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Abstract

General-purpose pretrained sentence encoders
such as BERT are not ideal for real-world
conversational AI applications; they are com-
putationally heavy, slow, and expensive to
train. We propose ConveRT (Conversational
Representations from Transformers), a pre-
training framework for conversational tasks
satisfying all the following requirements: it is
effective, affordable, and quick to train. We
pretrain using a retrieval-based response se-
lection task, effectively leveraging quantiza-
tion and subword-level parameterization in the
dual encoder to build a lightweight memory-
and energy-efficient model. We show that Con-
veRT achieves state-of-the-art performance
across widely established response selection
tasks. We also demonstrate that the use of ex-
tended dialog history as context yields further
performance gains. Finally, we show that pre-
trained representations from the proposed en-
coder can be transferred to the intent classifi-
cation task, yielding strong results across three
diverse data sets. ConveRT trains substantially
faster than standard sentence encoders or pre-
vious state-of-the-art dual encoders. With its
reduced size and superior performance, we be-
lieve this model promises wider portability and
scalability for Conversational AI applications.

1 Introduction

Dialog systems, also referred to as conversational
systems or conversational agents, have found use
in a wide range of applications. They assist users
in accomplishing well-defined tasks such as find-
ing and booking restaurants, hotels, and flights
(Hemphill et al., 1990; Williams, 2012; El Asri
et al., 2017), with further use in tourist informa-
tion (Budzianowski et al., 2018), language learning
(Raux et al., 2003; Chen et al., 2017), entertainment
(Fraser et al., 2018), and healthcare (Laranjo et al.,
2018; Fadhil and Schiavo, 2019). They are also key

components of intelligent virtual assistants such as
Siri, Alexa, Cortana, and Google Assistant.

Data-driven task-oriented dialog systems require
domain-specific labelled data: annotations for in-
tents, explicit dialog states, and mentioned entities
(Williams, 2014; Wen et al., 2017b,a; Ramadan
et al., 2018; Liu et al., 2018; Zhao et al., 2019b).
This makes the scaling and maintenance of such
systems very challenging. Transfer learning on top
of pretrained models (Devlin et al., 2019; Liu et al.,
2019, inter alia) provides one avenue for reduc-
ing the amount of annotated data required to train
models capable of generalization.

Pretrained models making use of language-
model (LM) based learning objectives have be-
come prevalent across the NLP research commu-
nity. When it comes to dialog systems, response
selection provides a more suitable pretraining task
for learning representations that can encapsulate
conversational cues. Such models can be pretrained
using large corpora of natural unlabelled conversa-
tional data (Henderson et al., 2019b; Mehri et al.,
2019). Response selection is also directly appli-
cable to retrieval-based dialog systems, a popular
and elegant approach to framing dialog (Wu et al.,
2017; Weston et al., 2018; Mazaré et al., 2018;
Gunasekara et al., 2019; Henderson et al., 2019b).1

Response Selection is a task of selecting the
most appropriate response given the dialog history
(Wang et al., 2013; Al-Rfou et al., 2016; Yang et al.,
2018; Du and Black, 2018; Chaudhuri et al., 2018).
This task is central to retrieval-based dialog sys-
tems, which typically encode the context and a

1Retrieval-based dialog is popular because posing dialog as
response selection (Gunasekara et al., 2019) simplifies system
design (Boussaha et al., 2019). Unlike modular or end-to-
end task-oriented systems, retrieval-based ones do not rely on
dedicated modules for language understanding, dialog man-
agement, and generation. They mitigate the requirements
for explicit task-specific semantics hand-crafted by domain
experts (Henderson et al., 2014; Mrkšić et al., 2015, 2017).
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large collection of responses in a joint semantic
space, and then retrieve the most relevant response
by matching the query representation against the en-
codings of each candidate response. The key idea is
to: 1) make use of large unlabelled conversational
datasets (such as Reddit conversational threads) to
pretrain a neural model on the general-purpose re-
sponse selection task; and then 2) fine-tune this
model, potentially with additional network layers,
using much smaller amounts of task-specific data.

Dual-encoder architectures pretrained on re-
sponse selection have become increasingly popular
in the dialog community (Cer et al., 2018; Humeau
et al., 2020; Henderson et al., 2019b). In recent
work, Henderson et al. (2019a) show that standard
pretraining LM-based architectures cannot match
the performance of dual encoders when applied to
dialog tasks such as response retrieval.

