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Abstract

Paraphrases refer to texts that convey the same
meaning with different expression forms. Tra-
ditional seq2seq-based models on paraphrase
generation mainly focus on the fidelity while
ignoring the diversity of outputs. In this pa-
per, we propose a deep generative model to
generate diverse paraphrases. We build our
model based on the conditional generative ad-
versarial network, and propose to incorporate
a simple yet effective diversity loss term into
the model in order to improve the diversity
of outputs. The proposed diversity loss max-
imizes the ratio of pairwise distance between
the generated texts and their corresponding la-
tent codes, forcing the generator to focus more
on the latent codes and produce diverse sam-
ples. Experimental results on benchmarks of
paraphrase generation show that our proposed
model can generate more diverse paraphrases
compared with baselines.

1 Introduction

The task of paraphrase generation refers to rewrit-
ing a given sentence to a new paraphrase sentence,
which requires that the generated sentence and in-
put sentence are different in expression form, but
have the same expressed meaning. Paraphrase gen-
eration is a fundamental task of natural language
processing (NLP). The technique of paraphrase
generation has been widely used in many down-
stream applications, such as information retrieval,
question answering, machine translation, and so
on.

Early works on paraphrase generation mainly
focus on rule-based (McKeown, 1983; Meteer and
Shaked, 1988), grammar-based (Narayan et al.,
2016), lexicon-based (Bolshakov and Gelbukh,
2004; Kauchak and Barzilay, 2006), and statis-
tical machine translation (SMT)-based methods
(Kauchak and Barzilay, 2006; Zhao et al., 2009).

Recently, with the release of large-scale paraphrase
datasets, sequence-to-sequence (seq2seq) models
(Prakash et al., 2016; Li et al., 2019; Kajiwara,
2019; Li et al., 2018; Gupta et al., 2018; Shakeri
and Sethy, 2019; Yang et al., 2019) have become
the dominant technique in the field of paraphrase
generation.

Paraphrases should be diversified in nature, i.e.,
an input sentence can correspond to multiple plau-
sible paraphrases. Traditional seq2seq-based meth-
ods tend to generate highly similar outputs since
the maximum likelihood estimation (MLE)-based
objective function mostly cares about the validity
rather than the diversity of outputs. Some works
introduce control mechanisms over seq2seq mod-
els to produce diverse outputs (Iyyer et al., 2018;
Park et al., 2019; Chen et al., 2019). However, the
templates or exemplars in control mechanism can-
not cover all the possibility of paraphrase, and the
introduction of control mechanism is inflexible. Xu
et al. (2018b) propose to use a shared decoder with
different decoder embeddings to generate different
outputs, but the decoder embeddings are not explic-
itly encouraged and learned to produce different
outputs.

Generative models, such as Variational Autoen-
coder (VAE) (Kingma and Welling, 2014) and Gen-
erative Adversarial Network (GAN) (Goodfellow
et al., 2014), which learn distributions over the la-
tent space, can generate diverse outputs. In this
paper, we build a new framework on top of the
conditional GAN (Mirza and Osindero, 2014) to
generate diverse paraphrases. To get multiple out-
puts, the generative models often take an additional
random vector (latent code) as inputs, where the
noise vector is responsible for producing variations
in the outputs. However, compared with the tradi-
tional GAN, the conditional GAN takes external
conditional contexts as additional inputs. The con-
ditional contexts are highly structured and complex
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compared to the latent vector, making the latent
code easily ignored and inoperative. Besides, the
GAN-based methods usually fall into the mode col-
lapse (Salimans et al., 2016) problem, that only a
few modes in the latent space can work.

We address the above problems by encouraging
the generator to be sensitive to latent codes and
explore more modes in the latent space. For this
purpose, we incorporate the conditional GAN with
a simple yet efficient diversity loss term. During
training, the diversity loss maximizes the ratio of
the pairwise distance between the generated texts
and their corresponding latent codes. As a result,
the generator is forced to pay attention to latent
codes and has the chance to generate different out-
puts.

