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Abstract

In sequence-to-sequence models, classical op-
timal transport (OT) can be applied to seman-
tically match generated sentences with target
sentences. However, in non-parallel settings,
target sentences are usually unavailable. To
tackle this issue without losing the benefits of
classical OT, we present a semantic matching
scheme based on the Optimal Partial Trans-
port (OPT). Specifically, our approach par-
tially matches semantically meaningful words
between source and partial target sequences.
To overcome the difficulty of detecting active
regions in OPT (corresponding to the words
needed to be matched), we further exploit prior
knowledge to perform partial matching. Ex-
tensive experiments are conducted to evaluate
the proposed approach, showing consistent im-
provements over sequence-to-sequence tasks.

1 Introduction

Sequence-to-sequence (Seq2Seq) models are
widely used in various natural-language-processing
tasks, such as machine translation (Sutskever et al.,
2014; Cho et al., 2014; Bahdanau et al., 2015), text
summarization (Rush et al., 2015; Chopra et al.,
2016) and image captioning (Vinyals et al., 2015;
Xu et al., 2015). Typically, these models are based
on an encoder-decoder architecture, with an en-
coder mapping a source sequence into a latent vec-
tor, and a decoder translating the latent vector into
a target sequence. The goal of a Seq2Seq model is
to optimize this encoder-decoder network to gen-
erate sequences close to the target. Therefore, a
proper measure of the distance between sequences
is crucial for model training.

Wasserstein distance between two text se-
quences, i.e., word-mover distance (Kusner et al.,
2015), can serve as an effective regularizer for se-
mantic matching in Seq2Seq models (Chen et al.,
2019). Classical optimal transport models require
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that each piece of mass in the source distribution is
transported to an equal-weight piece of mass in the
target distribution. However, this requirement is
too restrictive for Seq2Seq models, making direct
applications inappropriate due to the following: (i)
texts often have different lengths, and not every
element in the source text corresponds an element
in the target text. A good example is style transfer,
where some words in the source text do not have
corresponding words in the target text. (ii) it is
reasonable to semantically match important words
while neglecting some other words, e.g., conjunc-
tion. In typical unsupervised models, text data are
usually non-parallel in the sense that pairwise data
are typically unavailable (Sutskever et al., 2014).
Thus, both pairwise information inference and text
generation must be performed in the same model
with only non-parallel data. Classical OT is not
applicable without target text sequences. However,
partial target information is available, for exam-
ple, the detected objects in an image should be de-
scribed in its caption, and the content words when
changing the style should be preserved. OT will
fail in these cases but matching can be performed
by optimal partial transport (OPT). Specifically, we
exploit the partial target information representation
via partially matching it with generated texts. The
partial matching is implemented based on lexical
information extracted from the texts. We call our
method SEmantic PArtial Matching (SEPAM).

To demonstrate the effectiveness of SEPAM, we
consider applying it on sequence-prediction tasks
where semantic partial matching is needed: (i) in
unsupervised text-style transfer, SEPAM can be em-
ployed for content preservation via partially match-
ing the input and generated text; (ii) in image cap-
tioning, SEPAM can be applied to partially match
the objects detected in images with corresponding
captions for more informative generation; (iii) in
table-to-text generation, SEPAM can prevent hallu-
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cination (Dhingra et al., 2019) via partially match-
ing tabular key words with generated sentences.

The main contributions of this paper are sum-
marized as follows: () A novel semantic match-
ing scheme based on optimal partial transport is
proposed. (¢7) Our model can be interpreted as in-
corporating prior knowledge into the optimal trans-
port to exploit the structure of natural language,
while making the algorithm tractable for real-world
tasks. (#47) In order to demonstrate the versatility
of the proposed scheme, we empirically show con-
sistent improvements in style transfer for content
preservation, image captioning for informative im-
age descriptions and in table-to-text generation for
faithful generation.

