
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2523–2532
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2523

How Does Context Matter? On the Robustness of Event Detection with
Context-Selective Mask Generalization

Jian Liu1,2,3, Yubo Chen1,2, Kang Liu1,2, Yantao Jia4, Zhicheng Sheng4

1 National Laboratory of Pattern Recognition, Institute of Automation
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences
3 Beijing Jiaotong University, 100044, China

4 Huawei Technologies Co., Ltd, Beijing, 100085, China
{jian.liu, yubo.chen, kliu}@nlpr.ia.ac.cn; jamaths.h@163.com; shengzhicheng@huawei.com

Abstract
Event detection (ED) aims to identify and clas-
sify event triggers in texts, which is a crucial
subtask of event extraction (EE). Despite many
advances in ED, the existing studies are typ-
ically centered on improving the overall per-
formance of an ED model, which rarely con-
sider the robustness of an ED model. This
paper aims to fill this research gap by stress-
ing the importance of robustness modeling in
ED models. We first pinpoint three stark cases
demonstrating the brittleness of the existing
ED models. After analyzing the underlying
reason, we propose a new training mechanism,
called context-selective mask generalization
for ED, which can effectively mine context-
specific patterns for learning and robustify an
ED model. The experimental results have con-
firmed the effectiveness of our model regard-
ing defending against adversarial attacks, ex-
ploring unseen predicates, and tackling ambi-
guity cases. Moreover, a deeper analysis sug-
gests that our approach can learn a complemen-
tary predictive bias with most ED models that
use full context for feature learning.

1 Introduction

Event detection (ED), a crucial subtask of event
extraction (EE), aims to identify and categorize
event triggers in texts. For example, in a sen-
tence S1: “During a war, invaders destroyed the
whole town”, ED requires a system to detect an
event trigger destroyed, along with its event type
ATTACK1. Building a robust ED system is shown
to benefit a wide range of applications including
document summarization (Filatova and Hatzivas-
siloglou, 2004), knowledge base population (Ji and
Grishman, 2011; Mitamura et al., 2017), question
answering (Berant et al., 2014), and others.

In recent years, great advances have been made
in ED (Ji and Grishman, 2008; Li et al., 2013; Chen

1According to ACE event ontology.

S1: During a war, invaders  destroyed  the whole town.

S2: During a war, invaders annihilated the whole town.

Event Detector

Event Detector

Attack

NIL

Replace With

Figure 1: Example of adversarial attack in ED.

et al., 2015; Nguyen et al., 2016; Feng et al., 2016;
Liu et al., 2018b,a, 2019b). However, the vast
majority of existing studies focus on improving the
overall performance of an ED model (usually on a
fixed test set), which rarely consider the robustness
(and generalization capability) of an ED model. For
example, most of existing methods do not answer
questions such as when/why an ED system would
fail, how to handle new, previously unseen data,
despite these considerations are especially crucial
for designing real-world ED systems.

This paper focuses on the robustness aspect of
ED models. We first emphasize the necessity of this
research by pinpointing three stark cases demon-
strating the vulnerability of existing ED models.
These cases are: 1) adversarial attack, which refers
to adding small perturbations in the original sen-
tences (Papernot et al., 2016; Alzantot et al., 2018).
As shown in Figure 1, a well-trained event detector
can correctly recognize the event trigger destroyed
at first. But when we replace destroyed with a
rare trigger annihilated, despite the meaning of the
sentence does not change, we note the same event
detector fails to identify the trigger. A quantitative
evaluation suggests that the performance of a state-
of-the-art (SoTA) ED model (Chen et al., 2015)
drops significantly from 69.1% to 19.2% facing
adversarial attack. 2) Unseen predicates, which
measures whether an ED model can tackle new,
previously unseen data. We note the existing ED
models demonstrate a rather poor generalization
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capability: they achieve only 14.2% in F1 for the
previously unseen triggers, despite 74.9% in F1 for
the already seen triggers. 3) Event type disambigua-
tion, which refers to assign a correct event type to
ambiguous triggers, considering that over 70% of
triggers can express different types of events (Liu
et al., 2018b). While, our pilot experiments suggest
that a SoTA ED model obtains only 50.4% in F1
in tackling the high-ambiguity cases, comparing to
70.6% in F1 in tackling the low-ambiguity cases.

