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Abstract

Code-mixing, the interleaving of two or more
languages within a sentence or discourse is
ubiquitous in multilingual societies. The lack
of code-mixed training data is one of the ma-
jor concerns for the development of end-to-end
neural network-based models to be deployed
for a variety of natural language processing
(NLP) applications. A potential solution is
to either manually create or crowd-source the
code-mixed labelled data for the task at hand,
but that requires much human efforts and of-
ten not feasible because of the language spe-
cific diversity in the code-mixed text. To cir-
cumvent the data scarcity issue, we propose an
effective deep learning approach for automati-
cally generating the code-mixed text from En-
glish to multiple languages without any paral-
lel data. In order to train the neural network,
we create synthetic code-mixed texts from the
available parallel corpus by modelling various
linguistic properties of code-mixing. Our code-
mixed text generator is built upon the encoder-
decoder framework, where the encoder is aug-
mented with the linguistic and task-agnostic
features obtained from the transformer based
language model. We also transfer the knowl-
edge from a neural machine translation (NMT)
to warm-start the training of code-mixed gen-
erator. Experimental results and in-depth anal-
ysis show the effectiveness of our proposed
code-mixed text generation on eight diverse
language pairs.

1 Introduction

Multilingual content is very prominent on social
media handles, especially in the multilingual com-
munities like the Indian ones. Code-mixing is a
common expression of multilingualism in infor-
mal text and speech, where there is a switch be-
tween the two languages, frequently with one in
the character set of the other language. This has
been a mean of communication in a multi-cultural

and multi-lingual society, and varies according to
the culture, beliefs, and moral values of the respec-
tive communities.

Linguists have studied the phenomenon of code-
mixing, put forward many linguistic hypotheses
(Belazi et al., 1994; Pfaff, 1979; Poplack, 1978),
and formulated various constraints (Sankoff and
Poplack, 1981; Di Sciullo et al., 1986; Joshi, 1982)
to define a general rule for code-mixing. How-
ever, for all the scenarios of code-mixing, par-
ticularly for the syntactically divergent languages
(Berk-Seligson, 1986), these limitations cannot be
postulated as a universal rule.

In recent times, the pre-trained language model
based architectures (Devlin et al., 2019; Radford
et al., 2019) have become the state-of the-art
models for language understanding and genera-
tion. The underlying data to train such models
comes from the huge amount of corpus, avail-
able in the form of Wikipedia, book corpus etc.
Although, these are readily available in various
languages, there is a scarcity of such amount of
data in code-mixed form which could be used
to train the state-of-the-art transformer (Vaswani
et al., 2017) based language model, such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
XLM (Lample and Conneau, 2019) etc. The ex-
isting benchmark datasets on various NLP tasks
can also be transformed to the code-mixed envi-
ronmental setup, and subsequently be leveraged
to assess the model’s flexibility under the mul-
tilingual framework. Creating large-scale code-
mixed datasets for such tasks is expensive and
time-consuming as it requires considerable human
efforts and language expertise to generate these
manually. Therefore, it is necessary to build an au-
tomated code-mixed generation system capable of
modeling intra-sentential language phenomenon.

In this paper, we formulate the code-mixed phe-
nomenon using the feature-rich and pre-trained lan-
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guage model assisted encoder-decoder paradigm.
The feature-rich encoder assists the model to cap-
ture the linguistic phenomenon of code-mixing,
especially to decide when to switch between the
two languages. Similarly, the pre-trained language
model provides the task-agnostic feature which
helps to encode the generic features. We adopt the
gating mechanism to fuse the features of the pre-
trained language model and the encoder. Addition-
ally we also perform transfer learning to learn the
prior distribution from the pre-trained NMT. The
pre-trained NMT weights are used to initialize the
code-mixed generation network. Transfer learning
guides the code-mixed generator to generate syn-
tactically correct and fluent sentences.

We summarize the contributions of our work be-
low:
(i). We propose a robust and generic method for
code-mixed text generation. Our method exploits
the capabilities of linguistic feature-rich encoding
and pre-trained language model assisted encoder to
capture the code-mixed formation across the lan-
guages. Our model is further tailored to gener-
ate the syntactically correct, adequate and fluent
code-mixed sentences using the prior knowledge
acquired by the transfer learning approach.
(ii). To warm start the training, we devise a robust
and generic technique to automatically create the
synthetic code-mixed sentences by modeling the
linguistic properties using the parallel corpus. To
the best of our knowledge, this is the very first step
where we attempt to propose a generic method that
produces the correct and fluent code-mixed sen-
tences on multiple language pairs. The generated
synthetic dataset will be a useful resource for ma-
chine translation and multilingual applications.
(iii). We demonstrate with detailed empirical
evaluations the effectiveness of our proposed ap-
proach on eight different language pairs, viz.
English-Hindi (en-hi), English-Bengali (en-bn),
English-Malayalam (en-ml), English-Tamil (en-
ta), English-Telugu (en-te), English-French (en-fr),
English-German (en-de) and English-Spanish (en-
es).

2 Related Work

In the literature, there have been efforts for cre-
ating code-mixed texts by leveraging the linguis-
tic properties. Pratapa et al. (2018) explored the
equivalence constraint theory to construct artificial
code-mixed data to reduce the perplexity of the

RNN-based language model.

