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Abstract

The extraction of interactions between chem-
icals and proteins from several biomedical ar-
ticles is important in many fields of biomedi-
cal research such as drug development and pre-
diction of drug side effects. Several natural
language processing methods, including deep
neural network (DNN) models, have been ap-
plied to address this problem. However, these
methods were trained with hard-labeled data,
which tend to become over-confident, lead-
ing to degradation of the model reliability.
To estimate the data uncertainty and improve
the reliability, “calibration” techniques have
been applied to deep learning models. In this
study, to extract chemical–protein interactions,
we propose a DNN-based approach incorpo-
rating uncertainty information and calibration
techniques. Our model first encodes the in-
put sequence using a pre-trained language-
understanding model, following which it is
trained using two calibration methods: mixup
training and addition of a confidence penalty
loss. Finally, the model is re-trained with
augmented data that are extracted using the
estimated uncertainties. Our approach has
achieved state-of-the-art performance with re-
gard to the Biocreative VI ChemProt task,
while preserving higher calibration abilities
than those of previous approaches. Further-
more, our approach also presents the possibili-
ties of using uncertainty estimation for perfor-
mance improvement.

1 Introduction

In the biomedical domain, there exist several enti-
ties, such as genes, chemicals, and diseases, that are
closely related to each other. Therefore, extracting
the relationships among these entities is critical for
biomedical research, particularly in fields such as
construction of a knowledge base or drug develop-
ment. Biomedical text data, including PubMed ab-
stracts, usually contain information about biomedi-

cal entities and their relationships with each other.
Thus, various natural language processing models,
particularly deep learning models, are applied to
biomedical text data to extract the relationships
among these entities, as a kind of classification
task.

ChemProt corpus (Krallinger et al., 2017) is the
first corpus dataset for chemical–protein (gene) re-
lationship extraction, which has been conducted
by BioCreative VI organizers. These organizers
annotated all entity offsets of chemical and protein
mentions and relationship types between chemicals
and proteins (Chemical-Protein Relations, CPR).
There exist 10 groups of the relationship types, and
five of these (CPR:3, CPR:4, CPR:5, CPR:6, and
CPR:9) were used in the evaluation.

All models for extracting relationships from
ChemProt data are designed as classifiers. In a
deep learning-based multi-class classifier, the out-
put probability distribution for each class is calcu-
lated through the Softmax function. In the training
step, the model is trained to maximize the output
probability of the correct class. However, some
studies reported that the deep learning classifier
trained with hard-labeled data (1 for correct class,
0 for else) tends to become over-confident (Nixon
et al., 2019; Thulasidasan et al., 2019). This over-
confidence does not directly affect classification
performance, but it degrades the reliability of the
model. In other words, the output probability of
the over-confident model does not indicate how
uncertain the input example is, even if its classi-
fication performance is high. Therefore, several
approaches, called “calibration” techniques, have
been applied to several domains that require high
reliability, such as autonomous driving and medical
diagnosis (Guo et al., 2017; Jiang et al., 2012).

In the natural language processing domain, bidi-
rectional encoder representation from transformers
(BERT) (Devlin et al., 2018) was proposed for a
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wide-range of language understanding. BERT is
a large multi-head attention (Vaswani et al., 2017)
model, which was pre-trained with a vast amount
of corpus data. This pre-trained model can be eas-
ily transfer-learned and can be applied on several
downstream tasks (e.g. sentence classification) by
fine-tuning it. BERT has been used in many do-
mains, including a biomedical field. Nevertheless,
it is still important to improve the performance
of BERT by applying additional techniques while
using the BERT as a backbone architecture.

In this study, we propose a DNN-based approach
to improve the performance of chemical–protein
relationship extraction, while calibrating the classi-
fier. More precisely, we incorporated two main cal-
ibration techniques to BERT (Devlin et al., 2018)
to improve the reliability and performance. Fur-
thermore, we propose a semi-supervised learning
workflow using the calibrated model and unlabeled
in-domain data. The main contributions of our
study are as follows:

1. We show that the additional pre-training steps
of BERT with in-domain unlabeled sentences
can improve the performance in a single-
sentence classification task. This approach
is highly applicable in the biomedical domain,
since a large amount of unlabeled data is col-
lected from PubMed and PubMed Central
(PMC) using named-entity recognition mod-
els.

2. To the best of our knowledge, this is the first
study applying calibration techniques for re-
lationship extraction tasks. Furthermore, we
also propose a training framework to apply the
uncertainty information from the calibrated
model to improve the performance in classifi-
cation tasks.

2 Related Works

2.1 Chemical–Protein Relationship
Extraction (ChemProt)

The relationship extraction task is a kind of text
classification task, as the model should decide the
relationship type of a given sentence by extracting
certain semantics. Thus, several approaches includ-
ing deep learning-based models are applied on the
ChemProt corpus dataset.