The above phenomena reflect the fact that cur-
rent ED models have a poor ability in modeling
contexts, where the underlying reason may highly
relate to reasoning shortcuts (Jiang and Bansal,
2019) — owing to the limited (and biased) training
data, an ED model may have only learned lexical
pattern, i.e., word-to-trigger mapping (such as de-
stroyed → Attack), owing to its prevalence in
data. By adopting such reasoning shortcuts, an ED
model may explain the training data well, but fail in
the more context-dependent scenarios noted above,
as they never capture the underlying regularities
about how event triggers appear in texts.

In light of the above analysis, we propose a
new training paradigm, termed as context-selective
mask generalization, aiming to prevent reasoning
shortcuts and robustify an ED model. Our method
is intuitive and straightforward: To prevent lexical
bias, we explicitly delexicalize triggers for train-
ing/testing, by replacing them with placeholders.
This forces our model to make predictions using
contexts solely. For instance, a training example S1
is transferred as: “During a war, invaders [MASK]
the whole town”, and our model is forced to predict
the event label of the masked word. As the lexical
information of the trigger is completely masked,
our model has to mine the more essential contex-
tual clues for reasoning. This prevents our model
simply remembering word-to-trigger shortcuts, but
to learning the underlying regularities regarding
how events are described in texts.

The proposed learning paradigm consists of
two complementary training objectives: context-
selective discriminative learning and contextual-
ized similarity learning. The former is an intra-
sentence objective, considering that contextual
words are usually of different importance, for ex-
ample, in S1, “wars” and “invaders” may be more
important than “town” for predicting the Attack
event. We devise a method combing selective at-
tention (Lin et al., 2016) with model uncertainty

(Gal and Ghahramani, 2016) to weigh contexts and
select the salient parts for learning. The latter is
an inter-sentence objective, with an assumption
that: event triggers have same types may occur in
similar contexts, derived from the well-known dis-
tributional hypothesis of words (Harris, 1954). We
take in pairs of mask-containing sentences as input,
and encourage their contextual representations to
be similar if the masked triggers express the same
type of events.

To verify the effectiveness of our approach,
we have conducted extensive experiments on the
benchmark event dataset, and we show the definite
advantages of our approach over previous methods
with respect to: 1) defending against adversarial at-
tack, 2) tackling unseen predicates, and 3) handling
ambiguity cases. Moreover, a deeper analysis sug-
gests that our approach can learn a complementary
predictive bias with the existing ED models using
full context for reasoning.

Contributions. 1) In this work, we stress the im-
portance of robustness modeling in ED, a prob-
lem less studied in the existing literature. We pin-
point three stark cases demonstrating the brittleness
of existing ED methods, with qualitative evalua-
tion, and analyze the underlying reason. 2) We
propose a new training paradigm, called context-
selective mask generalization, which can effective
mine context-specific patterns for ED, shedding
lights on building ED systems of decent robustness.
3) We report on extensive experiments demon-
strating the advantages of our model in defending
against adversarial attack, handling unseen predi-
cates, and tackling ambiguous cases. We also give
a deeper analysis exploring the predictive bias of
our method.

2 Related Work

2.1 Event Detection

ED is a crucial subtask of EE that aims to find
event triggers in texts. Earlier approaches for ED
are feature based. To name a few, Ahn (2006) ex-
ploited lexical, syntactic, and external knowledge
based features for the task; Ji and Grishman (2008)
combined global and local decision features for the
task. Liao and Grishman (2010) and Hong et al.
(2011) investigated cross-event/cross-entity infer-
ence for the task; Li et al. (2013) proposed a joint
framework for the task. Modern approaches for ED
are neural network based. For example, Chen et al.



2525

(2015) leveraged Convolutional Neural Networks
(CNNs) for the task; Nguyen et al. (2016) used
Recurrent Neural Networks (RNNs) for the task;
Feng et al. (2016) combined CNNs with RNNs and
Liu et al. (2018b) explored Graph Convolutional
Networks (GCNs) for the task. More recent works
have designed advanced architectures for the task
(Liu et al., 2017, 2018a; Lu et al., 2019; Liu et al.,
2019a).

