65.8 77.4 52.1 65.1 64.3
ENAS-RL 14.7 84.1 74.5/82.6 83.8/63.0 72.6/70.7 66.0/66.6 78.5 51.0 65.1 64.8
ENAS-RS 16.7 85.6 73.7/81.6 81.9/61.5 72.5/70.4 66.9/67.5 78.8 53.1 65.1 65.3
FENAS 16.4 86.6 71.0/78.9 84.9/63.7 73.2/71.0 66.6/66.0 79.1 52.7 65.1 65.6

Table 3: Results on GLUE task test sets, obtained from https://gluebenchmark.com/.

w.r.t. best learned cell, emphasizing the importance
of having a good search algorithm for FENAS.

LSTM-RNN Initialization. In all our models,
we use LSTM cell in the initial population of the
evolutionary search. To show the advantage of
including human-designed cells, we perform an ad-
ditional experiment where we do not include the
LSTM cell, and observe that the search process is
24% slower in finding the best architecture.

Learned Cell Structure. Fig. 3 presents our
learned FENAS cell on PTB. This cell has some
similar computational nodes as LSTM cell. Inter-
estingly, it does not have any ReLU activation func-
tion, unlike ENAS cell (Pham et al., 2018). Also,
FENAS cell uses skip connection only 2 times
(nodes with ‘-s’), and have roughly equal num-
ber of edges with and without learnable weights,
accounting for its low network complexity.

5.2 Text Classification on GLUE Tasks

We move beyond language modeling tasks for NAS
research and present novel results for several NAS
methods on the full set of more realistic down-
stream GLUE benchmark tasks. We use the BiL-
STM model as discussed in Wang et al. (2019) for
all GLUE tasks, and do not include any attention
methods or external contextual information to fairly
only evaluate the influence of cell structures on
model’s performance. We replace the LSTM-RNN
cell in this BiLSTM model with ENAS and FENAS
cells to fairly compare all of them. Table 2 & 3
present the performance of LSTM baseline, and our
implementations of ENAS with RL search (ENAS-
RL) (Pham et al., 2018) and ENAS with random
search (ENAS-RS) (Li and Talwalkar, 2019), and

our FENAS on 9 GLUE tasks.5 We observe that
FENAS significantly outperforms ENAS and the
LSTM baseline on many GLUE datasets.6 To the
best of our knowledge, this is the first detailed com-
parison of diverse NAS methods on the full GLUE
benchmark and we hope this will encourage further
comparison by future work.

Computational Complexity. The search time
varies across GLUE tasks, but the average search
time is 4 and 0.8 GPU days on Nvidia Tesla P100s
for FENAS and ENAS models, respectively.

6 Conclusion

We presented a new architecture search algorithm
(FENAS) which has more activation functions and
more inputs to the computational nodes than the
previous best algorithm (ENAS), thus achieving
more flexible and expressible architectures. Our
FENAS approach is also able to reproduce the well-
known LSTM and GRU architectures, and is also
able to initialize with them for finding architec-
tures more efficiently. We also present the first
detailed comparison of several NAS methods on
the full GLUE benchmark, and achieve significant
improvements on several text classification tasks.

Acknowledgments

We thank the reviewers for their helpful com-
ments. This work was supported by DARPA
YFA17-D17AP00022, ONR Grant N00014-18-1-
2871, Amazon ML Research Award, and Microsoft
PhD Fellowship. The views in the article are those
of the authors and not of the funding agency.

5In terms of parameters, FENAS model size is always
lower than ENAS and baseline, more details in Appendix A.

6FENAS vs. non-FENAS difference is stat. signif. with
p<0.05 for CoLA, STS-B, QNLI, and RTE, based on boot-
strap test (Noreen, 1989; Efron and Tibshirani, 1994).

https://gluebenchmark.com/


2874

References
Karim Ahmed and Lorenzo Torresani. 2018. Maskcon-

nect: Connectivity learning by gradient descent. In
Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 349–365.

Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. 2017. Designing neural network architec-
tures using reinforcement learning. In ICLR.

Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro,
Danilo Giampiccolo, Bernardo Magnini, and Idan
Szpektor. 2006. The second PASCAL recognising
textual entailment challenge. In Proceedings of the
second PASCAL challenges workshop on recognis-
ing textual entailment, pages 6–4. Venice.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo
Giampiccolo. 2009. The fifth pascal recognizing tex-
tual entailment challenge. In TAC.

Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and
Jun Wang. 2018. Efficient architecture search by net-
work transformation. In AAAI.

Han Cai, Ligeng Zhu, and Song Han. 2019. Proxyless-
nas: Direct neural architecture search on target task
and hardware. In ICLR.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-
Gazpio, and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity-multilingual and
cross-lingual focused evaluation. In SemEval work-
shop at ACL.

Liang-Chieh Chen, Maxwell Collins, Yukun Zhu,
George Papandreou, Barret Zoph, Florian Schroff,
Hartwig Adam, and Jon Shlens. 2018. Searching
for efficient multi-scale architectures for dense im-
age prediction. In Advances in Neural Information
Processing Systems, pages 8699–8710.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third pascal recognizing
textual entailment challenge. In Proceedings of the
ACL-PASCAL workshop on textual entailment and
paraphrasing, pages 1–9. Association for Computa-
tional Linguistics.