Winata et al. (2018) proposed a multitask learn-
ing framework to address the issue of data scarcity
in code-mixed setting. Particularly, they lever-
aged the linguistic information using a shared syn-
tax representation, jointly learned over Part-of-
Speech (PoS) and language modeling on code-
switched utterances. Garg et al. (2018) exploited
SeqGAN in the generation of the synthetic code-
mixed language sequences. Most recently, Winata
et al. (2019a) utilized the language-agnostic meta-
representation method to represent the code-mixed
sentences. There are also other studies (Adel et al.,
2013a,b, 2015; Choudhury et al., 2017; Winata
et al., 2018; Gonen and Goldberg, 2018; Samanta
et al., 2019) for code-mixed language modelling.

There are some other NLP areas like parts-of-
speech (Solorio and Liu, 2008b; Gupta et al., 2017;
Patel et al., 2016), sentiment analysis (Rudra et al.,
2016; Gupta et al., 2016a), question answering
(Gupta et al., 2018b; Chandu et al., 2017), lan-
guage identification (Solorio et al., 2014; Gupta
et al., 2014; Hidayat, 2012; Solorio and Liu,
2008a), entity extraction (Gupta et al., 2018a; Bhat
et al., 2016; Gupta et al., 2016b), etc, where code-
mixing phenomena are explored and analyzed.

In contrast to sthese existing works, firstly, we
provide a linguistically motivated technique to cre-
ate the code-mixed datasets from multiple lan-
guages with the help of parallel corpus (English
to respective language). Thereafter, we utilize this
data to develop a neural based model to generate
the code-mixed sentences from the English sen-
tence. Our current work has a wider scope as
the underlying architecture can be used to harvest
the code-mixed data for the various NLP tasks not
only limited to the language modelling and speech
recognition as it is generally been focused in the lit-
erature. In contrast to the previous studies, where
only a few of the language pairs were considered
for code-mixing, we propose an effective approach
which shows its effectiveness in generating code-
mixed sentences for eight different language pairs
of diverse origins and linguistic properties.

3 Synthetic Code-Mixed Generation

We follow the matrix language frame (MLF)
(Myers-Scotton, 1997; Joshi, 1982) theory to gen-
erate the code-mixed text. It is less restrictive and
can easily be applied on many language pairs. Ac-
cording to MLF, a code-mixed text will have a
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Language (L1) Language (L2) Code-Mixed (L1-L2)
en | India’s agriculture is their main strength. | hi | ¥Rd &1 $Y 39D &I drdd 2l India’s BT DT main strength 2|
en Ei%ilcelslly valuable people like Connor bn | Rorse T3 Ffg Ieor FARE S| fICTT Connor Rooney STST valuable &

Glasses and cups, whatever they are,
en . ta
can be turned upside down.

setrenTTiq.ser HMID CHmiiamuEET,
SIMEU GTEIEUTE @BHSTAID, SmaELPTE

Glasses LDHMILD CUps AN 6TSIEUMTES
GBBSTAID, FEOSLPNE THHTLD

LOTHDHATLD .
en Democracy and development go hand de Demokratie und Entwicklung gehen Democracy und Development gehen
in hand. Hand in Hand. Hand in Hand.
en | We abolish national embassies. fr | Nous abolissons les ambassades nationales. Nous abolissons les embassies national.

Table 1: Samples of code-mixed (L.1-L2) generated sentences from the parallel sentence of the language L1 and

L2.

dominant language (matrix language) and inserted
language (embedded language). The insertions
could be words or larger constituents and they will
comply with the grammatical frame of the matrix
language. However, random word insertions could
lead to the formation of unnatural code-mixed sen-
tences, which are very rare in practice.
Linguistically informed strategy to insert the
words or constituents can improve the quality of
code-mixed text. It is also shown in the literature
(Gupta et al., 2018b) that such strategy benefits
the quality of generated code-mixed text. In our
work, we utilize the parallel corpora to learn the
alignments between English and other languages.
Given a pair of parallel sentences, we identify the
words from English and substitute their aligned
counterparts with the identified English words to
synthesize the English embedded code-mixed sen-
tences. The input to our synthetic code-mixed gen-
eration algorithm (details are in Appendix) is a par-
allel sentence pair. We use the Indic-nlp-library!
to tokenize the sentences of the Indic languages.
Moses based tokenizer? is used to translate the Eu-
ropean and English language texts. Thereafter, we
learn the alignment matrix, which guides to select
the words or phrases to be mixed in the language.
We use the official implementation® of the fast-
align algorithm (Dyer et al., 2013) to obtain the
alignment matrix. The alignment matrix is used to
construct the aligned phrases between the parallel
sentences. We extract the PoS (mainly adjective),
named entity (NE) and noun phrase (NP) from the
English sentences, and insert them into the appro-
priate places of the sentences in the other language
(i.e. the target language) counterparts. We use
the Stanford library* Stanza (Qi et al., 2020) to

'https://github. com/anoopkunchukuttan/indic_
nlp_library
*https://github.com/moses-smt/mosesdecoder
Shttps://github.com/clab/fast_align
*https://github.com/stanfordnlp/stanza

en-Hicm (TGP | w. E umbrela D[_\ [:

Figure 1: An example of the alignment between a pair
of parallel sentences. The aligned words which are
mixed in En-Hi code-mixed (CM), are shown in blue.

extract these linguistic features. We can extract
multiple aligned phrases from the alignment ma-
trix. However, in our proposed algorithm, we are
interested in aligned words/phrases which are the
NEs of types ‘Person’, ‘Location’ and ‘Organiza-
tion’, noun phrases and adjective words. Let us see
an example of En-Hi parallel sentence:

* En: When was Mahatma Gandhi born?