2 Background
2.1 Optimal Transport

Optimal transport defines distances between prob-
ability measures on a domain X (the word-
embedding space in our setting). The optimal trans-
port distance for two probability measures p and
v is defined as (Peyré et al., 2017):

DC(M: V) = 'yeliII(l;fL,u) E(w,y)w‘y [C(CC, y)i (D
where II(p, ) denotes the set of all joint distri-
butions 7 (x,y) with marginals pu(x) and v(y);
c(x,y) : X x X — R is the cost function for mov-
ing  to y, e.g., the Euclidean or cosine distance.
Intuitively, the optimal transport distance is the min-
imum cost that « induces in order to transport from
p to v. When c¢(z, y) is a metric on X, D.(u,v)
induces a proper metric on the space of probability
distributions supported on X, commonly known as
the Wasserstein distance (Villani, 2008).

We focus on applying the OT distance on tex-
tual data. Therefore, we only consider OT be-
tween discrete distributions. Specifically, con-
sider two discrete distributions p,v € P(X),
which can be presented as p = Y ;" | u;0,, and
v = Z 1 Vj0y, with 5 the Dirac function cen-
tered on «. The welght vectors u = {u; }I' | € A,
and v = {v;}/"; € A,, belong to the simplex,
ie, Yot u; = > M v =1, as both p and v
are probability distributions. Under such a setting,
computing the OT distance defined in (1) can be re-
formulated as the following minimization problem:

We(p,v) = mln Tij - c(xi, Y

<T, C> :

= min
Tell(p,v)
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where II(u,v) = {T e R}P™|T1,, =
u, T'1, = v}, 1, denotes an n-dimensional all-
one vector, C is the cost matrix given by C;; =
c(xi,y;) and (T,C) = Tr(T ' C) represents the
Frobenius dot-product.

2.2 Optimal Partial Transport

Optimal partial transport (OPT) was studied ini-
tially by Caffarelli and McCann (2010). It is a
variant of optimal transport, where only a portion
of mass is to be transported, in an efficient way. In
OPT, the transport problem is defined by generaliz-
ing 7 as a Borel measure such that:

De(p,v) = [c(z, y)]dy(z,y) . (3)

inf /
YEN < (£,9), M(y)=m

where TI<(f,g) is defined as the set of nonneg-
ative finite Borel measures on R™ x R™ whose
first and second marginals are dominated by f
and g respectively, i.e., (A x R") < [, f(z)dz
and y(R" x A) < [, g(y)dx for all A E R",
M(7) £ [gn.gn dy represents the mass of ~ in
(3), and m € [0, min{||f||z,, ||¢9|/z, }]. Here f and
g can be considered as the maximum marginal
measures for v. As a result, if m is less than
min{||f||z,, lg|lz, } this means ~ assigns zero
measures for some elements of the space. In other
words, the zero-measure elements need not be con-
sidered when matching 1 and v. The elements
with non-zero measure are all active regions. A
challenge in OPT is how to detect these active re-
gions. Thus directly optimizing (3) is typically
very challenging and computationally expensive.
In our setting of text analysis, we propose to lever-
age prior knowledge to define the active regions, as
introduced below.

3 Semantic Matching via OPT

In unsupervised Seq2Seq tasks without pair-wise
information, naively matching the generated se-
quence with the weak-supervision information
(e.g., source text in style transfer) will render de-
ficient performance, even though both sentences
share similar content. In supervised settings, tar-
get and input sequences are of different lengths
but have similarity in terms of semantic meaning,
such as table-to-text generation. Motivated by this,
we propose a novel technique for semantic partial
matching and consider two scenarios: (i) text-to-
text matching and (if) image-to-text matching.
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Figure 1: Semantic Matching between the potential target (top) and the generated texts (bottom). The left shows
how to partially match two texts with different styles. The right shows how to partially match texts with concepts

detected from the images.

Text-to-Text Matching We consider semantic
matching between two sequences in Seq2Seq mod-
els, where partial matching is important: i) in the
unsupervised setting, such as non-parallel style
transfer, partially matching between the source and
target texts is helpful for content preservation. ii)
in the supervised setting, such as table-to-text gen-
eration, partially matching the input and target se-
quences can effectively avoid hallucination genera-
tion, i.e. text mentions extra information than what
is present in the source. Figure 1 shows an example
of partial matching, where part-of-speech (POS)
tags for each word are exploited to provide prior
knowledge. In these cases, directly applying OT
will cause imbalanced transportation issue or poor
performance.