Scalability and Portability. A fundamental prob-
lem with pretrained models is their large number
of parameters (see Table 2 later): they are typ-
ically highly computationally expensive to both
train and run (Liu et al., 2019). Such high memory
footprints and computational requirements hinder
quick deployment as well as their wide portabil-
ity, scalability, and research-oriented exploration.
The need to make pretrained models more com-
pact has been recognized recently, with a line of
work focused on building more efficient pretrain-
ing and fine-tuning protocols (Tang et al., 2019;
Sanh et al., 2019). The desired reductions have
been achieved through techniques such as distilla-
tion (Sanh et al., 2019), quantization-aware training
(Zafrir et al., 2019), weight pruning (Michel et al.,
2019) or weight tying (Lan et al., 2019). However,
the primary focus so far has been on optimizing the
LM-based pretrained models, such as BERT.

ConveRT. This work introduces a more compact
pretrained response selection model for dialog.
ConveRT is only 59MB in size, making it signif-
icantly smaller than the previous state-of-the-art
dual encoder for dialog applications (444MB). It is
also more compact than other popular sentence en-
coders, as illustrated in Table 2. This notable reduc-
tion in size and training acceleration are achieved
through combining 8-bit embedding quantization
and quantization-aware training, subword-level pa-
rameterization, and pruned self-attention. Further-
more, the lightweight design allows us to reserve
additional parameters to improve the expressive-
ness of the dual-encoder architecture; this leads

to improved learning of conversational representa-
tions that can be transferred to other dialog tasks
such as intent detection and slot filling, as already
demonstrated by recent work (Casanueva et al.,
2020; Bunk et al., 2020; Coope et al., 2020).

Multi-Context Modeling. ConveRT moves be-
yond the simplifying single-context assumption
made by Henderson et al. (2019b), where only the
immediate preceding context was used to look for
a relevant response. We propose a multi-context
dual-encoder model which combines the immediate
context with previous dialog history in the response
selection task. The multi-context ConveRT variant
remains compact (73MB in total), while offering
improved performance on a range of established re-
sponse selection tasks. We report significant gains
over the previous state-of-the-art on benchmarks
such as Ubuntu DSTC7 (Gunasekara et al., 2019),
AmazonQA (Wan and McAuley, 2016) and Red-
dit response selection (Henderson et al., 2019a),
both in single-context and multi-context scenar-
ios. Moreover, we show that sentence encodings
learned by the model can be transferred to other
dialog tasks, reaching strong intent classification
performance over three evaluation sets.2

2 Methodology

Pretraining on Reddit Data. We assume working
with English throughout the paper. Simplifying the
conversational learning task to response selection,
we can relate target dialog tasks to general-domain
conversational data such as Reddit (Al-Rfou et al.,
2016). This allows us to fine-tune the parameters of
the task-specific response selection model, starting
from the general-domain response selection model
pretrained on Reddit. Similar to Henderson et al.
(2019b), we choose Reddit for pretraining due to:
1) its organic conversational structure; and 2) its
unmatched size, as the public repository of Reddit
data comprises 727M (input, response) pairs.3

Dual-Encoder for Response Selection. A dual-
encoder neural architecture for response selection

2Finally, our more compact neural response selection archi-
tecture is well aligned with the recent socially-aware initiatives
on reducing costs and improving fairness and inclusion in NLP
research and practice (Strubell et al., 2019; Mirzadeh et al.,
2019; Schwartz et al., 2019). Cheaper training (pretraining
the proposed dual-encoder model on the entire Reddit costs
only 85 USD) and quicker development cycles offer new op-
portunities for more researchers and practitioners to tap into
the construction of neural task-based dialog systems.

3github.com/PolyAI-LDN/
conversational-datasets

github.com/PolyAI-LDN/conversational-datasets
github.com/PolyAI-LDN/conversational-datasets
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in task-based dialog has been introduced by Hen-
derson et al. (2019b), which closely follows a
related line of work focused on modelling sen-
tence pairs for short text retrieval (Kannan et al.,
2016; Henderson et al., 2017), bilingual text min-
ing and representation learning (Guo et al., 2018;
Chidambaram et al., 2019), and question answer-
ing (Humeau et al., 2020). In what follows in §2.1,
we: 1) introduce ConveRT, our novel single-context
dual-encoder architecture; and 2) briefly outline the
quantization method. Finally, we show how to ex-
tend ConveRT into a multi-context dual encoder
that works with additional context inputs (§2.2).

2.1 More Compact Response Selection Model

We propose ConveRT – Conversational
Representations from Transformers – a compact
dual-encoder pretraining architecture, leveraging
subword representations, transformer-style blocks,
and quantization, as illustrated in Figure 1.
ConveRT satisfies all the following requirements:
it is effective, affordable, and quick to train.