Despite many advances in ED, to date rare work
has studied the robustness (and generalization ca-
pability) of an ED model. The work of Lu et al.
(2019) is related to ours, which improved the gen-
eralization of an ED model by decoupling lexical-
specific and lexical-free representations via adver-
sarial training. Compared to their work, the intro-
duction of placeholders in our work can naturally
decouple lexical-specific and lexical-free represen-
tations, which avoids the unstable adversarial learn-
ing process. Moreover, our work evaluates three
aspects of robustness, rather than only unseen pred-
icates. Our work also relates to the study of Huang
et al. (2018), which aims to recognize events of
never-seen event types, i.e. zero-shot EE. Their
work lies in an orthogonal dimension of our work
regarding the generalization of ED models.

2.2 Robustness Probing in Natural Language
Processing Applications

Enhancing the robustness of a model is a challeng-
ing and long-standing goal of AI research commu-
nity. In computer vision, Szegedy et al. (2014) first
pointed out that a crafted input with small perturba-
tions could easily fool a neural model, referring to it
as adversarial example. Papernot et al. (2016) first
studied adversarial example in texts, and they pro-
posed to producing adversarial input sequences on
Recurrent Neural Network (RNN). Following the
work, Alzantot et al. (2018) proposed a population-
based optimization method to generate more se-
mantically similar adversarial examples. Many re-
searchers have investigated robustness modeling
in specific NLP problems. To name a few, Jia
and Liang (2017) inserted adversarial perturbations
into paragraphs for machine reading comprehen-
sion (MRC). The work was further extended by
Mudrakarta et al. (2018), which cast the generation
of adversarial examples as an optimization problem
for the task of natural language inference (NLI);
Belinkov and Bisk (2017); Ebrahimi et al. (2018)
investigated how to tackle adversarial examples in

neural machine translation (NMT). A very recent
work of Hsieh et al. (2019) investigated the robust-
ness of self-attentive architectures (Vaswani et al.,
2017) in sentiment analysis, entailment and ma-
chine translation under adversarial attacks. But to
our best knowledge, there is no work systematically
studying the robustness of ED.

3 Approach

Figure 2 visualizes the overview of our approach,
by taking S1 as an example. Let a sentence of N
words be S = [w1, w2, ..., wN ]. Following previous
works (Li et al., 2013; Chen et al., 2015; Nguyen
et al., 2016; Lu et al., 2019), we formulate the ED
task as a token-level classification problem. That is,
for each word in S, we consider it as a candidate
trigger, and our goal is to assign a correct event
label to it (A type of NIL is used to indicate a
non-trigger word).

The technical details of our approach are pre-
sented in the following, including: trigger delexi-
calization (§ 3.1), context-selective discriminative
learning (§ 3.2), contextualized similarity learning
(§ 3.3), attentive representation fusion (§ 3.4), and
the training strategy (§ 3.5).

3.1 Trigger Delexicalization

Following recent advances in ED (Yang et al.,
2019), we adopt BERT architecture (Devlin et al.,
2019) to learn the input representations, by first
adding special tokens at the both ends of S to
construct an extended sequence “[CLS] S [SEP]”.
Note we do not allow our model to leverage lexi-
cal clues, we explicitly delexicalize the candidate
trigger, by replacing it with a placeholder [MASK].
Consider S1 and S2 in Figure 1. If we take de-
stroyed or annihilated as the candidate trigger, the
mask-containing sequence is “[CLS] During a war,
invaders [MASK] the whole town [SEP]”. Next.
we use BERT for sequence encoding and take the
final hidden layer2 of BERT as the input repre-
sentations, denoted as HS ∈ R(N+2)×d. We use
hwi ∈ Rd to denote the representation of a specific
token wi.

2In case a word may be split into many sub-word pieces,
we conduct a self-attentive computation over sub-word pieces
to compute the representation of original word, as suggested
by Lee et al. (2017).
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[CLS] During a war, invaders [MASK] the whole town [SEP]

BERT

During a war, invaders destroyed the whole town.