We conduct experiments on Quora and
MSCOCO datasets. Experimental results show
that our proposed model can generate more diverse
paraphrases compared with baselines while retain-
ing the same semantics.

In summary, the primary contributions of this
paper are as follows:

• We propose a conditional GAN-based frame-
work to generate diverse paraphrases.

• To make the latent code valid and to alleviate
the mode collapse problem, we propose a di-
versity loss term, which makes the generator
sensitive to the change of latent codes.

• The experimental results show that our model
can successfully generate more diverse para-
phrases.

2 Related Work

2.1 Paraphrase Generation

Seq2seq-based methods have been widely used in
the task of paraphrase generation (Prakash et al.,
2016; Li et al., 2019; Kajiwara, 2019). Li et al.
(2018) further adopt reinforcement learning with
policy gradient technique to generate semantically
consistent paraphrases. Gupta et al. (2018) propose
a conditional VAE-based framework to generate
paraphrases from the latent space. Shakeri and
Sethy (2019) improve the VAE framework by con-
ditioning the generator on a label which specifies
whether the paraphrases are semantically consis-
tent or not. Yang et al. (2019) further introduce the
CVAE-GAN framework for paraphrase generation.

Some translation-based methods have also been
proposed to generate paraphrases (Mallinson et al.,
2017; Wieting et al., 2017; Guo et al., 2019). The
main philosophy of these methods is to translate
a text into another language (often referred to as
“pivot language”), and translate it back to the orig-
inal language. Then the original text and back-
translated text are considered as a pair of para-
phrases.

There are also some works trying to generate
paraphrase in an unsupervised way. For exam-
ple, Roy and Grangier (2019) adopt the vector-
quantized VAE framework to discrete the latent
space to generate paraphrases. Bao et al. (2019)
decompose the latent space into syntactic and se-
mantic space, and sample in the syntactic space
while keeping semantics unchanged when generat-
ing paraphrases.

2.2 Generative Adversarial Nets

Generative Adversarial Nets was proposed by
Goodfellow et al. (2014). The main idea of GAN
is to train the generator and discriminator via min-
imax optimization, where the generator tries to
generate realistic samples that match the real dis-
tribution, and the discriminator tries to distinguish
between generated and real samples. GAN was first
applied in the computer vision area. Some recent
work have applied GAN-based framework in text
generation (Yu et al., 2017; Kusner and Hernández-
Lobato, 2016; Fedus et al., 2018; Guo et al., 2018;
Wang and Wan, 2018). Applying GAN to text gen-
eration is nontrivial because generating discrete
tokens is non-differentiable, making it difficult to
optimize via back-propagation. The policy gradi-
ent technique (Sutton et al., 1999) is usually used
to address this problem.

3 Methods

Given an input sentence x = {x1, x2, · · · , xn}, we
seek to generate a set of k paraphrase sentences
Y = {y(1), y(2), · · · , y(k)}, that all y ∈ Y have
the same meaning with x, but are different in ex-
pression form.

3.1 Base Model

We build our model on top of the conditional GAN.
The model consists of a generator G and a discrim-
inator D.
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Figure 1: The overall framework of our proposed model. Our model consists of a generator and a discriminator.
The generator is a GRU-based seq2seq network and the discriminator is a CNN network.

3.1.1 Generator
The generator G is a GRU-based seq2seq network
which consists of a GRU encoder Genc and a GRU
decoder Gdec. Given a text x, the encoder takes x
as input and encodes it into latent vector hx. The
decoder takes two inputs: the latent vector hx and a
random vector z sampled from the standard normal
distribution, and generates the paraphrase y corre-
sponding to x. This process can be formalized as:

hx = Genc(x), y = Gdec(hx, z) (1)

and we abbreviate it as y = G(x, z). It is worth
noting that the generator is architecture-free and it
can adopt many other seq2seq frameworks such as
Transformer (Vaswani et al., 2017). Our work is
orthogonal to those works that focus on designing
sophisticated encoder and decoder architectures.