Input and Response Representation. Prior to
training, we obtain a vocabulary of subwords V
shared by the input side and the response side: we
randomly sample and lowercase 10M sentences
from Reddit, and then iteratively run any subword
tokenization algorithm.4 The final vocabulary V
contains 31,476 subword tokens. During training
and inference, if we encounter an OOV character it
is treated as a subword token, where its ID is com-
puted using a hash function, and it gets assigned
to one of 1,000 additional “buckets” reserved for
the OOVs. We therefore reserve parameters (i.e.,
embeddings) for the 31,476 subwords from V and
for the additional 1,000 OOV-related buckets. At
training and inference, after the initial word-level
tokenization on UTF8 punctuation and word bound-
aries, input text x is split into subwords follow-
ing a simple left-to-right greedy prefix matching
(Vaswani et al., 2018). We tokenize all responses y
during training in exactly the same manner.

Input and Response Encoder Networks. The
subword embeddings then go through a series of
transformations on both the input and the response
side. The transformations are based on the standard

4In the actual implementation, we use the same subword
tokenization as Vaswani et al. (2018). We run it for 4 itera-
tions and retain only subwords occurring at least 250 times,
containing no more than 20 UTF8 characters, also disallowing
more than 4 consecutive digits.
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Figure 1: Single-context ConveRT dual-encoder model
architecture. Its multi-context extension is illustrated
in Figure 2. It is possible to transfer learned encodings
at different network layers (e.g., rx or the final hx) to
other tasks such as intent detection or value extraction
(see §4). Note that the model uses two different feed-
forward network (FFN) layers: 1) feed-forward 1 is the
standard FFN layer also used by Vaswani et al. (2017),
and 2) feed-forward 2 contains 3 fully-connected non-
linear feed-forward layers followed by a linear layer
which maps to the final encodings hx and hy (note that
the two feed-forward 2 networks do not share parame-
ters, while the feed-forward 1 parameters are shared).

Transformer architecture (Vaswani et al., 2017).
Before going through the self-attention blocks, we
add positional encodings to the subword embed-
ding inputs. Previous work (e.g., BERT and related
models) (Devlin et al., 2019; Lan et al., 2019, inter
alia) learns a fixed number of positional encodings,
one for each position in the sequence, allowing the
model to represent a fixed number of positions. In-
stead, we learn two positional encoding matrices of
different sizes-M1 of dimensionality [47, 512] and
M2 of dimensionality [11, 512]. An embedding at
position i is added to: M1

i mod 47 +M2
i mod 11.5

5Note that since 47 and 11 are coprime, this gives 47·11 =
517 different possible positional encodings. Similar to the
original (non-learned) positional encodings from Vaswani et al.
(2017), the rationale behind this choice of positional encoding
is to allow the model to generalize to unseen sequence lengths.
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The next layers closely follow the original Trans-
former architecture with some notable differences.
First, we set maximum relative attention (Shaw
et al., 2018) in the six layers to the following respec-
tive values: [3, 5, 48, 48, 48, 48].6 This also helps
the architecture to generalize to long sequences
and distant dependencies: earlier layers are forced
to group together meanings at the phrase level be-
fore later layers model larger patterns (Singh et al.,
2019). We use single-headed attention throughout
the network.7

Before going into a softmax, we add a bias to
the attention scores that depends only on the rel-
ative positions: αij → αij + Bn−i+j where B is
a learned bias vector. This helps the model under-
stand relative positions, but is much more computa-
tionally efficient than computing full relative posi-
tional encodings (Shaw et al., 2018). Again, it also
helps the model generalize to longer sequences.

Six Transformer blocks use a 64-dim projection
for computing attention weights, a 2,048-dim ker-
nel (feed-forward 1 in Figure 1), and 512-dim em-
beddings. Note that all Transformer layers use
parameters that are fully shared between the input
side and the response side. As in the Universal
Sentence Encoder (USE) (Cer et al., 2018), we use
square-root-of-N reduction to convert the embed-
ding sequences to fixed-dimensional vectors. Two
self-attention heads each compute weights for a
weighted sum, which is scaled by the square root
of the sequence length; the length is computed as
the number of constituent subwords.8 The outputs
of the reduction layer, labelled rx and ry in Fig-
ure 1, are 1,024-dimensional vectors that are fed
to the two “side-specific” (i.e., they do not share
parameters) feed-forward networks.

In other words, the vectors rx and ry go through
a series of Nf l-dim feed-forward hidden layers
(Nf = 3; l = 1, 024) with skip connections,
layer normalization, and orthogonal initialization.
The activation function used in these networks

6We zero out in training and inference the attention scores
for pairs of words if they are further apart than the set maxi-
mum relative attention values.

7Multi-headed attention requires running computations on
4-tensors: [batch, time, head, embedding], while for single-
headed attention, this reduces to 3-tensors, and effectively
speeds up training without hurting performance.

8In fact, rather than computing the self-attended sequence,
then reducing it, we reduce the attention weights accordingly,
and then directly apply them via matrix multiplication to the
input sequence to get the final reduced representation, that is,
we fuse these two operations. This is more computationally
efficient, avoiding another 3-tensor multiplication.

and throughout the architecture is the fast GeLU
approximation (Hendrycks and Gimpel, 2016):
GeLU(x) = xσ(1.702x). The final layer is lin-
ear and maps the text into the final L2-normalized
512-dim representation: hx for the input text, and
hy for the corresponding response text (Figure 1).