Image-to-Text Matching Objects and their
properties (e.g., colors) are both included in the
pair-wise images and captions. Consider the image-
to-text matching in Figure 1. It is clear that each ob-
ject in the image has corresponding words/phases
in the captions. We can consider matching the la-
bels of detected objects in the image to some words
in its caption. Please note labels are not in one-
to-one correspondence with the text, thus directly
applying OT is inappropriate, similar to the case of
text-to-text matching.

Different Matching Schemes Hard matching
seeks to exactly match from the source and tar-
get. Typically, hard matching is too simple to be
effective without considering semantic similarity,
and if we apply classical optimal transport in un-
supervised settings, it causes an imbalance match-
ing, since some unnecessary words are included in
the source and the exact target is unavailable. To
tackle this issue, one can directly apply the opti-
mal partial transport (OPT) here to detect which
word has its correspondence and match the word
with its target. However, the detection process is
computationally expensive, which is not scalable
as a constrained optimization in (3) for real-world

tasks. Fortunately, we can exploit the syntax infor-
mation from text, and incorporate this information
as prior knowledge into OPT to avoid the detection
procedure.

3.1 Partial Matching via OPT

We formulate the proposed semantic matching as a
partial optimal-transport problem, where only parts
of the source and target are matched. Specifically,
we incorporate prior knowledge into the optimal
partial transport (OPT), and this prior knowledge
helps determine the set of words to match, i.e.,
M(X), where M(-) is a function giving a set in-
cluding the words/phases to match. The strategy of
how to determine M (-) depends on tasks.

OPT distance To apply the OT distance to text,
we first represent a sentence Y with a discrete dis-
tribution py = % Do de(y,) in the semantic space,
where the length-normalized point mass is placed
at the semantic embedding, e/ = e(y;), of each
token y; of the sequence Y. Here e(-) denotes a
word-embedding function mapping a token to its
d-dimensional feature representation. For two sen-

tences X and Y, we define their OPT distance

as:
W, = T;

(mv) = min 2; i€ , (4)
where II.(p, v) is the solution space, and every

solution T € Il.(u, v) satisfies T;; = 0 if z; ¢
M(X) ory; ¢ M(Y). Different from classical
OPT, the elements in @ or v to match have been
explicitly defined by M (-), which represents the
prior knowledge. In more detail, the constraint
of OPT is more specific, and does not need any
optimization procedure. We use cosine distance as
the cost function and c(e®, e¥) £ 1 — %
2 2
Approximation of OPT Computing the exact
OPT distance is computationally challenging (Fi-
galli, 2010). We bypass the difficulty of active
region detection using lexical information and re-

formulate it as an OT problem. We then em-
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Figure 2: Overview of the SEPAM architecture. Left: classical Seq2Seq, i.e., X and Y are pair-wise; Lsgm
implements a soft-copying mechanism via semantic partial matching. Right: unsupervised Seq2Seq, i.e., X and Y
are non-parallel; Lsgy provides the guidance for G(+), to generate Y relevant to X via semantic partial matching.
Solid lines mean gradients are backpropagated in training; dash lines mean gradients are not backpropagated.

ploy the IPOT algorithm (Xie et al., 2018) to ob-
tain an efficient approximation. In practice, we
use a keyword mask K, defined as K;; = 0 if
z; ¢ M(X)and y; ¢ M(Y) ; Kij = +o0
if x; ¢ M(X)xory; ¢ M(Y); and K;; = 1,
otherwise. Hence we define the OPT distance as
WE (px,py, K) = We (par(x), Pr(y)) - Specifi-
cally, IPOT considers proximal gradient descent to
solve the optimal transport matrix:

T = arg min {(T, C) 4y DKL(T,T(t))} . (5)
Te(p,v)

where C' = Ko C, 1/y > 0 is the general-

ized step-size, and the generalized KL-divergence

Dkr (T, T®) is used as the proximity metric. The

full approach is summarized as Algorithm 1 in Ap-

pendix A.