3.1.2 Discriminator
The discriminator D adopts a CNN network since
CNN has recently been shown of great effective-
ness in short text classification. Given a text x
and the paraphrase y, the CNN network encodes
them into C(x) and C(y) of the same dimension
respectively. Then the quality of the paraphrase
is measured by a one-layer feed-forward network
with sigmoid activation:

q(x, y) = σ(w[C(x);C(y)] + b) (2)

where w and b are weight parameters, σ refers to
the sigmoid activation, and q(x, y) ∈ [0, 1] is the
quality of the paraphrase y given the sentence x.

3.1.3 Training Objective
Considering that a good paraphrase should not only
be natural, but also have the same meaning with the

input sentence. Similar to Reed et al. (2016), We ex-
tend the discriminator D to identify three types of
paraphrases for each input sentence x: (1) Sx: the
set of paraphrases produced by human correspond-
ing to x, (2) SG the set of paraphrases produced by
the generator G corresponding to x, and (3) S\x
the set of paraphrases produced by human, but are
randomly sampled from all paraphrases which may
be irrelevant to the given sentence x. Then the
training objective is given below:

Lgan(x, y) = Ey∈Sx log q(x, y)

+ α · Ey∈SG
log (1− q(x, y))

+ β · Ey∈S\x log (1− q(x, y))

(3)

Notice that the irrelevant sentences given to the
discriminator is a common practice of training
CGANs. Without this term, theoretically any topic
sentences given to the discriminator will be consid-
ered correct.

The goal of the generator is to generate para-
phrases that are semantically consistent and nat-
ural (i.e., indistinguishable for the discriminator).
Therefore it should minimize Eq. 3. The goal of
the discriminator is to distinguish artificial para-
phrases (i.e., those generated from the generator),
the golden paraphrases (i.e., those produced by hu-
mans corresponding to the input), and irrelevant
paraphrases (i.e., those produced by humans but
irrelevant to the input). Therefore it should maxi-
mize Eq. 3. This can be formalized as the following
minimax problem:

min
G

max
D
Lgan(x, y) (4)

We adopt the adversarial training technique to
optimize problem 4. To address the problem that
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the gradient cannot pass back to the generator, we
formalize the generation of discrete tokens as a
sequential decision-making process and adopt the
policy gradient and early feedback techniques de-
scribed in Yu et al. (2017). We recommend readers
refer to Yu et al. (2017) for more details.

3.2 Diversity Loss Term
3.2.1 Motivation
We find in experiments that directly applying the
conditional GAN model described above does not
satisfactorily generate diverse paraphrases. Specif-
ically, even if we sample multiple different z, the
generated paraphrases are the same in many cases.
This means that the latent code does not work or
has minor impacts. We think this is because the
conditional texts are highly structured and provide
strong prior knowledge to guide the generation pro-
cess, making the latent code negligible. Besides,
from the perspective of optimization, this can be in-
terpreted as the mode collapse problem (Salimans
et al., 2016), where only a few modes get learned
and the generator only generates samples from a
few modes.

To solve this problem and produce diverse para-
phrases, we propose to encourage the generator to
explore more modes in the latent space and make
the generator sensitive to latent codes. Inspired by
Odena et al. (2018), we incorporate the conditional
GAN with a diversity loss term.