« Hi: H8TcHT TN o ST e g3 AqT?

* Code-Mixed (En-Hi): Mahatma Gandhi &1

SIYH e g3 AT?

The NE Mahatma Gandhi of type ‘Person’ is
mixed in En-Hi® code-mixed sentence.

The need of replacing the aligned noun phrases
can be understood with the examples of parallel
sentences shown in Fig 1. In the given example,
girl’ and ‘red umbrella’ are the noun phrases® in
the English sentence. To obtain the corresponding
code-mixed sentence, their aligned phrases “@sal'
and "A3T3  ©WIAT need to be replaced with En-
glish counterparts ‘girl’ and ‘red umbrella’, respec-
tively. Similarly, we can visualize the requirement
of choosing the adjective words to be mixed in the
code-mixed sentence by the following example:

* En: The situation in Mumbai has not yet

3

SPlease use the following link to transliterate the In-
dic scripts: http://www.learnsanskrit.org/tools/
sanscript

5We remove the determiner from the noun phrases as the
insertion of determiner in the code-mixed make the sentence
unnatural and incorrect.
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come to normal.
« Hi: 455 # Rafd ol a& A= 81 g5
Gl
+ Code-Mixed (En-Hi): Mumbai¥ situation
AT normal TET 8% ¥ |
In the given example the adjective ‘normal’ is
present in the English sentence. To make the corre-
sponding code-mixed sentence the adjective word
has to be inserted in the code-mixed sentence. In
this case corresponding target (i.e. Hindi here)
word “HTHT need to be replaced with the word
‘normal’ in the En-Hi code-mixed sentence. We
show some samples in Table 1, and more details in
the Appendix.

4 Methodology

We depict the architecture of our proposed model
in Figure 2.

Problem Statement: Given an English sentence
F having m words e1,es,...,en, the task is to
generate the code-mixed sentence C having a se-
quence of n words C' = {y1,92, -, Yn}-

4.1 Sub-word Vocabulary

The task of generation using neural networks re-
quires a fixed-sized vocabulary. To deal with the
problem of Out-of-Vocabulary (OOV) words, we
use the Byte-pair encoding (BPE) (Sennrich et al.,
2016), and segment the words into sub-words. The
sub-word based tokenization schemes inspired by
BPE have become the norm in most of the ad-
vanced models including the very popular family
of contextual language models like XLM (Lample
and Conneau, 2019), GPT-2 (Radford et al., 2019),
etc. In this work, we process the language pairs
with the vocabulary created using the BPE.

4.2 Feature-rich and Pre-trained Language
Model Assisted Encoder

We introduce a specific encoder which is equipped
with linguistic features and pre-trained language
model features. Firstly, we discuss the linguistic
feature encoding to the standard long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997) encoder. Later, we describe the pre-trained
language model feature assisted encoder.

In order to encode the input English sentence,
we use the two-layered LSTM networks. Firstly,
we tokenize the English sentence to the sub-word
tokens using BPE. Each sub-word is mapped to a
real-valued vector through an embedding layer. In

addition, we also incorporate the linguistic features
in the form of NE and PoS. The motivation to use
these linguistic features comes from the synthetic
code-mixed text generation (c.f. section 3) itself,
where these features guide the generation process
by selecting the words to either replace with their
aligned English words or to keep the same word in
the code-mixed sentence. In neural based genera-
tion, explicit linguistic features help the decoder to
decide whether to copy from the English (source)
or generate from the vocabulary.

The network takes the concatenation of word
embedding u;, NE encoding n; and p; (will be dis-
cussed shortly) at each time step ¢ and generate the
hidden state as follows:

hy = LSTM (hy—1, [ut, ne, pt]) (1)

We compute the forward and backward hidden
states h; and h ;, and compute the document en-

coder as the concatenation of the two hidden states,
==

Feature Encoding: The NE and PoS features
are encoded to the real valued vectors. We ini-
tialize the NE and PoS feature representations n;
and p; at time ¢ using the random vectors of size
20. The NE and PoS features are represented

by the {n1,n9,...,ny} and {p1,p2,...,pm}, re-
spectively.
Pre-trained Language Model Feature: Recent

studies have shown the effectiveness of language
model pre-training for text generation (Radford
et al., 2019; Dong et al., 2019; Song et al., 2019).
We utilize the pre-trained feature from the cross-
lingual language model (XLM) (Lample and Con-
neau, 2019). The XLM model is trained with
three objective functions: Masked Language Mod-
eling (MLM), Causal Language Modeling (CLM),
and Translation Language Modeling (TLM). In the
CLM objective the task is to model the probability
of a word given the previous words. The MLM
objective was introduced in Devlin et al. (2019),
where the task is to predict the masked words from
the sentence given the remaining words. The TLM
objective is an extension of MLM for the parallel
sentences. For the TLM objective function the in-
put sentence is the concatenation of the source and
target sentence and a random word is masked from
the concatenated sentence and rest of the words is
used to predict the masked word.