Attack

S1: During [ ] invaders [MASK] the whole town.  Attack
S2: An American tank [MASK] the hotel.                 Attack

S2: Government [MASK] 5000 dollars.      Transfer-Money

H[M]

selective attention

random mask attention

H[CLS]

0              1         0        1                                     0                                       1             0    

H[SEP]

Context-selective Discrimination Learning

S1: During [ ] invaders [MASK] the whole town.  Attack

BERT high value

BERT

Contextualized Similarity Learning

H[M]S1: H[M], S2:

low valueH[M]S1: H[M], S2:

H1 H2 H3 HN

Uncertainty modeling
And select the better one

Figure 2: The overview of our approach, taking “destroyed” as the candidate trigger. Our approach includes
two complementary training objectives — an intra-sentence context-selective discrimination learning (left) and an
inter-sentence contextualized similarity learning (right).

3.2 Context-Selective Discriminative
Learning

Context-selective discriminative learning aims to
predict the event label for the masked candidate
trigger, by selectively attend to contexts. In our
method, we first compute an (unsupervised) at-
tention vector: αu=softmax(h[MASK]WaH

ᵀ
S) ∈

RN+2, using h[MASK], the representation of the
masked candidate trigger as query vector (Bah-
danau et al., 2014). Wa ∈ Rd×d is an attention
matrix. Then we conduct a weighted summation
computation overHS using αu as the weight vec-
tor and compute a feature vector for the masked
candidate trigger, denoted by F[MS]. Finally, F[MS]

is used for event label prediction by computing an
output vector containing the probability of different
event labels:

o[MS] = WmF[MS] + bm (1)

whereWm and bm are model parameters. The pre-
dicted event label corresponds to the index having
the highest value in o[MS].

Considering that unsupervised attention may not
always learn a good pattern (Wiegreffe and Pin-
ter, 2019), we devise a “trial-and-error” approach
to guide the learning. Specifically, at the train-
ing time, we also generate random context mask3

and normalize it as a weight vector αr. Our in-
tuition is, if αr leads to a better result than using
αu, it might be a better selective pattern for our
model to learn. Note there are cases where the
predicted event labels are the same for αr and αu,
and here we introduce model uncertainty (Gal and
Ghahramani, 2016) to evaluate whether the result

3For example, a random mask might be [1, 1, 0, 1, ...],
where 0 means that the third word is masked.

is improved. Specifically, we compute the model
uncertainty by making predictions many times but
with dropout layers being activated, and the model
uncertainty empirically equals to the prediction
variance. When we note a reduced model uncer-
tainty, we consider αu improves the result and we
then encourage αu to approach αu, under a guid-
ance of mean square error (MSE) loss. Therefore,
the overall loss function of context-selective dis-
criminative learning is:

LD = −
∑
t

log o[MS][y(t)]+δαu,αrMSE(αu,αr)

(2)
where t ranges over each token in the training set;
y(t) is t’s ground-truth event label; x[j] denotes the
jth element of x; δαu,αr takes a value of 1 if αr
improves the result (regarding model uncertainty),
and 0 otherwise.

3.3 Contextualized Similarity Learning

The philosophy of contextualized similarity learn-
ing is that “events of the same types may have
similar contexts”, derived from the distributional
hypothesis of words (Harris, 1954). We enforce
this assumption in our model by taking in pairs of
mask-containing sentences as input, and have an
objective to encourage their representations to be
similar if they express the same type of events.

Let the learned feature vector of two (masked)
candidate event triggers t1 and t2 be Ft1→[MS] and
Ft2→[MS], and their event labels be y1 and y2. We
define the similarity of Ft1→[MS] and Ft2→[MS] as:

simt1,t2 =
1

1 + exp(Ft1→[MS]F
ᵀ
t2→[MS])

(3)
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Based on this similarity measurement, we devise
the following loss to encourage triggers of same
types to have larger similarity score:

LS =
∑
t1,t2

− δy1,y2 log(simt1,t2)+ (4)

(1− δy1,y2) log(1− simt1,t2) (5)

where δy1,y2 is the Kronecker function that takes 1
is y1 and y2 are same, and 0 otherwise. We do not
consider cases where both of y1 and y2 are NIL.