Input-Response Interaction. The relevance of
each response to the given input is then quantified
by the score S(x, y), computed as cosine similar-
ity with annealing between the encodings hx and
hy. It starts at 1 and ends at

√
d, linearly increas-

ing over the first 10K training batches. Training
proceeds in batches of K (input, response) pairs
(x1, y1), . . . , (xK , yK). The aim of the objective is
to distinguish between the true relevant response
(yi) and irrelevant responses (i.e., negative samples)
yj , j 6= i for each input sentence xi. The training
objective for a single batch of K pairs is as follows:
J =

∑K
i=1 S(xi, yi) −

∑K
i=1 log

∑K
j=1 e

S(xi,yj).
The goal is to maximize the score of positive train-
ing pairs (xi, yi) and minimize the score of pairing
each input xi with K ′ negative examples, which
are responses that are not associated with the input
xi: for simplicity, all other K − 1 responses from
the current batch are used as negative examples.

Quantization. Very recent work has shown that
large models of language can be made more
compact by applying quantization techniques
(Han et al., 2016): e.g., quantized versions of
Transformer-based machine translation systems
(Bhandare et al., 2019) and BERT (Shen et al.,
2019; Zhao et al., 2019a; Zafrir et al., 2019) are
now available. In this work, we focus on enabling
quantization-aware conversational pretraining on
the response selection task. We show that the dual-
encoder ConveRT model from Figure 1 can be also
be trained in a quantization-aware manner. Rather
than the standard 32-bits per parameter, all embed-
ding parameters are represented using only 8 bits,
and other network parameters with just 16 bits;
they are trained in a quantization-aware manner
by adapting the mixed precision training scheme
from Micikevicius et al. (2018). It keeps shadow
copies of each variable with 32bit Floating Point
(FP32) precision, but uses FP16-cast versions in the
computations and inference models. Some opera-
tions in the graph, however, require FP32 precision
to be numerically stable: layer normalization, L2-
normalization, and softmax in attention layers.

Again, following Micikevicius et al. (2018), the
final loss is scaled by 128, and the updates to the
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Figure 2: Multi-context ConveRT. It models 1) the inter-
action between the immediate context and its accompa-
nying response, 2) the interaction of the response with
up to 10 earlier contexts from the conversation history,
as well as 3) the interaction of the full context with
the response. Transformer layers refer to the standard
Transformer architecture also used in the single-context
encoder model in Figure 1; the feed-forward 2 blocks
are the same as with the single-context encoder archi-
tecture, see Figure 1. The block mean refers to simple
averaging of two context encodings hx and hz .

shadow FP32 variables are scaled back by 1/128:
this allows the gradient computations to stay well
represented by FP16 (e.g., they will not get rounded
to zero). The subword embeddings are stored using
8-bits per parameter, and the quantization range
is adjusted dynamically through training. It is up-
dated periodically to contain all of the embedding
values that have so-far been learned, with room for
growth above and below - 10% of the range, or
0.01 - whichever is larger. Finally, quantization
also allows doubling the batch size, which also
has a favorable effect of increasing the number of
negative examples in training.

2.2 Multi-Context ConveRT

Figure 1 depicts a single-context dual encoder ar-
chitecture. Intuitively, the single-context assump-
tion is limiting for modeling multi-turn conver-
sations, where strong conversational cues can be
found in earlier dialog history, and there has been a
body of work on leveraging richer dialog history for
response selection (Chaudhuri et al., 2018; Zhou
et al., 2018; Humeau et al., 2020). Taking a simple
illustrative example:

Student: I’m very interested in representation learning.

Teacher: Do you have any experience in PyTorch?

Student: Not really.

Teacher: And what about TensorFlow?

Selecting the last Teacher’s response would be very
difficult given only the immediate preceding Stu-
dent’s context. However, the task becomes easier
when taking into account the entire context of the
conversation. We thus construct a multi-context
dual-encoder model by using up to 10 more pre-
vious messages in a Reddit thread. The extra 10
contexts are concatenated from most recent to old-
est, and treated as an extra feature in the network,
as shown in Figure 2. The order of contexts is im-
portant when doing sequence truncation in training,
and it is still more important for the model to see
the most recent messages.