The XLM model trained with multiple objec-
tive functions on different languages together has
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Figure 2: The architecture of the proposed code-mixed sentence generation model. The left part of the image
shows the architecture of cross-lingual language model (XLM). The XLM feature along with the linguistic feature
obtained from the Bi-LSTM encoder is passed to the Gated Feature Fusion (GFF) module. The right part of the
image demonstrates the working of GFF module. It is to be noted that the transfer learning is enabled by initializing
the parameters of the proposed model from the pre-trained neural machine translation model.

shown the effectiveness on cross-lingual classifi-
cation and machine translation. By virtue of deal-
ing with multiple languages and setting the state-
of-the-arts in language generation task, the pre-
trained XLM model is adopted to extract the lan-
guage model features for code-mixed generation
as it is reminiscence of the cross-lingual and gen-
eration paradigms. For the given input sentence
E : {ei,es,...,en}, we extract the language
model feature L : {l1,lo,...,ln}.

The extracted language model features are fused
to the linguistic features as follows:

hi = tanh(Wyh; + by,)

i = tanh(Wily + by)

g
fi

o(Wy.[he ® 1e]) @

goOhi+(1—9g) ol

where, ¢ and © are the concatenation and element-
wise multiplication operator. First, we project both
the features h; and [; into the same vector space A}
and [ via feed-forward network. Thereafter, we
learn the gated value g which controls the flow of
each feature. The gated value g controls how much
of each feature should be the part of the final en-
coder representation f;.

4.3 Decoding with Pointer Generator

We use the one-layer LSTM network with the at-
tention mechanism (Bahdanau et al., 2015) to gen-
erate the code-mixed sentence y1,y2, ..., Yy, one
word at a time. In order to deal with the rare
or unknown words, the decoder has the flexibility
to copy the words from documents via the point-
ing mechanism (See et al., 2017; Gulcehre et al.,
2016). The LSTM decoder reads the word embed-
ding w1 and the hidden state s;_; to generate the
hidden state s; at time step t. Concretely,

St — LSTM(St_l, ut—l) (3)

Similar to (See et al., 2017), we compute the at-
tention distribution «; and context vector ¢;. The
generation probability is computed as follows:

DPgen = U(Wact + Wyst + Wuut) (4)

where W,, Wy, and Wy are the weight matrices
and o is the Sigmoid function. We also consider
the copying of the word from the English sentence.
The probability to copy a word from English sen-
tence at given time ¢ is computed by the following
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equation:
m
Peopy(w) =Y ap;x Hw ==w;} ()
i=1

where 1{w == w;} denotes the vector of length
m having the value 1 where w == w;, otherwise 0.
The final probability distribution over the dynamic
vocabulary (English and code-mixed sentence vo-
cabulary) is calculated by the following:

P(w) = pgeanocab(w)+(1_pgen)Pcopy(w) (6)

4.4 Transfer Learning for Code-mixing

Transfer learning deals with the performance im-
provement of a task by using the learned knowl-
edge from a near similar task. It has shown
promise in solving various problems (Torrey and
Shavlik, 2010; Pan and Yang, 2009) by signifi-
cantly reducing the amount of training instances.
In our case, we formulate the problem of code-
mixed text generation with respect to the NMT
framework. A closer to the code-mixed sentence
reveals that the translated target text (XX’) and
code-mixed (En-XX) shares many words. For ex-
ample:

* Source (En): The situation in Mumbai has

not yet come to normal.

 Target (Hi): Ho5 # Rofd i d&

| TE s ¢

+ Code-Mixed (En-Hi): Mumbai_ ¥ situation

A normal &l gS ¥ |

In the above sentences, Target (Hi) and Code-
mixed (En-Hi) share many words (underlined
words). Because of this underlying similarity be-
tween the machine translation and code-mixed sen-
tence generation, we adapted the transfer learning
approach used in machine translation (Zoph et al.,
2016; Kocmi and Bojar, 2017) for code-mixed text
generation.

We first train an NMT model on a large cor-
pus of parallel sentences as discussed in Section
3. Next, we initialize the code-mixed text gener-
ation model with the already-trained NMT model.
This is then trained on the synthetic code-mixed
dataset. Rather than initializing the code-mixed
model from the random parameters, we initialize it
with the weights from the NMT model. By doing
this, we achieve strong prior distribution from the
NMT model to code-mixed text generation. When

7XX may belong to ‘es’, ‘de’, ‘fi’, ‘hi’, ‘bn’, ‘ml’, ‘ta’,
o’

we train the code-mixed generation model initial-
ized with the weights of the NMT model, it ac-
quires the prior knowledge of translating the En-
glish sentences into the target language XX, and
then is fine-tuned to adopt to the code-mixed phe-
nomenon.

5 Results and Analysis

We evaluate the performance of our proposed ap-
proach on the synthetic code-mixed text from eight
different language pairs. The datasets can be found
here®. We compare the performance of our pro-
posed code-mixed generation model with the (i)
Seq2Seq (Sutskever et al., 2014), (ii) Attentive-
Seq2Seq (Bahdanau et al., 2015) and (iii) Pointer
Generator (See et al., 2017) baselines.