3.4 Attentive Feature Fusion
Using only context-specific features for prediction
may lead to sub-optimal performance. The atten-
tive representation fusion is devised to balance the
context-specific features and full contexts features,
to make the reasoning more comprehensive.

Learning Full Context Features. The full con-
text feature of a candidate trigger is learned in a
similar way as in context-selective discriminative
learning, but the candidate trigger is not masked
and the context-selective attention is not performed.
Note if we adopt a BERT-based full context feature
learning, we can share the BERT encoder for full
context feature learning and context-specific fea-
ture learning, and in this way, we do not need to
double the model parameters. The impact of using
other architectures for full context feature fusion is
studied in § 6.1.

The Attentive Sentinel. The attentive sentinel
aims to learn a trade-off between the context-
specific feature F[MS] and full context feature, de-
noted by F[FCT ] for a candidate trigger. Specif-
ically, we first compute an attention weight via:

g = σ(Wg[F[MS] ⊕ F[FCT ]] + bg) (6)

whereWg and bg are model parameters. Then, us-
ing this weight, we compute a weighted summation
of F[MS] and F[FCT ] to compute the final feature
of the candidate trigger:

Fcom = gF[MS] + (1− g)F[FCT ] (7)

This attention mechanism enable us to learn a dy-
namically combination of the two features to make
the final prediction.

3.5 Training and Optimization
Finally, in our full approach we take Fcom as the
input and conduct an event label classification via:

oFinal = WfFcom + bf (8)

where oFinal contains probabilities of different
event labels, and the predicted event label corre-
sponds to the element have a maximal value;Wf

and bf are model parameters. A cross-entropy loss
is adopted to train our full model, which is:

LF = −
∑
t

log otF inal[y(t)] (9)

where symbols have similar meanings as in Eq (2).
We conduct a leaning paradigm of pre-training fol-
lowed by fine-tuning: we first pre-train our model
using LD and LS ; then we fine-tune our model
using LF . In the later stage, LF and LD is also
considered to keep the context-specific feature dis-
criminative enough for prediction. We adopt Adam
(Kingma and Ba, 2015) to update model parame-
ters.

4 Experimental Setups

Datasets and Evaluations. We take ACE 2005
and KBP 2017 as the benchmark datasets.
For ACE 2005, we split the corpus as train-
ing/developing/testing sets as recommend in pre-
vious works (Li et al., 2013; Chen et al., 2015).
For KBP 2017, we adopt the official evaluation
settings for training and testing. For evaluations,
we adopt Precision (P), Recall (R), and F1-score
(F1) as evaluation metrics, same as previous works
for a meaningful comparison. We use two-tailed
Wilcoxon test for significant test, with a signifi-
cance level p=0.05.

Implementation Details. Our model is imple-
mented with BERTLarge, which has 24 layers, 1024
hidden units, and 16 heads, and is pre-trained on
large text corpora. We tune hyper-parameters via
grid search on the developing set. Finally, the learn-
ing rate is set as 1e−5 (from [1e−5, 2e−5 to 1e−4]);
the batch size is set as 10 (from [2, 5 to 10]). A
negative sampling rate of 0.7 is adopt to tackle the
unbalance of positive and negative examples (Chen
et al., 2015). As in KBP 2017 one event trigger
might express multiple event types simultaneously,
we adapt the multi-label cross entropy loss to bi-
nary cross-entropy loss, and a threshold of 0.3 is
used for prediction.

Baselines. The following models are used as
baselines: 1) DNNED, which adopts a feed-
forward neural network for the task — it com-
pletely ignores context information; 2) DMCNN
(Chen et al., 2015) and 3) RNNED (Nguyen et al.,
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MODEL PRE. REC. F1

DNNED 68.6 64.9 66.7
DMCNN (2015) 75.6 63.6 69.1
JRNN (2016) 66.0 73.0 69.3
JMEE (2018b) 76.3 71.3 73.7
Delta-Adv (2019) 76.3 71.9 74.0
MBERT 74.1 73.1 73.6

MFULL 75.2 74.4 74.8*
MMASK 47.7 42.7 45.0
MMASK w/o sel 46.2 40.2 43.0
MMASK w/o sim 45.0 40.6 42.7

Table 1: Results on ACE 2005. Pre., Rec., and F1 in-
dicate precision (%), recall (%), and F1-score(%) re-
spectively. Bold indicates the best result. * denotes
a significance test with p=0.05. w/o sel and w/o sim
denotes excluding context-selective attention and con-
textualized similarity learning respectively.