Note that all context representations are still in-
dependent from the representation of a candidate
response, so we can still do efficient response re-
trieval and training. The full training objective is a
linear combination of three sub-objectives: 1) rank-
ing responses given the immediate context (i.e.,
this is equal to the single-context model from §2.1),
2) ranking responses given only the extra (non-
immediate) contexts, and 3) ranking responses
given the averaged representation of the immediate
context and additional contexts.9

3 Experimental Setup

Training Data and Setup. We base all our
(pre)training on the large Reddit conversational cor-
pus (Henderson et al., 2019a) derived from 3.7B
Reddit comments: it comprises 727M (input, re-
sponse) pairs for single-context modeling – 654M
pairs are reserved for training, the rest is used for
testing. We truncate sequences to 60 subwords, em-
bedding size is set to 512 for all subword embed-
dings and bucket embeddings, and the final encod-
ings hx, hy, hz, and hx,z are all 512-dimensional.
The hidden layer size of feed forward 2 networks
is set to 1,024 (with Nf = 3 hidden layers used).

We train using ADADELTA with ρ = 0.9

9Combining multiple objectives in a dual-encoder frame-
work has also been done by Al-Rfou et al. (2016) and Hen-
derson et al. (2017). Note that more sophisticated solutions to
fusing dialog history are possible such as using attention over
older contexts as done by Vlasov et al. (2019) on the much
smaller MultiWOZ 2.1 dataset (Eric et al., 2019), but we have
opted for simple concatenation as an efficient solution for
training on the large Reddit data. The multiple objectives re-
sult in quicker learning, and also give useful diagnostic probes
into the performance of each feature throughout training.
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(Zeiler, 2012), batch size of 512, and a learning
rate of 1.0 annealed to 0.001 with cosine decay
over training. L2-regularization of 10−5 is used,
subword embedding gradients are clipped to 1.0,
and label smoothing of 0.2 is applied.10

We pretrain the model on Reddit on 12 GPU
nodes with one Tesla K80 each for 18 hours; this is
typically sufficient to reach convergence. The total
pretraining cost is roughly $85 on Google Cloud
Platform. This pretraining regime is orders of mag-
nitude cheaper and more efficient than the prevalent
pretrained NLP models such as BERT, GPT-2, XL-
Net, and RoBERTa (Strubell et al., 2019).11

Baselines. We report results on the response se-
lection tasks and compare against the standard set
of baselines (Henderson et al., 2019a). First, we
compare to a simple keyword matching baseline
based on TF-IDF query-response scoring (Manning
et al., 2008), and then with a representative sample
of publicly available neural encoders that embed
inputs and responses into a vector space relying
on various pretraining objectives: (1) The larger
variant of Universal Sentence Encoder (Cer et al.,
2018) (USE-LARGE); (2) The large variant of BERT
(Devlin et al., 2019) (BERT-LARGE). We also com-
pare to two recent dual-encoder architectures: (3)
USE-QA is a dual question-answer encoder version
of the USE (large) model (Chidambaram et al.,
2019).12 (4) POLYAI-DUAL is the best-performing
dual-encoder model from Henderson et al. (2019b)
pretrained on Reddit response selection. For base-
line models 1-3, we report the results with the
MAP response selection variant (Henderson et al.,
2019a): it showed much stronger performance than
a simpler similarity-based variant which directly
ranks responses according to their cosine similarity
with the context vector. MAP learns to (linearly)
map the response vectors to the input vector space.

Response Selection: Evaluation Tasks. We re-
port response selection performance on Reddit test
set (Henderson et al., 2019a) with both single-

10The label smoothing technique (Szegedy et al., 2016)
reduces overfitting by preventing a network to assign full
probability to the correct training example (Pereyra et al.,
2017). It means that each positive example in each batch is
assigned the probability of 0.8, while the remaining probability
mass is evenly redistributed across in-batch negative examples.

11Cost is estimated using Google Cloud Platform, includes
the cost of auxiliary servers such as CPU parameter servers,
and assumes the use of pre-emptible GPU workers.

12Note that USE-QA encodes inputs/contexts and responses
using separate sub-networks, while ConveRT (Figure 1) relies
on full parameter sharing in the Transformer layers.

context and multi-context ConveRT variants. For
multi-context ConveRT, the averaged representa-
tion of (immediate and previous) context is used
in evaluation. The models are applied directly
on the Reddit test data without any further fine-
tuning. We also evaluate on two other well-known
response selection problems in different domains.
(1) AMAZONQA (Wan and McAuley, 2016) is an
e-commerce data set which contains information
about Amazon products in the form of question-
answer pairs:out of 3.6M (single-context) QA pairs,
300K pairs are reserved for testing. (2) DSTC7-
UBUNTU is based on the Ubuntu v2 corpus (Lowe
et al., 2017): it contains 1M+ conversations in a
highly technical domain (i.e., Ubuntu technical sup-
port). DSTC7-UBUNTU uses 100K conversations
for training, 10K for validation, and 5K conversa-
tions are used for testing (Gunasekara et al., 2019).