5.1 Experimental Setup

In our experiments, we use the same vocabulary
for both the encoder and decoder. For the language
pairs: en-hi, en-es, en-de, en-fr, we use the learned
BPE codes’ on 15 languages to segment the sen-
tences into sub-words and use this vocabulary'® to
index the sub-words. For the language pairs: en-
bn, en-ml, en-ta, en-te, we use the learned BPE
codes!! on 100 languages from the XLM model to
segment the sentences into sub-words and use the
correspondent vocabulary to index the sub-words.
The same set of vocabulary is used to extract the
pre-trained language model feature and the corre-
sponding NMT model for the transfer learning. We
use the aligned multilingual word embedding'? of
dimension 300 for the language pairs: en-es, en-
de, en-fr, en-hi and en-bn from Bojanowski et al.
(2017); Joulin et al. (2018). For the rest of the
language pairs, we obtain the monolingual embed-
ding'® from Bojanowski et al. (2017) and use the
MUSE library released by Lample et al. (2018) to
align the vector in the same vector space. The em-
beddings of NE and PoS information are randomly
initialized with the dimension of 20.

Shttp://www.iitp.ac.in/~ai-nlp-ml/resources.
html

‘https://dl.fbaipublicfiles.com/XLM/codes_
xnli_15

Yhttps://dl.fbaipublicfiles.com/XLM/vocab_
xnli_15

"https://dl.fbaipublicfiles.com/XLM/codes_
xnli_100

Phttps://fasttext.cc/docs/en/
aligned-vectors.html

Bhttps://fasttext.cc/docs/en/
pretrained-vectors.html
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Model en-es en-de en-fr en-hi
B R M B M B R M B R M
Seq2Seq 16.42 36.03 24.23 | 19.19 36.19 24.87 | 19.28 38.54 26.41 | 15.49 35.29 23.72
Attentive-Seq2Seq 17.21 36.83 25.41 | 20.12 37.14 25.64 | 20.12 39.30 27.54 | 16.55 36.25 24.97
Pointer Generator 18.98 37.81 26.13 | 21.45 38.22 26.14 | 21.41 40.42 28.76 | 17.62 37.32 25.61
Proposed Model 2247 41.24 2945 | 24.15 42.76 30.47 | 24.89 43.54 31.26 | 21.55 40.21 28.37
(-) BPE 21.72 40.67 28.65 | 23.31 41.89 29.76 | 24.27 43.02 30.84 | 20.89 39.54 27.43
(-) PoS Feature 22.21 40.92 29.12 | 23.76 42.12 29.88 | 24.21 42.95 30.86 | 21.02 39.84 27.91
(-) NE Feature 21.52 40.32 28.41 | 22.19 41.64 29.39 | 23.92 42.52 30.37 | 20.42 39.20 27.46
(-) LM Feature 21.56 40.36 28.42 | 23.21 41.85 29.56 | 23.82 42.48 30.29 | 20.47 39.17 27.24
(-) GFF 21.59 40.28 28.59 | 23.24 41.75 29.50 | 23.87 42.58 30.46 | 20.31 39.24 27.51
(-) Transfer Learning | 20.69 39.39 27.53 | 22.39 40.98 28.87 | 22.64 41.57 29.34 | 19.48 38.34 26.41

Table 2: Performance comparison of the proposed model for code-mixed generation with the baseline models. The
impact of each component (by removing one at a time) on the performance of the model. Here, B: BLEU, R:

Rouge-L and M: METEOR

Model en-bn en-ml en-ta en-te
B R M B M B R M B R M
Seq2Seq 16.32 33.02 21.82 | 15.92 3497 23.12 | 11.82 25.14 20.21 | 10.87 24.92 19.05
Attentive-Seq2Seq 1729 34.12 23.08 | 17.21 3591 23.94 | 13.09 26.57 21.41 | 12.14 26.17 20.11
Pointer Generator 18.24 35.86 24.36 | 18.49 37.16 25.12 | 14.03 27.84 22.53 | 13.21 27.37 21.17
Proposed Model 2149 39.11 27.32 | 21.61 40.23 28.01 | 15.69 29.56 23.88 | 14.81 29.23 22.56
(-) BPE 20.81 38.64 26.65 | 20.89 39.73 27.49 | 15.12 28.92 23.19 | 14.15 28.75 21.82
(-) POS Feature 21.04 38.77 26.94 | 21.11 39.91 27.55 | 15.23 28.11 22.34 | 14.23 28.67 21.86
(-) NER Feature 20.49 38.14 26.33 | 20.63 39.29 27.11 | 15.19 29.06 23.48 | 14.51 28.63 22.26
(-) LM Feature 20.13 37.73 25.95 | 20.54 38.69 26.44 | 14.73 28.64 22.89 | 13.97 28.07 21.79
(-) GFF 20.57 38.11 26.36 | 20.69 39.18 27.07 | 15.24 28.84 23.19 | 14.29 28.67 21.88
(-) Transfer Learning | 19.67 37.49 25.87 | 20.12 38.74 26.54 | 14.48 28.34 2272 | 13.79 28.12 21.53