2016), two state-of-the-art ED models employing
Convolutional Neural Networks (CNN) and Re-
current Neural Networks (RNNs) for the task; 4)
JMEE (Liu et al., 2018b), a graph model employs
syntax information for the task. 5) Delta-Adv (Lu
et al., 2019), a model that can learn discriminative
and generalization features for the task via adver-
sarial learning. 6) MBERT, a model adopt BERT
representations for ED. For KBP 2017, we also
select the top 3 systems reported in the official eval-
uation as baselines. Among our models, the full
model is denoted as MFULL; the model reasoning
over the masked trigger is denoted as MMASK.

5 Experimental Results

5.1 Overall Performance

Table 1 and Table 2 show results of different mod-
els on ACE 2005 and KBP 2017 (we report 5-run
average performance). From the results: 1) Our full
approach MFULL achieves the best performance,
which outperforms all the baseline systems with a
margin (+0.8% on F1 on ACE 2005 and +1.9% on
KBP 2017). This demonstrates the effectiveness of
our approach. Moreover, MFULL consistently out-
performs MBERT, which implies that the improve-
ments do not simply come from introducing BERT
representations for ED. 2) MFULL also achieves the
highest recall value, and this means that it can iden-
tify more positive examples than baselines, which
may imply its ability in handling difficult cases that
fail baselines. 3) Both of context-selective attention

MODEL PRE. REC. F1

Top 3 System 54.3 46.6 50.1
Top 2 System 52.2 48.7 50.4
Top 1 System 56.8 55.6 56.2
Delta-Adv (2019) 62.3 53.7 57.7
MBERT 57.9 54.2 56.0

MFULL 59.4 56.9 58.1*
MMASK 33.5 40.3 36.6
MMASK w/o sel 32.4 39.2 35.5
MMASK w/o sim 30.1 39.6 34.2

Table 2: Results on KBP 2017. Pre., Rec., and F1 in-
dicate precision (%), recall (%), and F1-score(%) re-
spectively. Bold indicates the best result. * denotes
a significance test with p=0.05. w/o sel and w/o sim
denotes excluding context-selective attention and con-
textualized similarity learning respectively.

and contextualized similarity learning respectively
can improve the performance, but the latter is more
important — with out it, a model suffers from a
drop of 2.3% in ACE 2005 and 2.4% in KBP 2017.

Another interesting finding is obtained by com-
paring DNNED with MMASK, which adopt only
lexical or context information for the task. We con-
clude lexical information is much more important
than context information in the standard evaluation.
While, learning only such reasoning shortcuts may
lead to poor robustness as shown in the following.

5.2 Robustness Probing

We conduct robustness probing regarding defend-
ing against adversarial attacks, unseen predicates,
and tackling ambiguity cases. To maintain tractabil-
ity, in the following experiments, we take model
achieving best performance on the development
set for testing, instead of adopting 5-run average
as in previous evaluation. Moreover, to simplicity
analysis, our experiments are mostly conducted on
ACE 2005.

5.2.1 Defending Against Adversarial Attacks
In adversarial attacks, we adopt list-based method
(Alzantot et al., 2018) to generate adversarial ex-
amples. Specifically, for a word, we first find its
semantically similar words based on GloVe embed-
dings (Pennington et al., 2014), and then we replace
the original word with each word and evaluate the
new sentence with a GPT language model (Radford
et al., 2019). We take the new sentence with the
largest score as adversarial example. Some cases in
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MODEL ORG ADT ADC ∆F1

DNNED 66.7 18.8 16.6 -47.1/50.1
DMCNN 69.0 20.1 19.2 -48.9/49.8
JRNN 69.5 19.3 18.9 -50.2/50.6
Delta-Adv 71.8 20.4 19.6 -51.4/52.2
MBERT 74.2 36.1 33.2 -38.1/41.0

MFULL 76.0 47.9 43.3 -28.1/32.7
MMASK 45.0 45.0 39.1 -0/5.9

Table 3: F1-score (%) of defending adversarial at-
tacks. ORG indicates performance on the original test-
set. ADT and ADC indicate two types of adversarial
attacks. ∆F1 indicates the performance gap.