4 Semantic Partial Matching for Text
Generation

Assume there are two sets of objects X =
{XM, and Yy = {YWIY | we consider a
Seq2Seq model, where the input is' X, and the
output is a sequence of length 7" with tokens 1y,
ie., Y = (y1,y2...,yr). One typically assigns
the following probability to an observation y at
location t: p(y|Y <) = [softmax(g(s¢))]y, where
Y .= (y1,y2--.,y:). This specifies a probabilis-
tic model, i.e.,

logp(Y|X) = logp(y:|Y <1, X).  (6)
t

To train the model, one typically uses maximum
likelihood estimation (MLE):

Lvie = —E(x y)~x ) logp(Y[X)]. (7

"For simplicity, we omit the superscript “i” when the
context is independent of ¢. This applies to Y.
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We consider an encoder-decoder framework in
this paper, where a latent vector z is given by an
encoder Enc(-), with input X, i.e., z, = Enc(X).
Based on z,, a decoder () generates a new sen-
tence Y that is expected to be the same as Y. The
decoder can be implemented by an LSTM (Hochre-
iter and Schmidhuber, 1997), GRU (Cho et al.,
2014), or Transformer (Vaswani et al., 2017). A
unsupervised Seq2Seq model considers X and Y
as non-parallel, i.e., the pair-wise information is
unknown. One typically pretrains the generator
with the reconstruction loss:

Lag =Ey. y[—logp(Y|zy)], ®)

where z, = Enc(Y). Note the goal of unsuper-
vised Seq2Seq is to generate a sequence Y given
some object X . Hence, we seek to learn the condi-
tional generation distributions p(Y | X)), the same
as the classical Seq2Seq model. In practice, the
generator can be trained combining the reconstruc-
tion loss with some guidance loss containing the
information from X . The guidance loss function
can be defined following SEPAM, and the others
usually depend on tasks and we omit their details
for clarity.

Differentiable SEPAM Note that the SEPAM
loss is not differentiable due to the multinomial
distribution sampling process g; ~ Softmax(g,),
where g, is a logit vector given by the final layer
of the generator G(-). To enable direct back-
propagation from the SEPAM loss for generator
training, we consider the soft-argmax approxima-
tion (Zhang et al., 2017) to avoid the use of REIN-
FORCE (Sutton et al., 2000):

gt = Softmax(g,/7),

where 0 < 7 < 1 is the annealing factor. Given
two sentences, we denote the generated sequence



embeddings as S, = {&?}] | and partial reference

(2

embedding as S, = {ej? f;l in word or phrase
level. The cost matrix C is then computed as
Cij = c(é],e}). The semantic partial matching
loss between the reference and model generation

can be computed via the IPOT algorithm:

ﬁSEM - Wg(sga S7'7 K) . (9)

SEPAM Regularization SEPAM training objec-
tives discussed above only focus on generating
words with specific meanings and do not con-
sider the word-ordering. To train a proper text-
generation model, we propose to combine the
SEPAM loss with the likelihood loss Ly g in su-
pervised settings or Lag in unsupervised settings.
Hence, we have the training objective in unsu-
pervised settings: £ = Lag + ALsgm, where A
is the weight of SEPAM to be tuned. A similar
objective applies for supervised settings: £ =
Lyie + ALspm.  In the following, we discuss
how to extract and use prior knowledge for par-
tial matching in three downstream tasks:

() Non-parallel Style Transfer Semantic par-
tial matching between the source sentence and the
transferred one is helpful for content preservation,
as shown in Figure 1. It is usually the case that
the content words are nouns or verbs, and style
words are adjectives or adverbs. Hence, M (X))
and M (Y') are content word sets, extracted based
on the POS tags using NLTK. One can employ this
prior knowledge to perform different operations
for words: (i) for content words, we should en-
courage partial matching between the sentences by
Lsem; and (@f) for style words, we should discour-
age matching (Hu et al., 2017). More details are
provided in Appendix A.1.