Some studies have reported that the syntactic
dependency graph of a text sentence contains con-
densed and crucial information for relationship ex-

traction, as it can be derived in the form of the
shortest dependency path between two target enti-
ties (Bunescu and Mooney, 2005). For example,
Sun et al. (2019c) and Antunes and Matos (2019)
proposed a chemical–protein relationship extrac-
tion model using the shortest dependency path in-
formation. Wang et al. (2020) applied a graph con-
volutional network, which can capture contextual
and syntactic information from text by applying
a graph convolution operation on the dependency
graph of the given text.

Word representation plays a crucial role in the
low level of natural language-understanding mod-
els, since it is directly related to the actual meaning
of the word. Recently, Peters et al. (2018) proposed
contextualized word embedding, which can capture
the meaning of words in context, as opposed to the
former static word embeddings. Zhang et al. (2019)
and Sun et al. (2019b) applied the contextual word
embedding in the chemical–protein relationship ex-
traction model, which was based on a bidirectional
long short-term memory model and the attention
mechanism.

2.2 BERT

BERT (Devlin et al., 2018) is a large Transformer
(Vaswani et al., 2017) based language understand-
ing model, pre-trained with a vast amount of corpus
data. Each layer of BERT contains a multi-head
attention module and a feed-forward module. In
the pre-training step, the masked language model
and next-sentence prediction are applied as unsu-
pervised learning methods. In practice, the BERT
model can be fine-tuned with small in-domain data
for various downstream tasks, such as text clas-
sification or question answering. The fine-tuned
BERT showed state-of-the-art performances in sev-
eral downstream tasks, such as natural language
inference or sentiment analysis.

Lee et al. (2020) generated BioBERT by pre-
training the BERT model with biomedical domain
corpora, namely, PubMed abstracts and PMC full-
text articles. After the pre-training, the authors
conducted fine-tuning regarding several biomedi-
cal domain downstream tasks, such as named en-
tity recognition or relationship extraction. As a
result, they achieved state-of-the-art performances
in some tasks, which could not be achieved with
the normal BERT.

BERT and BioBERT have been applied by sev-
eral researchers for the chemical–protein relation-
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ship extraction task. Peng et al. (2020) applied
multi-task learning to BERT for biomedical do-
main tasks. Sun et al. (2020) proposed a BERT-
based capsule network, which uses BERT to ex-
tract long-range contexts and feed them into the
attention-capsule module, and they achieved signif-
icant improvement compared to BioBERT

2.3 Uncertainty Estimation and Calibration
in Deep Learning

To estimate the performance of the deep learning-
based classifier, accuracy and F1-score are com-
monly used. However, these metrics only consider
the correctly predicted class, regardless of the ac-
tual probability value. The expected calibration
error (ECE) (Naeini et al., 2015) is proposed to
address this issue. To calculate the ECE, all pre-
dictions are partitioned into a fixed-size bin, and
the difference between the accuracy and confidence
for each bin is calculated and weight-averaged. As
described by Guo et al. (2017), the formula for
calculating the ECE and confidence is as follows:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi),

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i,

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)|,

where Bm is the m-th bin, ŷi is the predicted label
of the i-th sample in the bin, and p̂i is the prediction
probability. n is the number of test examples. The
ECE of an ideally calibrated model is zero, since
its accuracy and confidence are the same for every
bin.

To calibrate the deep learning classifier, several
approaches have been applied. Pereyra et al. (2017)
approached this issue as a regularizing problem and
directly applied an additional penalizing term into
the loss function. Because the higher entropy of
output distribution indicates over-confidence, they
added negative entropy loss to a standard negative
log-likelihood loss function. Guo et al. (2017) ap-
plied several existing post-processing calibration
methods, including histogram binning and temper-
ature scaling. To deal with the over-confidence
problem caused by hard labels, label-smoothing
techniques have also been applied. Label smooth-
ing was used to improve the performance of the

model as a regularization method from Szegedy
et al. (2016). However, some researchers including
Müller et al. (2019) proved that label smoothing
can also act as a model calibration technique.

3 Methodology

3.1 Pre-processing

Sentence

Alprenolol and 
bromoacetylalprenololmenthane are 

competitive slowly reversible 
antagonists at the beta 1-

adrenoceptors of rat left atria.

Label ANTAGONIST(CPR:6)

Figure 1: An example of the ChemProt data. Both en-
tities, chemical and proteins, are highlighted in red and
blue, respectively.