3.2.2 Formulation
Given an input sentence x, we sample a set of
k latent codes {z(i)}ki=1 from the Gaussian dis-
tribution and generate corresponding paraphrases
{y(i)|y(i) = G(x, z(i))}ki=1. For the convenience
of narration, we denote ỹ(i) as the vector represen-
tation of y(i), where ỹ(i) is obtained by taking the
hidden state of the last time step of y(i). We use the
L2 distance

∥∥ỹ(i) − ỹ(j)
∥∥

2
to measure the differ-

ence between ỹ(i) and ỹ(j), and use
∥∥z(i) − z(j)

∥∥
2

to measure the difference between z(i) and z(j),
and denote u(i,j) as the ratio of

∥∥ỹ(i) − ỹ(j)
∥∥

2
and∥∥z(i) − z(j)

∥∥
2
:

u(i,j) =
∥∥ỹ(i) − ỹ(j)

∥∥
2

/∥∥z(i) − z(j)
∥∥

2
(5)

Then diversity loss is calculated as:

Ldiv =
1

k · (k − 1)

k∑
i=1

k∑
j 6=i

max
(
λ− u(i,j), 0

)
(6)

where λ is a slack factor.
During training, the diversity loss Ldiv are ap-

pended to the original objective function:

L = Lgan + γLdiv (7)

where γ is the weight parameter. Combining the
diversity loss term, the optimization problem be-
comes

min
G

max
D
L(x, y) (8)

We use the same techniques described in Section
3.1.3 to solve this problem.

3.2.3 Why does it work

In Eq. 6, Ldiv > 0 ⇔ u(i,j) < λ ⇔ ‖ỹ(i) −
ỹ(j)‖2 < λ·‖z(i)−z(j)‖2, this means that the gener-
ator will be punished if it does not produce different
paraphrases given different latent codes. Therefore,
the generator are forced to focus more on the latent
codes and generate different paraphrases.

From the perspective of mode collapse, mini-
mizing Eq. 6 can prevent the generator from pro-
ducing samples only from a few modes, and en-
hance the chances of producing samples from some
minor modes. Minimizing Eq. 6 can be seen as
maximizing

∥∥ỹ(i) − ỹ(j)‖2/‖z(i) − z(j)‖2, where∥∥ỹ(i)−ỹ(j)‖2/‖z(i)−z(j)‖2 corresponds to a lower-
bound of the gradient of the generator:

‖ỹ(i) − ỹ(j)‖∥∥z(i) − z(j)
∥∥

=
‖
∫

Γ∇zG(x, z) dz‖
‖z(i) − z(j)‖

=
‖
∫ 1

0 ∇zG(x,Γ(t)) · (z(i) − z(j)) dt‖
‖z(i) − z(j)‖

≤
∫ 1

0 ‖∇zG(x,Γ(t))‖‖z(i) − z(j)‖ dt

‖z(i) − z(j)‖

=

∫ 1

0
‖∇zG(x,Γ(t))‖ dt

(9)

where Γ(t) = tz(i) + (1− t)z(j) is a line segment
with z(i) and z(j) as the end points.

Eq. 9 reveals that for any two modes z(i) and
z(j), maximizing Eq. 5 will increase the gradient
of the generator between z(i) and z(j). Therefore,
by increasing the gradient of the generator, more
modes can be learned, and thus the generator has
the chance to generate samples from minor modes.
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4 Experiments

4.1 Dataset

There are many datasets for paraphrase genera-
tion. We choose the two most widely used datasets,
Quora1 and MSCOCO (Lin et al., 2014) for experi-
ments.

Quora Quora dataset consists of over 400K can-
didate question paraphrase pairs, and each pair has
a manually annotated label. The two questions are
paraphrasing each other only when the question
pair is annotated as 1. This dataset contains 155K
paraphrase question pairs in total.

MSCOCO MSCOCO is a benchmark for the
task of image captioning. This dataset contains
over 82K training and 42K validation images, and
each image contains at most five human-labeled
captions. Similar to previous work on paraphrase
generation, we consider different captions of the
same image as paraphrases. Following previous
work, we reduce the sentences to the size of 15
words.

4.2 Evaluation Metrics

BLEU4 : BLEU4 is the most widely used eval-
uation metric in paraphrase generation. We report
the average BLEU4 score of the k outputs. No-
tice that some works also calculate the ROUGE
or TER scores, but we think the role of these two
metrics overlaps with the BLEU metric, as they
all calculate the degree of overlap between outputs
and references. Therefore we only calculate the
BLEU score to evaluate the closeness of outputs to
the references.