Table 3: Performance comparison of the proposed model for code-mixed generation with the baseline models

The hidden dimension of all the LSTM cells is
set to 512. We use the pre-trained XLM model'4
to extract the language model feature of dimen-
sion 1024 for en-hi, en-es, en-de, en-fr language
pairs. For the rest of the language pairs, the pre-
trained model'> trained on MLM objective func-
tion is used to extract the language model feature.
We use beam search of beam size 4 to generate
the code-mixed sentence. Adam (Kingma and Ba,
2015) optimizer is used to train the model with (i)
B = 0.9, (ii) B2 = 0.999, and (iii) ¢ = 107°
and initial learning rate of 0.0001. The maximum
length of English and code-mixed tokens are set
to 60 and 30, respectively. We set 5 as minimum
decoding steps in each code-mixed language pair.
We use the en-hi development dataset to tune the
network hyper-parameters. All the model updates
use a batch size of 16.

We evaluate the generated text using the metrics,
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004)
and METEOR (Banerjee and Lavie, 2005).

“https://dl.fbaipublicfiles.com/XLM/mlm_tlm_
xnlil5_1024.pth

Bhttps://dl.fbaipublicfiles.com/XLM/mlm_100_
1280.pth

5.2 Quantitative Analysis

We report the results of our proposed model in Ta-
ble 2 and Table 3. Performance comparisons to
the three baselines are reported in Table 2 and Ta-
ble 3. The Pointer Generator based baseline is
the superior amongst all the baselines and achieve
the maximum Bleu score of 21.45 for the en-de
code-mixed language pair. Our proposed model
achieves the maximum Bleu score of 24.89 for the
en-fr code-mixed language pair. The minimum
Bleu score that we achieve is 14.81 for the en-te
language pair. We achieve lower Bleu scores for
the language pairs, en-ta and en-te compared to
the other language pairs. It is because the num-
ber of training samples for en-ta and en-te are very
low (11, 380 and 9, 105) as compared to the other
language pairs. Among the European languages,
for en-fr pair, our model attains the highest per-
formance; while for the Indian languages, our pro-
posed model reports the comparable performance
for both en-hi and en-bn language pairs.

We also perform the ablation study to asses the
efficacy of the model’s components. We remove
each component at a time from the proposed model
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Input
Reference

The real problem is statesponsored lawlessness.
Das real problem ist die vom statesponsored lawlessness.

U

'Z PG Das echtes problem ist die vom statesponsored Gesetz.

@ | Proposed | Das real problem ist vom statesponsored lawlessness.
(-) TL Das problem ist die statesponsored Gesetzlosigkeit.
Input However we have proposed some minor changes.

Reference | Con todo hemos propuestos algunas minor changes.
PG Sin embargo, hemo propuestos minero changes.

en-es

Proposed | Sin embargo hemos propuestos algunas minor changes.
(- TL Con todo hemos propuestos algunas minor cambios.
Input India’s agriculture is their main strength.

Reference | India T agriculture ST main strength 2 |

i PG India’s agriculture SH! ARH T

© Proposed | India &T agriculture ST main strength 2|
(-) TL India $TY FHHT main strength.
Input Read the statements by Giscard dEstaing.

Reference | Lisez les statements de Giscard dEstaing.
PG Lisez déclarations de Giscard dEstaing.
Proposed | Lisez les statement de Giscard dEstaing.
(-) TL Lisez de déclarations Giscard dEstaing.

en-fr

Table 4: Sample code-mixed sentences generated using
the pointer generator (PG), proposed model, and the
variant of the proposed model without transfer learning
(-TL).

and report the results for each language pair in Ta-
ble 2 and Table 3. The removal of BPE brings
down the Bleu score from 0.57 (en-ta) to 0.84 (en-
de). The BPE encoding helps the model to mit-
igate the OOV word issue by providing the sub-
word level information. Similarly, the removal of
PoS feature reduces the Bleu score by 0.26 (en-es)
to 0.58 (en-te). The NE feature helps most to the
en-bn code-mixed language pair as we observe the
decrease of 1.0 Bleu points while the NE feature
is removed. The LM feature is obtained from the
pre-trained language model, and it helps the model
to obtain the better encoded representation. The
ablation study reveals that removal of LM feature
decreases the Bleu score by 1.36 points. We ob-
serve the near similar impact of LM feature on
each language pair. Finally, the transfer learning
is also proven to be an integral component of the
proposed model as it contributes to the maximum
of 2.25 Bleu score for en-fi and minimum of 1.02
Bleu score of en-te code-mixed language pair. The
difference between the maximum and minimum
contribution may be attributed to the fact that, we
have sufficient parallel corpus (197,922) to train
the en-fr NMT model as compared to the en-te par-
allel corpus (10, 105). We follow the bootstrap test
(Dror et al., 2018) which confirms that the perfor-
mance improvement over the baselines are statisti-
cally significant as (p < 0.005).