MODEL SEEN UNSEEN ∆F1

DNNED 74.9 14.2 -60.7
DMCNN (2015) 75.9 17.2 -58.7
JRNN (2016) 74.4 16.6 -57.8
Delta-Adv (2019) 75.1 17.8 -57.3
MBERT 75.6 25.2 -50.4

MFULL 78.2 47.6 -30.6
MMASK 58.1 31.1 -27.0

Table 4: F1 score (%) of exploring unseen predicts.
SEEN indicates testing on the seen set, and UNSEEN
indicates testing the the unseen set. ∆F1 indicates the
performance gap.

our approach are: 1) People in connection with the
killings (→ massacres) that [...], 2) Anno-Marie
sued (→ alleged) Crichton for divorce [...]. We
perform two types of attack: ADT, attacking trig-
ger words only; and ADC, attacking trigger words
and context words.

From the results in Table 3, previous methods
suffer from a severe drop (>47.1%/49.8%) in F1
facing adversarial attacks. By comparison, our
full approach achieves the best performance —
47.9% and 43.3% regarding ADT and ADC respec-
tively. MMASK ranks secondly and demonstrates
the smallest performance gap regarding adversarial
attack — ADT even does not affect its performance
as it does not rely on lexical information of trigger
for prediction.

5.2.2 Exploring Unseen Predicates
The original testset may not be a good testbed for
exploring unseen predicates, as it is highly biased
(unseen cases only account for 8.1%). We adopt
a new setting in exploring unseen predicates: we

MODEL LA HA ∆F1

DNNED 70.6 50.4 -20.2
DMCNN (2015) 72.7 55.2 -17.5
JRNN (2016) 71.0 49.5 -21.5
Delta-Adv (2019) 72.2 52.1 -20.1
MBERT 73.5 60.3 -13.2

MFULL 75.6 63.4 -12.2
MMASK 49.7 50.7 -

Table 5: F1 score (%) of tackling ambiguity cases.
LA indicates low-ambiguity cases; HA indicats high-
ambiguity cases.

first divide the whole ACE corpus as C1 and C2
with a ratio of 1:2 randomly, and C1 is used for
training/developing. Then, for each sentence in C2,
we put it into a SEEN or UNSEEN set based on
whether it contains a trigger that is in C1 or not
(for sentence that does not have event triggers, we
randomly put it into the SEEN or UNSEEN set).
Finally, we end up with a SEEN set with a size of
2, 896, and an UNSEEN set with a size of 1, 409.

Table 4 show the results of different models. We
note previous methods behave poorly on the UN-
SEEN set and demonstrate a large performance
gap (>50.4%) in handle SEEN and UNSEEN. By
contrast, our full approach achieves the best perfor-
mance on SEEN (78.2%) and UNSEEN (47.6%),
with a relatively small gap (30.6%). Moreover,
MMASK ranks secondly on the UNSEEN set, out-
performing all other baselines including MBERT.

5.2.3 Tackling Ambiguity Cases
Regarding tackling ambiguity cases, we first de-
fine the ambiguity of a word as the entropy of its
word-type distribution. We then sort all sentences
based on their averaged word ambiguity. For ex-
ample, a high-ambiguity sentence is “There was no
shots fired”, where “shots” can trigger Attack, Die,
Execute, and NIL and “fired” can trigger Attack,
End-Position, and NIL. We select 500 sentences
with the highest ambiguity to construct a HA set;
500 sentences with the lowest ambiguity to con-
struct a LA set (each of the sentence should contain
at least one event trigger).