(ii) Unsupervised Image Captioning Visual
concepts extracted from an image can be employed
for generating relevant captions in the unsuper-
vised setting. Feng et al. (2019) uses exactly hard-
matching and REINFORCE to update the caption-
ing model. Here, we apply the semantic partial
matching to encourage the generatation of visual-
concept words. Specifically, M (X)) releases the
visual concepts and M (Y) corresponds to the gen-
erated words realted to the object (i.e., nouns). This
visual concept regularization can also be applied in
the supervised setting complementing with MLE
loss.
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(iii) Table-to-Text Generation Semantic partial
matching can prevent hallucination generation,
i.e., text mentions extra information than what is
present in the table (Dhingra et al., 2019). M(Y)
extracts nouns from the generated sequence, and
M (X)) are keys in the table, then we used them
to compute Lspm. Semantic partial matching will
penalize the generator if extra information exists in
the generated text Y.

5 Related Work

Optimal transport in NLP Kusner et al. (2015)
first applied optimal transport in NLP, and pro-
posed the word mover’s distance (WMD). The
transportation cost is usually defined as Euclidean
distance, making the OT distance approximated
by solving a less-accurate lower bound (Kusner
et al., 2015). Based on this, Chen et al. (2018) pro-
posed a feature-mover distance for style transfer.
Chen et al. (2019) applied OT for classical seq-
to-seq, and formulated it as Wasserstein gradient
flows (Zhang et al., 2018). SEPAM moves forward
and applies OT in both supervised and unsuper-
vised settings (Artetxe et al., 2018; Lample et al.,
2017).

Unsupervised Seq2Seq Learning Different
from the standard Seq2Seq model (Sutskever et al.,
2014), parallel sentences for different styles are
not provided, and must be inferred from the data.
Unsupervised machine translation (Artetxe et al.,
2018; Lample et al., 2017) learns to translate
text from one language to another with two sets
of texts of these languages provided. Dai et al.
(2019) explores the transformer model as the
generator, instead of classical auto-regressive
models. Style transfer (Shen et al., 2017) aims at
transferring the styles of the texts with non-parallel
data. Compared with these tasks, unsupervised
image captioning (Feng et al., 2019) is more
challenging since images and sentences are in
distinct modalities.

Copying Mechanism This is related to the copy
network (Gu et al., 2016), which achieves retrieved-
based copying. Li et al. (2018) further proposed
a delete-retrieve-generate framework for the style
transfer. Chen and Bansal (2018) combine the ab-
straction with extraction in text summarization, and
achieves state-of-the-art results via reinforced word
selection. In this work, we proposed the semantic
partial matching, which can be regarded as a kind



Figure 3: Optimal matching matrix visualization. A
comparison between OT (left column) and SEPAM
(right column). The Optimal matching matrix of
SEPAM is sparse. The horizontal axis are the gener-
ated texts, and the vertical axis are the partial targets.

of soft-copying mechanism. Instead of the retrieval-
based exact copying used by (Gu et al., 2016; Li
et al., 2018), SEPAM considers semantic similarity,
and thus ideally delivers smoother transformation
in generation.

6 Experiments

6.1 Demonstration

Comparison between OT and SEPAM We
show two examples of classical OT and SEPAM un-
der two sequence-prediction tasks in Figure 3. The
first row shows the heat map of OT and SEPAM
on matching two sentences with different styles.
SEPAM employs the syntax information to match
selected words and all the content words are ex-
actly matched. However, some sentiment words
in classical OT are still matched, preventing suc-
cessful style transfer. The second row in Figure
3 shows the comparison on matching a generated
sentence with the detected concept set in image
captioning. The concepts are perfectly matched
with their corresponding words in the caption using
SEPAM, while OT includes some noisy matching
(light blue). In summary, SEPAM achieves bet-
ter matching than classical OT, and the matching
weights (T) of SEPAM is more sparse.

Implicit Use of Prior Knowledge We consider
using the weights w; of attentions from a LSTM-
based text classifier to determine which words
to match. As discussed in Wiegreffe and Pinter
(2019), a word with higher attention weight means
it is more important for classification, i.e., more rel-
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evant to the style. As shown in Figure 4, shows the
attention maps of three instances. Hence, we can
partially match words with lower attention weights
as they are mostly non-style words. However, em-
pirical results show implicit ways have much worse
results than the simple rule-based strategy with
POS tags.

the atmosphere of the church is very fun .

overall T was very with the compensation I got .
but the smell was so i will never go there again .