5.3 Qualitative Analysis

We assess the quality of the generated code-mixed
text, and show these samples in Table 4. We ob-

Approach Human B R M

Synthetic 4.19 67.51 | 73.56 | 71.21
Pointer Generator 2.34 19.47 | 39.48 | 27.39
Proposed Model 3.26 24.65 | 43.55 | 29.11

Table 5: Comparison of different code-mixed text gen-
eration approaches on human and automatic evaluation
metrics.

serve that the code-mixed sentences generated us-
ing the PG model are able to copy the entities
from the given English sentence, but the gener-
ated code-mixed sentences are incomplete and not
fluent compared to the reference sentences. For
example, in en-hi pair the PG based code-mixed
sentence missed the ‘main’ word and it copies
‘India’s’ rather than generating ‘India T’ which
seems more natural and human-like code-mixed
sentence.

Our analysis also reveals that quality of the gen-
erated code-mixed sentence without transfer learn-
ing lacks in fluency. The examples can be seen in
the (-) TL generated code-mixed sentence (in Ta-
ble 4) in the en-hi and en-fr. In contrast, the gen-
erated output using the proposed model takes the
benefits of both the pointer generator and transfer
learning to generate adequate, fluent and complete
human-like code-mixed sentences. We observe
that the proposed model learns when to switch be-
tween the languages, and when to either copy the
entity/phrase from the English sentence or to gener-
ate from the vocabulary. The examples can be seen
in en-hi language pair, where the model copies
the word ‘main strength’ from the English sen-
tence, and it also switches between the languages
at the appropriate time step by generating the cor-
rect word from the vocabulary.

We perform human evaluation to judge the qual-
ity of the generated code-mixed text. For human
evaluation, we randomly sample 100 English sen-
tences from the en-hi code-mixed dataset, and ask
three English and Hindi speakers to manually for-
mulate the code-mixed sentences. These were
then used to evaluate the quality of the generated
code-mixed sentences. We ask the speakers to
score (from 1 to 5) the machine generated code-
mixed sentence with respect to the human gener-
ated sentences. The rate will define how natural
and human-like the code-mixed sentence sounds as
compared to the human one. The scores are associ-
ated with the quality of the generated code-mixed
sentence, where 1 shows that there is a strong dis-
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agreement between the machine generated and hu-
man formulated code-mixed sentence. Similarly,
2, 3, 4 and 5 are the categorical scores for Disagree-
ment, Not Sure, Agreement and Strongly Agree-
ment, respectively.

We also compute the automatic evaluation met-
rics, BLEU, Rouge-L and Meteor. The compar-
ison between the different approaches on human
and automatic evaluation metrics are reported in
Table 5. The reported human evaluation score cor-
responds to the average of all the three human ex-
perts. The proposed model achieves the human
evaluation (naturalness) score of 3.26 compared
to the synthetic generation of 4.19. It is to be
noted that the algorithm of synthetic text gener-
ation needs parallel corpus. However, our neu-
ral generation model does not require any parallel
data except at the time of warm-start with the syn-
thetic data. The human evaluation achieves bet-
ter score (3.26) compared to the strongest (2.34)
pointer generator based baseline model.

Error Analysis: We closely analyze the outputs
of our proposed model to realize the challenges
faced. We take up the language pair (en-hi), study
the errors encountered by the proposed approach.
and We categorize them into the following types:
(1). Reference Inaccuracy: The errors encoun-
tered during the word alignment phase propagate,
and lead to the inaccurate reference code-mixed
sentences. Since, we use these sentences to train
the generator model, it introduces errors in the gen-
erated code-mixed sentences too. This issue could
possibly be reduced with an improved alignment
algorithm.

(2). Missing/Incorrect Words: This is one of the
very common error types, where the model gen-
erates the incorrect words/phrases. The missing
or incorrect words cause fluency problem in the
generated code-mixed sentence. We also observed
that the majority of the missing words are function
words, while incorrectly generated words belong
to the content words category.

(3). Factual Inaccuracy: Our proposed model
sometimes generates the factually incorrect NEs.
These types of errors were mainly seen in the
longer sentences, where the model was found to
be confused to copy/generate the relevant entity in
the given context.

(4). Code-Mixed Inaccuracy: We observe the
inaccuracy in the generated sentence, where the
model sometimes produces the sentence which ei-

ther violates the code-mixed theory or is unnatural
(not human-like).

(5) Rare Language Pairs: We notice that, the
system makes the more errors on the en-ta and en-
te language pairs. It can be understand by the fact
that, we had comparatively lesser number of sam-
ples of these language pairs to train the system.
This error can be reduced by training the system
with sufficient number of samples.

(6) Others: We categorize the remaining errors
in others category. The other type of errors include
repeated word, inadequate sentence generation, ex-
tra word generation etc. We also observe that ma-
jority of the error occurred when the input sentence
were relatively longer than 12 words.

We randomly take a sample of size 100 from the
generated En-Hi code-mixed text and categorize
them using the six different aforementioned error
types. We found that top-3 frequent errors (Miss-
ing/Incorrect Words, Reference Inaccuracy, Code-
Mixed Inaccuracy) come under 27.21%, 23.37%,
and 17.44% respectively.