For DSTC7-UBUNTU we fine-tune for 60K train-
ing steps: it takes around 2h on 12 GPU workers.
The learning rate starts at 0.1, and is annealed to
0.0001 using cosine decay over training. We use a
batch size of 256, and dropout of 0.2 after the em-
bedding and self-attention layers. We use the same
fine-tuning regime for AMAZONQA. For DSTC7-
UBUNTU, extra contexts are prepended with nu-
merical strings 0–9 to help the model identify their
position. We also release the fine-tuned models.

We evaluate with a standard IR-inspired eval-
uation measure: Recall@k, used in prior work
on retrieval-based dialog (Chaudhuri et al., 2018;
Henderson et al., 2019b; Gunasekara et al., 2019).
Given a set of N responses to the given input,
where only one response is relevant, it indicates
whether the relevant response occurs in the top
k ranked candidates. We denote this measure as
RN@k, and set N = 100; k = 1: R100@1.

Intent Classification: Task, Data, Setup. Pre-
trained sentence encoders have become particularly
popular due to the success of training models for
downstream tasks on top of their learned represen-
tations, greatly improving the results compared
to training from scratch, especially in low-data
regimes (see Table 1). Therefore, we also probe
the usefulness of ConveRT encodings for transfer
learning in the intent classification task: the model
must classify the user’s utterance into one of sev-
eral predefined classes, that is, intents (e.g., within
e-banking intents can be card lost or replace card).
We use BANKING77 (Casanueva et al., 2020) plus
two internal intent classification datasets from three
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# intents # examples

Banking (customer service) 77 14.6K
Shopping (online shopping) 10 13.8K
Company FAQ 110 3.3K

Table 1: Intent classification data sets.

diverse domains, see Table 1, divided into train, dev
and test sets using a 80/10/10 split.

We use the pretrained ConveRT encodings rx on
the input side (see Figure 1) as input to an intent
classification model. We also experimented with
later hx encodings on the input side, but stronger
results were observed with rx. We train a 2-layer
feed-forward net with dropout on top of rx. SGD
with a batch size of 32 is used, with early stopping
after 5 epochs without improvement on the vali-
dation set. Layer sizes, dropout rate and learning
rate are selected through grid search. We compare
against two other standard sentence encoders again:
USE-LARGE and BERT-LARGE. For ConveRT and
USE-LARGE we keep the encoders fixed and train
the classifier layers on top of the sentence encod-
ings. For BERT-LARGE, we train on top of the CLS
token and we fine-tune all its parameters.

4 Results and Discussion

Model Size, Training Time, Cost. Table 2 lists
encoders from prior work along with their model
size, and estimated model size after quantization.
The reported numbers indicate the gains achieved
through subword-level parameterization and quanti-
zation of ConveRT. Besides reduced training costs,
ConveRT offers a reduced memory footprint and
quicker training. We pretrain all our models for 18
hours only (on 12 16GB T4 GPUs), while a model
compression technique DistilBERT (Sanh et al.,
2019) (i.e., it reports ≈ 40% relative reduction of
the original BERT) trains on 8 16GB V100 GPUs
for 90 hours, and larger models like RoBERTa re-
quire 1 full day of training on 1,024 32GB V100
GPUs. The achieved size reduction and quick train-
ing also allow for quicker development and insight-
ful ablation studies (see later in Table 4), and using
quantization also improves training efficiency in
terms of examples per second.

Response Selection on Reddit. The results are
summarized in Table 3. Even single-context Con-
veRT achieves peak performance in the task, with
substantial gains over the previous best reported
score of Henderson et al. (2019b). It also sub-

stantially outperforms all the other models which
were not pretrained directly on the response se-
lection task, but on a standard LM task instead.
The strongest baselines, however, are two dual-
encoder architectures (i.e., USE-LARGE, USE-QA

and POLYAI-DUAL); this illustrates the importance
of explicitly distinguishing between inputs/contexts
and responses when modeling response selection.

Table 3 also shows the importance of lever-
aging additional contexts (see Figure 2). Multi-
context ConveRT achieves a state-of-the-art Reddit
response selection score of 71.8%. We observe
similar benefits in other reported response selec-
tion tasks. We also note the results of 1) using
only the sub-network that models the interaction
between the immediate context and the response
(i.e., the hTxhy interaction), and 2) artificially re-
placing the concatenated extra contexts z with an
empty string. The respective scores are 65.7% and
65.6%. This suggests that multi-context ConveRT
is also applicable to single-context scenarios when
no extra contexts are provided for the target task.

We have also verified that the first context from
the dialog history is most beneficial for perfor-
mance of the multi-context ConveRT variant with a
simple experiment. When using only the first con-
text from the dialog history, performance on Reddit
drops only slightly: from 71.8% (10 contexts from
history) to 71.1% with the full model including
the immediate preciding context, and from 34.0%
(10 contexts) to 30.9% (1 context only) when we
exclude the intermediate context (see §2.2 again).