From the results shown in Table 5, previous ED
systems (except MBERT) have a relatively large per-
formance gap in tackling low-ambiguity and high-
ambiguity cases. By contrast, our full approach
achieves the best performance with a small gap.
Interestingly, MBERT demonstrates a rather good
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EXAMPLE GOLDEN MBERT MMASK

a) The EU is set to release 20 million euros ... Transfer-Money Release-Parole 7 Transfer-Money 3

b) ... British budget cinema chain launched by the founder ... Start-Org Transport 7 Start-Org 3

c) missiles capable of reaching Israel and possibly weapons Attack NIL 7 Attack 3

d) ..., it admits troops into the country for Iraq conflict ... Transport NIL 7 Transport 3

e) She failed to become a deputy in the parliament ... Start-Position Start-Position 3 Elect 7

f) No convict has ever been executed in the country. Execute Execute 3 Arrest-Jail 7

g) Campbell, 55, was pulled over Jan. 10 after police ... NIL NIL Arrest-Jail ?

h) In an address Saturday, Information Minister [...] NIL NIL Contact-Meet ?

i) That [...] detailed monthly outlays of some 51, 000 ... NIL NIL Transfer-Money ?

Table 6: Examples exploring the predictive bias of MBERT and MMASK. Event triggers are in bold. GOLDEN
denotes the ground-truth labels.

MODEL ORG +MMASK ∆F1

DNNED 66.7 71.4 +4.7
DMCNN (2015) 69.0 72.3 +3.3
JRNN (2016) 69.5 72.9 +3.4
JMEE (2016) 71.8 72.9 +1.1

Table 7: F1 score (%) of integrating MBERT with exist-
ing ED models.

performance in tackling ambiguity cases, which
may benefit from its ability in modeling contexts by
pre-training on large corpus. We also note MMASK

show comparable performance in tackling low- and
high-ambiguity cases.

6 Further Discussion

6.1 Predictive Bias Probing

We first explore the integration of MMASK with
existing ED models learning full context features.
From the results in Table 7, MMASK has a com-
plementary effect with existing ED systems and
boosts performance. The gain on DNNED is the
most salient, as DNNED only uses trigger informa-
tion but context information for reasoning, which
is the opposite of MMASK. Additionally, we com-
pare performance of MBERT, MMASK, and MFULL

on different event types in Figure 3. From the re-
sults MBERT performs better on types having rel-
atively fewer expressions such as Marry and Con-
vict, but worse on types having diverse expressions
such as Start-ORG, Phone-Write, and Transfer-
Ownership. MMASK is just the opposite. MFULL

can take advantages of feature fusion from MBERT

and MMASK, yielding the best performance.

Figure 3: Performance of MBERT, MMASK, and
MFULL on different event types.

6.2 Case Study

We conduct case study to explore the outputs of
MBERT and our model MMASK, and the repre-
sentative and interesting cases are shown in Table
6. From the results, in a) and b), MBERT makes
wrong predictions, which may due to the prevalent
of the pattern release→ Transfer-Money (100%)
and launched→ Transport (78.5%) in the training
set. MBERT also misses c) and d), as the detection
of reaching and admits is completely depended on
contexts. By contrast, MMASK correctly identify
all of them.

More interesting cases are shown in the second
part of Table 6. We note our model MMASK makes
wrong predictions in e) and f). This makes sense, as
MMASK does not aware trigger lexical information
— even human may wrongly predict an Arrest-Jail
event considering “convict has ever been [MASK]
in [...]”. Example g), h) and i) are worth further
discussion. From our opinion, MMASK assigns an
Arrest-Jail event to pull in g), and a Contact-Meet
event to address in h), which are quite reasonable.
But these cases are not labeled in the golden annota-
tions, which may be missed by the ACE annotators.
This also implies the challenging of the ED task.
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7 Conclusion and Future Work

This paper focuses on the robustness of ED. We
highlight three stark cases showing the brittleness
of existing ED models. Then we propose a new ap-
proach called context-selective masking generaliza-
tion shedding lights on robustifying an ED model.
In future, we would like to extend our method to
other tasks where exploiting context information
is crucial, such as named entity recognition and
relation extraction.
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