Self-BLEU : To evaluate the degree to which the
generated paraphrases are different from the origi-
nal sentence, we propose to calculate the BLEU4
score between the generated paraphrases and input
sentence. We name it “self-BLEU”. The lower the
self-bleu score, the more significant the change in
the generated paraphrase. We report the average
Self-BLEU score of the k outputs.

Pairwise-BLEU : We propose to calculate the
“pairwise-BLEU” score to evaluate the difference
between the k different paraphrases generated from
the same given sentence. Concretely, for k outputs
{y1, y2, · · · , yk}, we compute the BLEU4 score

1https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

between all yi and yj (i 6= j), and average the
k(k − 1)/2 scores. A low pairwise-BLEU score
means a high diversity between outputs, and vice
versa. We abbreviate the Pairwise-BLEU as “P-
BLEU”.

BERTScore : To evaluate the semantic changes
of the generated paraphrase compared with the in-
put sentence, we calculate the BERTScore (Zhang
et al., 2020) between the generated paraphrase and
input sentence. We report the average BLEU4
score of the k outputs.

Human Evaluation : In addition to the above
automatic evaluation metrics, we also conduct hu-
man evaluation. We randomly sample 50 examples
from the test set of Quora and MSCOCO datasets
respectively. We ask five volunteers to evaluate
the quality of the generated paraphrases from the
following three aspects: (1) Fidelity: how semanti-
cally consistent are the generated paraphrases com-
pared to the input sentence? (2) Fluency: how
fluent are the generated paraphrases? (3) Diver-
sity: how diverse are the generated paraphrases?
(4) Variability: How much change do the generated
paraphrases have in the form of expression com-
pared with the input sentences? These scores are
all between 1-5, with 5 being the best.

4.3 Competitive Models

We compare our model with the following base-
lines:

LSTM The stacked residual-LSTM proposed by
Prakash et al. (2016). We reimplemented this base-
line ourselves.

Transformer The standard Transformer model
proposed by Vaswani et al. (2017). To improve
the diversity of outputs, we test three variants: (1)
Transformer + beam: using beam search to gen-
erate k different outputs, (2) Transformer + di-
vbeam: using the diverse beam search proposed by
Vijayakumar et al. (2016) to generate k different
outputs, and (3) Transformer + sampling: using
the sampling strategy to generate each token in the
decoding stage.

VAE-SVG The variational auto-encoder model
described in Gupta et al. (2018). We implement this
model ourselves to participate in the experiments.

D-PAGE The Diverse Paraphrase Generation
model proposed by Xu et al. (2018b). They use a

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Method Quora MSCOCO
BLEU ↑ Self-BLEU ↓ P-BLEU ↓ BERTScore ↑ BLEU ↑ Self-BLEU ↓ P-BLEU ↓ BERTScore ↑

Source 32.05 100.00 - 100 10.60 100.00 - 100
Reference 100.00 32.05 - 79.24 100.00 10.60 - 63.74
Residual-LSTM 24.57* 42.79* 46.01* 77.88* 18.36* 10.52* 47.90* 62.22*
Transformer + beam 30.59 42.30* 49.69* 80.69 22.06 9.44* 49.26* 66.86
Transformer + divbeam 30.07 36.48* 35.73* 81.02 20.28 11.11* 38.79* 63.06*
Transformer+sampling 21.69* 20.31 26.07 63.40* 7.49* 3.04 18.83* 50.73*
VAE-SVG 32.00 37.53* 44.42* 79.44 23.90 9.28 35.10* 61.74*
D-PAGE 29.29 36.68* 40.10* 80.65 22.00 9.13 39.49* 66.13
DPGAN 23.78* 23.64 34.94* 76.19* 12.54* 6.99 19.49* 57.13*
CGAN 29.83 38.73* 53.06* 80.19 22.03 11.26* 44.55* 66.97
DivGAN (average) 28.49 33.90 32.64 80.31 20.63 8.51 15.45 66.31
DivGAN (best) 31.56 34.31 - 81.08 24.06 10.51 - 66.70

Table 1: Experimental results of paraphrase generation on Quora and MSCOCO datasets. Statistically significant
improvements (p < 0.01) over DivGAN (average) are marked with *.