Ablation Study. The efficient training regime also
allows us to perform a variety of diagnostic exper-
iments and ablations. We report results with vari-
ants of single-context ConveRT in Table 4. They
indicate that replacing single-headed with multi-
headed attention leads to slight improvements, but
this comes at a cost of slower (and consequently -
more expensive) training. Using 1 instead of 1,000
OOV buckets leads only to a modest decrease in
performance. Most importantly, the ablation study
indicates that the final performance actually comes
from the synergistic effect of applying a variety
of components and technical design choices such
as skip connections, 2-headed reductions, relative
position biases, etc. While removing only one com-
ponent at a time yields only modest performance
losses, the results show that the loss adds up as
we remove more components, and different com-
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Embedding Network Total Size after
parameters parameters size quantization

USE (Cer et al., 2018) 256 M 2 M 1033 MB 261 MB *
BERT-BASE (Devlin et al., 2019) 23 M 86 M 438 MB 196 MB */ 110 MB **
BERT-LARGE (Devlin et al., 2019) 31 M 304 M 1341 MB 639 MB */ 336 MB **
GPT (Radford et al., 2018) 31 M 86 M 468 MB 203 MB *
GPT-2 (Radford et al., 2019) 80 M 1462 M 6168 MB 3004 MB *
POLYAI-DUAL (Henderson et al., 2019b) 104 M 7 M 444 MB 118 MB

ConveRT (this work) 16 M 13 M 116 MB 59 MB

Table 2: Comparison of the proposed compact dual-encoder architecture for response selection to existing public
standard sentence embedding models. (*) The size after quantization assumes embeddings can be quantized to 8
bits and network parameters to 16 bits, which has not been verified for the public models. (**) Best-case model
size estimates of the BERT model after full 8-bit quantization based on the work of Zafrir et al. (2019).

Reddit AmazonQA

TF-IDF 26.4 51.8
USE-LARGE-MAP 47.7 61.9
BERT-LARGE-MAP 24.0 44.1
USE-QA-MAP 46.6 70.7
POLYAI-DUAL 61.3 71.3

ConveRT (single-context) 68.2 84.3
ConveRT (multi-context) 71.8 –

Table 3: R100@1× 100% scores on Reddit test set and
AMAZONQA. POLYAI-DUAL and ConveRT networks
are fine-tuned on the training portion of AMAZONQA.
Note that AMAZONQA by design supports only single-
context response selection.

Model Configuration

ConveRT 68.2

A: Multi-headed attention (8 64-dim heads) 68.5
B: No relative position bias 67.8
C: Without gradually increasing max attention span 67.7
D: Only 1 OOV bucket 68.0
E: 1-headed (instead of 2-headed) reduction 67.7
F: No skip connections in feed forward 2 67.8
D + E + F 66.7
B + C + D + E + F 66.6

Table 4: An ablation study illustrating the importance
of different components in ConveRT: single-context re-
sponse selection on Reddit (R100@1). Each experi-
ment has been run for 966K steps (batch size 512).

R100@1 MRR

Best DSTC7 System 64.5 73.5
GPT* 48.9 59.5
BERT* 53.0 63.2
Bi-encoder (Humeau et al., 2020) 70.9 78.1

ConveRT (single-context) 38.2 49.2
ConveRT (multi-context) 71.2 78.8

Table 5: Results on DSTC7-UBUNTU. (*) Scores for
GPT and BERT taken from Vig and Ramea (2019).

ponents indeed contribute to the final score.13

13Furthermore, quick development and short training times

Other Response Selection Tasks. The results on
the AMAZONQA task are provided in Table 3.
We see similar trends as with Reddit evaluation.
Fine-tuned ConveRT reaches a new state-of-the-
art score, and the strongest baselines are again
dual-encoder networks. Fine-tuned POLYAI-DUAL,
which was pretrained on exactly the same data,
cannot match ConveRT’s performance.

Interestingly, directly applying ConveRT to
AMAZONQA without any fine-tuning also yields a
reasonably high score of 67.0%. Moreover, learn-
ing the mapping function between inputs and re-
sponses (again without any fine-tuning) for Con-
veRT the same way as is done for USE-QA-MAP

results in the score of 71.6%, which outperforms
USE-QA-MAP (70.7%). The gap to the fine-tuned
model’s performance, however, indicates the im-
portance of in-domain fine-tuning.