Figure 4: Attention maps for three Yelp instances.
Larger attention weight corresponds to darker color.

6.2 Unsupervised Text-style Transfer

Setup We use the same data and split method
described in (Shen et al., 2017). Experiments are
implemented with Tensorflow based on texar (Hu
et al., 2018). For a fair comparison, we use a simi-
lar model configuration to that of (Hu et al., 2017;
Yang et al., 2018). One-layer GRU (Cho et al.,
2014) encoder and LSTM attention decoder (gen-
erator) are used. We set the weight of semantic
matching loss as A = 0.2. Models are trained for a
total of 15 epochs, with 10 epochs for pretraining
and 5 epochs for fine-tuning.

Metrics We pretrain a CNN classifier, which
achieves an accuracy of 97.4% on the validation
set. Based on it, we report the accuracy (ACC) to
measure the quality of style control. We further
measure the content preservation using i) BLEU,
which measures the similarity between the origi-
nal and transferred sentences ii) ref-BLEU, which
measures content preservation comparing the trans-
ferred sentences with human annotations. Fluency
is evaluated with perplexity (PPL) of generated
sentences based on a pretrained language model.

Baselines We implemented CtrlGen (Hu et al.,
2017) and LM (Yang et al., 2018) as our baselines
and further added SEPAM on these two models
for validation. Further, conditional variational en-
coder (CVAE) (Shen et al., 2017) and retrieval-
based methods (Li et al., 2018) are added as two
baselines.

Analysis Results are shown in Tables 1. It may
be observed that combining our proposed method
with corresponding baselines exhibits similar trans-
fer accuracy and fluency, while maintaining the
content better. Specifically, SEPAM shows higher
BLEU scores on human annotated sentences, fur-



Model ACC (%) BLEU ref-BLEU PPL
CAE (Shen et al., 2017) 73.9 20.7 7.8 51.6
(Fu et al., 2018):

StyleEmbedding 8.1 67.4 19.2 120.1
MultiDecoder 46.9 40.1 12.9 113.1
(Li et al., 2018):

Template 80.1 57.4 20.5 170.5
Delete AndRetrieval 88.9 36.8 14.7 74.2
CtrlGen (Hu et al., 2017) 89.0 61.4 22.3 176.8
OT + CtrlGen 85.4 62.9 21.7 183.7
SEPAM+ CtrlGen 89.1 63.7 25.9 176.4
LM (Yang et al., 2018) 88.3 60.5 25.7 79.9
OT + LM 84.8 61.8 22.8 85.1

SEPAM+ LM 88.7 62.0 28.2 76.6

Table 1: Our model and baselines performance on test
dataset with human annotations.

Input: tasted really old , i could n’t believe it .

CtrlGen: adds really top , i could gorgeous believe it .

SEPAM+ CtrlGen: tasted really surprisingly , i could fantastic believe it .

LM: tasted really great , i could always believe it .

SEPAM+ LM: tasted really excellent , i could always believe it .

Input: they do not stock some of the most common parts .

CtrlGen: they do fantastic laughed some of the most common
parts .

SEPAM+ CtrlGen: they do authentic expertly some of the most fascinating
parts

LM: they do definitely right some of the most cool parts .

SEPAM+ LM: they do always stock some of the most amazing parts

Input: the woman who helped me today was very friendly
and knowledgeable .

CtrlGen: the woman who so-so me today was very rude and
knowledgeable .

SEPAM+ CtrlGen: the woman who helped me today was very rude and
knowledgeable .

LM: the woman who ridiculous me today was very rude
and knowledgeable .

SEPAM+ LM: the woman who helped me today was very rude and
stupid .

Table 2: Examples for comparison of different methods
on Yelp dataset.

ther validating its effectiveness on content preserva-
tion. It is interesting to see that lower BLEU scores
with original sentences does not imply higher
BLEU scores with the human annotations in Ta-
ble 1. Compared with other models, the proposed
model shows a better balance among accuracy, flu-
ency and content preservation, achieving the high-
est ref-BLEU.

zon Mechnical Turk. We randomly sample 100
sentences from the test set and ask 5 different re-
viewers to provide their rating scores of the models
in terms of fluency, style, and content preservation.
We require all the workers to be native English
speakers, with approval rate higher than 95% and
at least 100 assignments completed. For each sen-
tence, five shuffled samples generated by different
models are sequentially shown to a reviewer. Re-
sults in Table 3 demonstrate that the better perfor-
mance achieved by SEPAM, especially in terms of
content preservation.