Method Quora MSCOCO
Source 32.05 10.60
DNPG 25.03 29.16
RbM-SL 35.81 -
MC-WGAN 27.54 22.22
MC-WGAN (best) 32.33 27.83
UPSA 18.18 14.16
DivGAN (average) 28.49 20.63
DivGAN (best) 31.56 24.06

Table 2: BLEU4 score results on Quora and MSCOCO
dataset.

shared decoder with different decoder embeddings
to generate different outputs.

DPGAN The Diversity-Promoting GAN pro-
posed by Xu et al. (2018a). They assign low reward
for repeated text and high reward for novel text to
prompt diverse outputs.2

CGAN The conditional GAN with the same ar-
chitecture as our model, but without the diversity
loss term.

Other baselines We also report the results of
DNPG (Li et al., 2019), RbM-SL (Li et al., 2018),
MC-WGAN (An and Liu, 2019), and UPSA (Liu
et al., 2019). Notice that they focus on generating
high-quality single paraphrase, and do not test to
generate multiple paraphrases in their experiments.
Thus we can only list their BLEU4 scores for refer-
ence.3

4.4 Implementation Details
For the generator, the encoder is set as a one-
layer bidirectional GRU network with inner self-

2https://github.com/lancopku/DPGAN
3They do not release their codes, so we cannot get their

results of generating multiple paraphrases.

attention, and the decoder is set as a two-layer uni-
directional GRU network. The dimension of the
input and hidden size is set to 512. The latent
code dimension is set to 512, and the latent code is
concatenated to each input token. For the discrimi-
nator, the CNN network is the same as Kim (2014),
where the size of filter windows are set as 3, 4, 5
with 100 feature maps each.

Following previous work on GAN-based text
generation, we pre-train the generator using stan-
dard MLE loss for 25 epochs, and pre-train the dis-
criminator using the objective in Eq. 3 for 5 epochs.
After pre-training, the generator and discriminator
are trained alternatively, where each iteration con-
sists of a G-step followed by a D-step.

We use the NLTK4 tool to process the English
texts. The vocabulary sizes are set as 50,000 and
80,000 for Quora and MSCOCO datasets, respec-
tively. We set α = 0.8 and β = 0.8 in Eq. 3, and
γ = 10 in Eq. 7 according to the performance on
the validation set.

4.5 Experiments Setup
For generative models, we sample
z(1), z(2), · · · , z(k) from the Gaussian distri-
bution to generate k outputs. For Transformer
models, we use the beam search to generate
k outputs. We set k = 3 for all models in
experiments.

5 Results and Analysis

5.1 Results of Automatical Evaluation
Metrics

The comparison results of our model and main base-
line models on Quora and MSCOCO datasets are

4https://github.com/nltk/nltk

https://github.com/lancopku/DPGAN
https://github.com/nltk/nltk
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Method Fid. ↑ Flu. ↑ Div. ↑ Var. ↑
Reference 3.66 4.04 - 3.20
Transformer+beam 3.67 3.92 3.47 3.20
Transformer+divbeam 3.61 3.84 3.70 3.37
Transformer+sampling 2.42 2.69 3.86 3.74
VAE-SVG 3.36 3.92 3.62 3.23
D-PAGE 3.56 3.81 3.43 3.31
DPGAN 3.28 3.93 3.71 3.75
CGAN 3.47 4.10 3.50 3.36
DivGAN 3.58 4.03 3.87 3.34

Table 3: Results of the human evaluation on the Quora
dataset.