6 Conclusion

In this paper, we have proposed a neural network
based effective method coupled with the linguistic
and pre-trained feature representation along with
the transfer learning to generate the code-mixed
sentences. To train and evaluate the proposed ap-
proach, we have introduced a linguistically moti-
vated approach for code-mixed sentence genera-
tion using the parallel sentences of any particular
language pair. Our experimental results and in-
depth analysis show that the feature representation
and transfer learning together effectively improve
the model performance and the quality of the gener-
ated code-mixed sentence. We have shown the ef-
fectiveness of the proposed approach on eight dif-
ferent language pairs. In future work, we plan to
explore the unsupervised neural approach for code-
mixed text generation.
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A Synthetic Code-Mixed Generation

A.1 Dataset Statistics

We create the synthetic datasets for eight dif-
ferent language pairs: English-Hindi (en-hi),
English-Bengali (en-bn), English-Malayalam (en-
ml), English-Tamil (en-ta), English-Telugu (en-
te), English-French (en-fr), English-German (en-
de) and English-Spanish (en-es). We used the Eu-
roparl parallel corpus (Koehn, 2005) v7'® for the
European languages, namely French, German and

"https://www.statmt . org/europarl/
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Algorithm 1 Code-Mixed Text Generation
1: Input: a parallel sentence (en-sentence, x-sentence)
2: Output: an equivalent code-mixed sentence (en-x-sentence)
3: procedure GETCODEMIXEDTEXT(en-sentence, x-sentence)

4: en-tokens <— tokenize(en-sentence) > Tokenize the English sentence
5: x-tokens <— tokenize(x-sentence) > Tokenize the language-x sentence
6: alignment <— getAlignment(en-sentence, x-sentence) > Learn the alignment matrix
7: phrases < extractPhrase(en-tokens, x-tokens, alignment) > Phrase Extraction
8: en-x-tokens < x-tokens > Initialize the code-mixed sentence
9: pos < getParts0fSpeechTags(en-tfokens) > Parts-of-speech tagging of English sentence

10: ner <— getNERTags(en-tokens) > NER tagging of English sentence
11: noun-phrases < getNounPhrase(en-tokens) > Extraction of noun phrases

12: for (entity, entity-type) in ner do > Looping for each entity in English sentence

13: if entity-typein [*PER', “LOC', ORG'] and entity in phrases then

14: aligned-phrase = getAlignedPhrase (phrases, entity)

15: en-x-tokens < en-x-tokens.replace(aligned-phrase, entity)

16: end if

17: end for

18: for nphrase in noun-phrase do > Looping for each noun phrase in English sentence

19: aligned-phrase = getAlignedPhrase (phrases, nphrase)

20: en-x-tokens <— en-x-tokens.replace(aligned-phrase, nphrase)

21: end for

22: for (token, pos-type) in pos do > Looping for each token of English sentence

23: if pos-type == ~ADJ' and token in phrases then

24: aligned-phrase = getAlignedPhrase (phrases, token)

25: en-x-tokens < en-x-tokens.replace(aligned-phrase, token)

26: end if

27: end for

28: en-x-sentence < *’ .join(en-x-tokens) > Join each token to form the code-mixed sentence

29: return en-x-sentence

30: end procedure

La.nguage # Parallel | # Code-Mixed Train/Dev/Test SPF | CMI
Pairs Sentences | Sentences

en-es 1,965,734 | 200,725 196,725/2,000/2,000 | 68.59 | 28.80
en-de 1,920,209 | 192,131 188,131/2,000/2,000 | 68.41 | 28.26
en-fr 2,007,723 | 197,922 193,922/2,000/2,000 | 68.12 | 28.40
en-hi 1,561,840 | 252,330 248,330/2,000/2,000 | 62.92 | 23.49
en-bn 337,428 167,893 163,893/2,000/2,000 | 67.61 | 25.41
en-ml 359,423 182,453 178,453/2,000/2,000 | 81.84 | 28.13
en-ta 26,217 12,380 11,380/500/500 78.74 | 28.16
en-te 22,165 10,105 9,105/500/500 76.19 | 28.69

Table 6: Statistics of parallel corpus and generated synthetic code-mixed sentences along with the training, devel-
opment and test set distributions. We also show the complexity of the generated code-mixed sentence in terms of
SPF and CML.

Spanish. For Indic languages, namely Hindi, Ben-  pus directory'’ based on the open parallel corpus'®.
gali, Malayalam, Tamil and Telugu, we obtain the

parallel corpus from the multilingual parallel cor- "http://lotus.kuee.kyoto-u.ac.jp/WAT/
indic-multilingual/index.html
®http://opus.nlpl.eu/
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We show the detailed statistics of the generated
code-mixed corpus in Table 6.

A.2 Code-mixed Complexity

We measure the complexity if the generated code-
mixed text in terms of the following metrics:

Switch-Point Fraction (SPF) Switch-point are
the point in a sentence where the language of each
side of the words are different. Following Pratapa
etal. (2018); Winata et al. (2019b), we compute the
SPF as the number of switch-points in a sentence
divided by the total number of word boundaries.
A sentence having more number of switch points
are more complex as it contains many interleaving
words in different languages.

Code-mixing Index (CMI) Itis used to measure
the amount of code mixing in a corpus by account-
ing for the language distribution. The sentence
level CMI score can be computed with the follow-
ing formula:

N(z) — max(¢; € t{wy,(z)})

where N (x) is the number of tokens of utterance
x, wy, 1s the word in language ¢;. We compute this
metric at the corpus-level by averaging the values
for all sentences. We have reported the SPF and
CMI values for all the language pairs in Table 6.
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