The results on DSTC7-UBUNTU are summarized
in Table 5. First, they suggest very competitive per-
formance of multi-context ConveRT model: it out-
performs the best-scoring system from the official
DSTC7 challenge (Gunasekara et al., 2019). It is an
encouraging finding, given that multi-context Con-
veRT relies on simple context concatenation with-
out any additional attention mechanisms. We leave
the investigation of such more sophisticated mod-
els to integrate additional contexts for future work.
Multi-context ConveRT can also match or even sur-
pass the performance of another dual-encoder archi-
tecture from Humeau et al. (2020). Their dual en-
coder (i.e., bi-encoder) is based on the BERT-base
architecture (Humeau et al., 2020): it relies on 12
Transformer blocks, 12 attention heads, and a hid-
den size dimensionality of 768 (while we use 512).

also allow us to treat some of the component choices as hyper-
parameter choices. It effectively means that such configuration
choices can also be fine-tuned similar to any other hyper-
parameter to optimize the final retrieval performance.
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Banking Shopping Company FAQ

USE-LARGE 92.2 94.0 62.4
BERT-LARGE 93.2 94.3 61.2

ConveRT 92.7 94.5 64.3

Table 6: Intent classification results.

Training with that model is roughly 5× slower, and
the pretraining objective is more complex: they use
the standard BERT pretraining objective plus next
utterance classification. Moreover, their model is
trained on 32 v100 GPUs for 14 days, which makes
it roughly 50× more expensive than ConveRT.

Intent Classification. The results are summarized
in Table 6: we report the results of two strongest
baselines. The scores show very competitive perfor-
mance of ConveRT encodings rx transferred to an-
other dialog task. They outperform USE-LARGE in
all three tasks and BERT-LARGE in 2/3 tasks. Note
that, besides quicker pretraining, intent classifiers
based on ConveRT encodings train 40 times faster
than BERT-LARGE-based ones, as only the classifi-
cation layers are trained for ConveRT. Additional
experiments related to efficiency of intent classi-
fication have been conducted by Casanueva et al.
(2020). In sum, these preliminary results suggest
that ConveRT as a sentence encoder can be useful
beyond the core response selection task. The use-
fulness of ConveRT-based sentence representations
have been recently confirmed on other intent clas-
sification datasets (Casanueva et al., 2020), with
different intent classifiers (Bunk et al., 2020), and
in another dialog task: turn-based value extraction
(Coope et al., 2020; Bunk et al., 2020; Mehri et al.,
2020). In future work, we plan to investigate other
possible applications of transfer, especially for the
challenging low-data setups.

5 Conclusion

We have introduced ConveRT, a new light-weight
model of neural response selection for dialog,
based on Transformer-backed dual-encoder net-
works, and have demonstrated its state-of-the-art
performance on an array of response selection tasks
and in transfer learning for intent classification
tasks. In addition to offering more accurate con-
versational pretraining models this work has also
resulted in more compact conversational pretrain-
ing. The quantized versions of ConveRT and multi-
context ConveRT take up only 59 MB and 73 MB,
respectively, and train for 18 hours with a training

cost estimate of only 85 USD. We hope that this
work will motivate and guide further developments
in the areas of retrieval-based task-oriented dialog
and large-scale pretraining for conversational ap-
plications (Mehri et al., 2020).
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Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - A
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son, Milica Gašić, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain dialog state tracking using recurrent neural
networks. In Proceedings of ACL, pages 794–799.
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A Evaluation Data

Links to (non-proprietary) evaluation data are avail-
able in Table 7.

B Intent Classification: Grid Search

Table 8 provides a summary of hyperparameters
with the corresponding values tried during grid
search in intent classification experiments

C Models in Comparison

Table 9 provides URLs to the models used as base-
lines in our comparisons.
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Task Evaluation Data and/or Model Link
Response Selection Reddit https://github.com/PolyAI-LDN/

conversational-datasets

Response Selection AmazonQA https://github.com/PolyAI-LDN/
conversational-datasets

Response Selection DSTC7-UBUNTU https://ibm.github.io/
dstc-noesis/public/datasets.html

Intent Classification Banking https://github.com/PolyAI-LDN/
task-specific-datasets

Table 7: Links to evaluation data.

Hyperparameter Values Tried
Hidden layer size h 128, 256, 512, 1,024
Number of hidden layers H 0, 1, 2
Dropout rate r 0.75, 0.5, 0.25

Optimizer Adam (decaying learning rate 4× 10−4); SGD (lr 0.75)

Table 8: Grid search values for intent classification experiments (for all models in comparison). Best-performing
hparams for ConveRT are in bold.

Model URL
USE-LARGE https://tfhub.dev/google/universal-sentence-encoder-large/5

BERT-LARGE https://tfhub.dev/tensorflow/bert_en_cased_L-24_H-1024_A-16/2

USE-QA https://tfhub.dev/google/universal-sentence-encoder-qa/3

POLYAI-DUAL https://github.com/PolyAI-LDN/polyai-models

BI-ENCODER https://parl.ai/projects/polyencoder/

Table 9: URLs of the models used in the comparison.
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