6.3 Image Captioning

Setup We consider image captioning using the
COCO dataset (Lin et al., 2014), which contains
123,287 images in total and each image is anno-
tated with at least 5 captions. Following Karpathy’s
split (Karpathy and Fei-Fei, 2015), 113,287 images
are used for training and 5,000 are used for valida-
tion and testing. We note that the training images
are used to build the image set, with all the captions
left unused for any training. All the descriptions
in the Shutterstock image description corpus are
tokenized with a vocabulary size of 18,667 (Feng
et al., 2019). The LSTM hidden dimension and the
shared latent space dimension are fixed to 512. The
weighting hyper-parameters are chosen to make dif-
ferent rewards roughly the same scale. Specifically,
Ais set to 10. We train our model using the Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.0001. During the initialization process,
we minimize the cross-entropy loss using Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.001. When generating captions in the test
phase, we use beam search with a beam size of 3.

Metrics We report BLEU (Papineni et al.,
2002), CIDEr (Vedantam et al., 2015), and ME-
TEOR (Banerjee and Lavie, 2005) scores. The
results of different methods are shown in Table 5.

Method BLEU METEOR CIDEr SPICE
Model Style Content Fluency Feng et al. (2019)  38.2 27.5 22.9 6.6
CAE (Shen et al., 2017) 3.21 2.91 2.83 OUR IMPLEMENTATIONS
CtrlGen (Hu et al., 2017) 3.42 3.22 2.79 Hard Matching 385 272 182 78
LM (Yang et al., 2018) 3.38 3.32 3.20 oT 39.9 28.1 283 79
SEPAM+ CtrlGen 351 3.56 2.88 SEPAM 42.1 28.9 30.2 8.4
SEPAM+ LM 347 3.72 3.25

Table 3: Human evaluation results on Yelp dataset.

Human Evaluation We further conduct human
evaluations for the proposed SEPAM using Ama-
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Table 5: Performance comparisons of Unsupervised
captioning on the MSCOCO dataset.

Analysis Results in Table 5 show consistent im-
provement of SEPAM over classical OT. Classical



Method BLEU METEOR ROUGE PARENT //Precision/Recall
Seq2Seq (Wiseman and Rush, 2016)  22.24 19.50 39.49 43.41/49.09/41.80
Pointer (See et al., 2017) 19.32 19.88 40.68 49.52/61.73 /1 44.09
Structre Aware (Liu et al., 2018) 22.76 20.27 39.32 46.47/51.18/46.34
Transformer 23.48 21.89 42.50 52.60/63.20 /47.90
Transformer + OT 23.87 22.35 42.03 51.81/60.65/48.87
Transformer + SEPAM 24.06 22.29 42.83 53.16/62.99 / 48.81

Table 4: Performance comparisons of Table-to-Text Generation on the WikiPerson.

OT can improve upon the baseline via generating
specific words aligned with the detected visual con-
cepts. However, directly applying it in unsuper-
vised settings will suffer from the imbalance is-
sue (Craig, 2014), i.e., the generated texts contains
some useless elements without correspondence in
the targets. Our proposed SEPAM can avoid this
problem via partial matching, leading to better per-
formance.

Extension to Supervised Settings Our pro-
posed SEPAM Lggym can also be applied in a su-
pervised setting as a regularizer with the MLE loss.
We apply SEPAM in the captioning model, where
image features are fed into an LSTM sequence
generator with an Att2in attention mechanism (An-
derson et al., 2018). We pretrain the captioning
model for a maximum of 20 epochs, then use rein-
forcement learning to train it for another 20 epochs.
Testing is done on the best model with the vali-
dation set. We partially match the tags or visual
features of detected objects. Similarly, we see con-
sistent improvement of SEPAM over its baselines.