Hanzhang Hu, John Langford, Rich Caruana, Saura-
jit Mukherjee, Eric J Horvitz, and Debadeepta Dey.
2019. Efficient forward architecture search. In Ad-
vances in Neural Information Processing Systems,
pages 10122–10131.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2017. Tying word vectors and word classifiers: A
loss framework for language modeling. In ICLR.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning
multiple layers of features from tiny images. Tech-
nical report, Citeseer.

Hector Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. In
Thirteenth International Conference on the Princi-
ples of Knowledge Representation and Reasoning.

Liam Li and Ameet Talwalkar. 2019. Random search
and reproducibility for neural architecture search. In
Conference on Uncertainty in Artificial Intelligence.

Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua,
Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,
and Kevin Murphy. 2018a. Progressive neural archi-
tecture search. In ECCV.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisan-
tha Fernando, and Koray Kavukcuoglu. 2018b. Hi-
erarchical representations for efficient architecture
search. In CVPR.

Hanxiao Liu, Karen Simonyan, and Yiming Yang.
2019. DARTS: Differentiable architecture search.
In ICLR.

Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh
Dhebar, Kalyanmoy Deb, Erik Goodman, and Wolf-
gang Banzhaf. 2019. NSGA-NET: a multi-objective
genetic algorithm for neural architecture search. In
GECCO.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The penn treebank: annotating predicate
argument structure. In Proceedings of the workshop
on Human Language Technology, pages 114–119.
Association for Computational Linguistics.

Brian W Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-
Protein Structure, 405(2):442–451.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2018. Regularizing and optimizing LSTM
language models. In ICLR.

Risto Miikkulainen, Jason Liang, Elliot Meyerson,
Aditya Rawal, Daniel Fink, Olivier Francon, Bala
Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel



2875

Duffy, et al. 2019. Evolving deep neural networks.
In Artificial Intelligence in the Age of Neural Net-
works and Brain Computing, pages 293–312. Else-
vier.

Renato Negrinho and Geoff Gordon. 2017. Deeparchi-
tect: Automatically designing and training deep ar-
chitectures. In CVPR.

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le,
and Jeff Dean. 2018. Efficient neural architecture
search via parameter sharing. In ICML.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In ACL.

Esteban Real, Alok Aggarwal, Yanping Huang, and
Quoc V Le. 2019. Regularized evolution for im-
age classifier architecture search. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 4780–4789.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh
Saxena, Yutaka Leon Suematsu, Jie Tan, Quoc V Le,
and Alexey Kurakin. 2017. Large-scale evolution of
image classifiers. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume
70, pages 2902–2911. JMLR. org.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671.

Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu
Musat, and Mathieu Salzmann. 2020. Evaluating
the search phase of neural architecture search. In
ICLR.

David So, Quoc Le, and Chen Liang. 2019. The
evolved transformer. In International Conference on
Machine Learning, pages 5877–5886.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, pages 1631–1642.

Alex Wang, Amapreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In ICLR.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL.

Lingxi Xie and Alan Yuille. 2017. Genetic cnn. In
Proceedings of the IEEE International Conference
on Computer Vision, pages 1379–1388.

Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.
2019. SNAS: stochastic neural architecture search.
In ICLR.

Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W Cohen. 2018. Breaking the softmax
bottleneck: A high-rank RNN language model. In
ICLR.

Chris Ying, Aaron Klein, Esteban Real, Eric Chris-
tiansen, Kevin Murphy, and Frank Hutter. 2019.
Nas-bench-101: Towards reproducible neural archi-
tecture search. In ICML.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329.

Barret Zoph and Quoc V Le. 2017. Neural architecture
search with reinforcement learning. In ICLR.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and
Quoc V Le. 2018. Learning transferable architec-
tures for scalable image recognition. In CVPR.

A More Training Details on Text
Classification Models

All the baseline models on the GLUE benchmark
have same settings apart from the vocabulary size.
Each model has a two layer bidirectional LSTM-
RNN with a hidden size of 1500, and a word em-
bedding size of 300 which are initialized with glove
embeddings. The classifier is an MLP with a hid-
den size of 256. In all our models, we use Adam op-
timizer with a learning rate of 0.0001 and a dropout
of 0.2, and keep the maximum length of RNN to 50.
We use a batch size of 64. We use a vocabulary size
of 5,000 for RTE, STS-B, and CoLA tasks, 40,000
for QQP and MNLI, 30,000 for QNLI, 10,000 for
MRPC, 14,300 for SST-2, and 1,300 for WNLI.

For the ENAS models, we use 9 computational
nodes and only one RNN layer. We use same set-
tings in both stage-1 and stage-2. We use each
model’s performance metric as reward for the con-
troller in the stage-1 search process. Rest of the
settings are same as the baseline models.

We use different settings for stage-1 and stage-2
of FENAS models. This is because to keep the
memory and computational complexity tractable
when we do evolutionary search in stage-1, where



2876

we sample multiple child models in parallel. In
stage-1, we use a hidden size of 1000 for large
tasks (QNLI, MNLI, and QQP), and a hidden size
of 300 for the rest of the tasks. We observe that
the cells learned using models with smaller hidden
size in stage-1 can not transfer its best performance
to large hidden size models that we use in stage-2,
especially for large tasks. For this reason, we use
a larger hidden size in stage-1 for large tasks. We
further only use 2000 examples in stage-1 for large
tasks to find the optimal cell. In stage-2, we keep
the hidden size such that the overall model size
is lower than that of ENAS and LSTM baseline.
We use 9 computational nodes in order to accom-
modate LSTM architecture in the FENAS search
space. Rest of the hyperparameters are same as the
ENAS baseline.