Method Fid. ↑ Flu. ↑ Div. ↑ Var. ↑
Reference 3.07 3.90 - 3.51
Transformer+beam 3.15 3.77 3.34 3.46
Transformer+divbeam 3.00 3.75 3.73 3.52
Transformer+sampling 2.18 2.07 3.57 3.75
VAE-SVG 2.95 3.80 3.82 3.47
D-PAGE 3.02 3.71 3.48 3.37
DPGAN 2.95 3.66 3.76 3.71
CGAN 3.11 3.83 3.79 3.43
DivGAN 3.12 3.80 3.95 3.52

Table 4: Results of the human evaluation on the
MSCOCO dataset.

shown in Table 1. For the other baselines, we also
show the BLEU4 scores in Table 2 for reference.

In terms of BLEU4 score, our DivGAN (aver-
age) performs worse than RbM-SL, MC-WGAN,
VAE-SVG, D-PAGE and those transformer-based
methods. However, we strongly argue that this
does not mean that the quality of our generated
paraphrases is worse than those generated by
these models. Previous works have shown that
BLEU is not a good measure for evaluating sev-
eral text generation tasks, including dialogue gen-
eration (Liu et al., 2016), sentence simplification
(Sulem et al., 2018) and paraphrase generation (Liu
et al., 2010; An and Liu, 2019). First, we also think
that the BLEU itself is not is a perfectly reasonable
metric for the paraphrase generation task. The para-
phrases are highly diversified in nature, but there
is only one reference in these paraphrase datasets.
Taking the sentences “what can i do to overcome
anxiety” with the human reference “what do i do to
reduce my anxiety” for example, our model gener-
ates sentences like “how do i overcome anxiety” or

“what’s the best way to overcome anxiety” which
are low in BLEU score, but are good paraphrases
from human’s point of view. Therefore, we think
that a high BLEU score only indicates a high de-
gree of overlap between the generated paraphrase
and reference, but does not indicate high quality.

Second, the BERTScore and the human evaluation
results show that the paraphrases we generate are
no worse than these models in terms of relevance
and fluency, and even better than these models. It
is worth mentioning that in terms of BERTScore
and human evaluation, the DivGAN model even
outperforms the human reference. Third, we also
find that the more diverse the paraphrases gener-
ated, the lower the average BLEU score is. This
is because once we generate a paraphrase which is
very similar to the reference, the diverse loss will
encourage the rest paraphrases to be different from
this paraphrase, which causes the BLEU score of
the rest k− 1 paraphrases to be lower, thereby low-
ering the average BLEU score. We calculate the
highest BLEU score among the k results, and find
that it is 3 ∼ 4 points higher than the average score
(see DivGAN (best)).

In terms of the Pairwise-BLEU score, the Div-
GAN model significantly outperforms all baselines
(except the Transformer + sampling model on
Quora dataset), indicating that the proposed model
can generate diverse sentences effectively. We no-
tice that just by removing the diverse loss term from
DivGAN, the Pairwise-BLEU of CGAN is greatly
increased (from 32.64 to 53.06 on Quora, and from
15.45 to 44.55 on MSCOCO). By checking the out-
puts, we find that CGAN generates a lot of repeated
sentences, thereby boosting the Pairwise-BLEU
score. We find that our DivGAN occasionally pro-
duces repeated sentences either, but the number
of repeated sentences generated by DivGAN is far
less than that of C-GAN, D-PAGE and VAE-SVG.
These results demonstrate the effectiveness of our
proposed diverse loss.

The Transformer + sampling model seems to
be able to generate diverse outputs according to
the low scores of Self-BLEU and Pairwise-BLEU.
However, by checking the outputs, we find that
Transformer + sampling model produces large
amounts of meaningless text, such as sentences in
Table 5. These near-randomly generated tokens
make Transformer + sampling’s Self-BLEU and
Pairwise-BLEU scores lower, making the BLEU
and BERTScore scores lower, either.