Method BLEU METEOR ROUGE CIDEr
Vinyals et al. (2015)  27.7 23.7 - 85.5
Gan et al. (2017) 56.6 25.7 - 101.2
Lu et al. (2017) 332 26.6 - 108.5
Chen et al. (2019) 33.8 25.6 - 102.9
OUR IMPLEMENTATIONS
MLE 34.3 26.2 55.2 106.3
Visual + OT 34.6 26.4 55.6 107.5
Visual + SEPAM 349 26.9 56.0 109.2
Tag + OT 34.8 26.5 55.6 107.9
Tag + SEPAM 34.4 27.0 56.1 111.6

Table 6: Performance comparisons of supervised image
captioning results on the MSCOCO dataset.

6.4 Table-to-Text Generation

Setup We evaluate SEPAM on table-to-text gen-
eration (Lebret et al., 2016; Liu et al., 2018;
Wiseman et al.,, 2018) with the WikiPerson
dataset (Wang et al., 2018) and preprocess the train-
ing set, with a vocabulary size of 50, 000. We use
the transformer encoder and decoder. We set the
number of heads as 8, the number of Transformer
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<Name_ID> Xia Jin
<occupation> Football player
14 February 1985

Chongging

<date of birth>
<place of birth>
<member of sports team> Guizhou Hengfeng F.C.
<member of sports team> Chongging Dangdai Lifan F.C.

<member of sports team> Chengdu Better City F.C.

MLE: Xia Jin (born 14 February 1985 in Guizhou) is a Chinese Football
player who currently plays for Guizhou Dangdai Lifan F.C. in the China
League One . he joined Guizhou Dangdai Lifan F.C. in the summer of 2010
. he joined Guizhou Dangdai Lifan F.C. in the summer of 2013 . he joined
Guizhou Dangdai Lifan F.C. in the summer of 2013 . he joined Guizhou
Dangdai Lifan F.C. in the summer of 2013 . he started his professional career
with Chongging Dangdai Lifan EC. .

OT: Xia Jin (born 14 February 1985 in Chongging) is a Chinese Football
player who currently plays for Guizhou Hengfeng F.C. in the China League
One . jin started his professional footballer career with Guizhou Hengfeng
F.C. in the Chinese Super League . jin would move to China League One side
Chongqing Dangdai Lifan F.C. in February 2011 . he would move to China
League Two side Chengdu Better City F.C. in January 2012 . he would move
to China League Two side Chongqing Dangdai Lifan E.C. in January 2013.
SEPAM: Xia Jin (born 14 February 1985 in Chongging) is a Chinese Football
player who currently plays for Guizhou Hengfeng F.C. in the China League
One . Xia Jin started his professional footballer career with Chongging
Dangdai Lifan F.C. in the Chinese Super League . Xia transferred to China
L League One side Chengdu Better City F.C. .

Table 7: An example of Table-to-Text Generation.

blocks as 3, the hidden units of the feed-forward
layer as 2048 and A = 0.1. Similarly, the model is
first trained with Ly g for 20, 000 steps and then
fine-tuning with Lggm.

Metrics For automatic evaluation, we apply the
widely used evaluation metrics including the stan-
dard BLEU(-4) (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005) and ROUGE (Lin,
2015) scores to evaluate the generation quality. Fol-
lowing Dhingra et al. (2019), we evaluate with
PARENT score on hallicination generation, which
considers both the reference texts and table content
in evaluations.

Analysis Results in Table 4 show consistent im-
provement of SEPAM over baselines in terms of
different evaluation metrics. Table 7 shows an ex-
ample of table-to-text generation. MLE halluci-
nates some information that does not appear in the



table. OT alleviates this issue, but still shows hal-
lucination since the imbalance transportation issue.
SEPAM generates almost no extra information, and
covers all the entries in the table.

7 Conclusions

We incorporate prior knowledge into optimal trans-
port, to encourage partial-sentence matching via
formulating it as an optimal partial transport prob-
lem. The proposed SEPAM shows broad applica-
bility and consistent improvements against popular
baselines in three downstream tasks: unsupervised
style transfer for content preservation, image cap-
tioning for informative descriptions and table-to-
text generation for faithful generation. Further,
the proposed technique can be regarded as a soft-
copying mechanism for Seq2Seq Models.
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