Although the D-PAGE tries to obtain different
outputs from using different decoder embeddings,
we find that the sentences generated by different
decoders are the same, or of little changes in many
cases. This is because the decoders are not explic-
itly encouraged to produce different results.
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The DPGAN model can achieve a low pairwise-
bleu score, but its BLEU4 and BERTScore are
also low. By checking the outputs, we find that
this is because DPGAN tends to produce long sen-
tences. To generate “novel” sentences, DPGAN
uses the cross-entropy loss as the reward and long
sentences can have a high reward. Therefore, DP-
GAN achieves low BLEU4 score as the references
are relatively short, and achieves low BERTScore
as the long text will change the semantics to some
extent.

In terms of BERTScore, it can be seen that al-
though our model achieves lower BLEU scores in
some cases, it can achieve similar or even higher
BERTScore. To some extent, this shows that al-
though the paraphrases generated by our model are
more different from human references, the quality
of these paraphrases is still good.

5.2 Results of Human Evaluations

Table 3 and Table 4 show the results of the human
evaluation on the Quora and MSCOCO datasets,
respectively.

It can be seen that in terms of the quality (fi-
delity, fluency, and variability), all models’ scores
are close to the human reference, except the Trans-
former + sampling. This shows that all models
can generate human-like paraphrases. But in terms
of the diversity score, our proposed model sur-
passes other competitive models, indicating that
our model can generate more diverse paraphrases.

6 Case Study

Table 5 shows outputs of different models for an
input sentence from the Quora dataset. We have
the following observations.

First, using traditional beam search can produce
different outputs, but the generated texts are of high
similarity with minor modification (for example,
replacing “can you” with “do you”, or replacing
“while awake” with “while you are awake”). Sec-
ondly, using the sampling strategy during decoding
sometimes produces unnatural output, especially at
the beginning or end of the sentence (see the second
and third sentences in Table 5). Thirdly, VAE-SVG
and C-GAN sometimes produce the same outputs
(see the first and third sentences in C-GAN in Ta-
ble 5), indicating that the latent codes sometimes
do not work well. Transformer + divbeam, DP-
GAN, and our DivGAN model can produce high-
quality and diverse outputs. By comparing more

Source Text: can you dream while awake ?
Reference: can people dream while they are awake ?
Transformer + beam:
1: can you dream while awake ?
2: can you dream while you are awake ?
3: do you dream while awake ?
Transformer + divbeam:
1: can you dream while you are awake ?
2: how can i dream while awake ?
3: what are some ways to dream while awake ?
Transformer + sampling:
1: can you dream while you’re awake ?
2: importantly .5 . can you dream while you have awake
?
3: can you dream while you’re awake ? fiance , so , i /
anything .
VAE-SVG:
1: can you dream when you are awake ?
2: do you dream while awake ?
3: can you dream when you wake up ?
D-PAGE:
1: can you dream while awake ?
2: can you dream while you are awake ?
3: do you dream while awake ?
DPGAN:
1: how can you dream while you are wake up ?
2: are there some ways for you to dream awake ?
3: how do you dream while you had awake?
C-GAN:
1: can you dream while you are awake ?
2: how can i dream while awake ?
3: can you dream while you are awake ?
DivGAN:
1: how do you dream while you are awake ?
2: is it possible to dream while you have awake ?
3: do you dream while awake ?

Table 5: An example of the case study from the Quora
dataset.

generated samples from the test set, we find that our
DivGAN model can generate more diverse samples
than the other two models.

7 Conclusions

In this paper, we propose a conditional generative
adversarial network based model to tackle the task
of diverse paraphrase generation. To solve the prob-
lem of the minor impacts of the latent codes and
the mode collapse in the conditional GAN, we pro-
pose to add a diversity loss term to the objective.
The diversity loss term encourages the generator
to explore more in the latent space and generate
samples from some minor modes. Experimental re-
sults demonstrate the effectiveness of the proposed
diversity loss term. In the future, we will apply the
diversity loss to more tasks and models.
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