Each example of the ChemProt corpus dataset
contains a PubMed abstract, manually annotated
chemical and protein entity mentions, and gold-
standard relationship labels for some protein–
chemical pairs. For simplification, this dataset was
pre-processed into a single-sentence task. On the
basis of the entity offsets, every protein–chemical
co-occurred sentences was extracted from the ab-
stract and every sentence was labeled with the gold-
standard label or the ‘false’ label. When there were
some cross-sentence entity pairs, these were omit-
ted for simplicity.

It should be noted that the entity names are too
specific in relationship extraction tasks and oc-
cur only a few times in the overall dataset. This
means that the model vocabulary cannot contain
every entity name, and their occurrence can dis-
tort the model classification performance. To avoid
this, some researchers reported that anonymizing
those entity names with a pre-defined token im-
proved the performance of the relationship ex-
traction model (Lee et al., 2020). Since the
ChemProt dataset provides the offset of each en-
tity, we replaced every entity with special tokens
(@GENE$, @CHEMICAL$). The statistics of the
pre-processed ChemProt dataset are shown in Table
1. Relations belonging to each class are described
in Krallinger et al. (2017), and representative rela-
tions of CPR:3, CPR:4, CPR:5, CPR:6, and CPR:9
are upregulator, downregulator, agonist, antago-
nist, and substrate, respectively. Figure 1 shows
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an example of the ChemProt data. The original
version of ChemProt data can be downloaded from
https://biocreative.bioinformatics.udel.edu/.

Dataset CPR:3 CPR:4 CPR:5 CPR:6 CPR:9 False

Train 757 2233 170 229 727 13749
Dev 546 1092 115 199 457 8854
Test 662 1637 182 293 642 12167
Total 1965 4962 467 721 1826 34770

Table 1: Statistics of pre-processed ChemProt dataset
with evaluated labels

3.2 Additional Pre-training of BERT with
In-domain Sentences

As mentioned earlier, BERT and BioBERT could
understand the deep contextual information of the
text through pre-training with huge corpora. In par-
ticular, BioBERT suggested that the pre-training of
BERT in a specific domain may contribute to per-
formance improvement in a downstream task of the
domain. Furthermore, some research has shown
that additional pre-training of BERT with an un-
labeled corpus dataset from the same domain can
improve the performance of specific downstream
tasks (Xie et al., 2019; Sun et al., 2019a). Similarly,
to pre-train BioBERT for chemical—protein rela-
tionship extraction, we collected protein-chemical
co-occurred sentences from PubMed abstracts us-
ing PubTator (Wei et al., 2013). As a result, a
total of 8.2 million protein–chemical co-occurred
sentences were collected. Subsequently, we pre-
trained BioBERT with collected sentences. Unlike
the pre-training process of the original BERT and
BioBERT, this process involved each input being
fed as a single sentence. Although this approach is
not suitable for next-sentence prediction in BERT,
we did not consider it as some studies have shown
the ineffectiveness of next-sentence prediction (Liu
et al., 2019; Yang et al., 2019). This additional pre-
training is so domain-specific that it may distort the
original ability to capture the deep contextual infor-
mation. Thus, we employed a learning rate smaller
than that of the original process employed in BERT
and BioBERT. The pre-training is performed over
a total of 1 million steps with a batch size of 40.

3.3 Calibration Methods
3.3.1 Mixup training
Mixup training is a data-augmentation method
originally applied in the computer vision domain

Sentence 1 Sentence 2

Embedded sequence 1 Embedded sequence 2

BERT

Encoded sentence 1 Encoded sentence 1

interpolated vector

Softmax

Figure 2: Architecture of the mixup BERT model

(Zhang et al., 2017). In this method, two random
examples and their labels are convexly combined
in a random ratio. More precisely, mixup training
can be shown as per the formula below:

x̃ = λxi + (1− λ)xj ,
ỹ = λyi + (1− λ)yj ,

where xi and xj are two randomly sampled exam-
ples and yi and yj are their one-hot labels. λ is
the randomly generated mixing ratio. In this study,
every random sampling in the mixup training was
performed under uniform distribution.

Although mixup training is proposed for regular-
ization and performance-boosting in the computer
vision domain, Thulasidasan et al. (2019) reported
that training a deep learning model using the mixup
method shows more calibrated results. They ap-
plied mixup training to well-known DNN models
to show their calibration ability in several domains,
including image and sentiment classification. Par-
ticularly in text classification, as input-level mixing
is not possible regarding text input, mixup architec-
ture was used for text input, as proposed by Guo
et al. (2019). In order to mix the input sequence
of the token itself, the embedded sequence of the
input or the encoded feature vector from the neural
network was mixed. Similarly, in this study, we
applied architecture from Guo et al. (2019), with
BERT as the sentence encoder. We used the classi-
fication embedding (‘[CLS]’) vector of BERT as an
encoded sentence, as it can be processed as a com-
pressed representation of the overall sentence in
classification tasks. As illustrated in Figure 2, two
input sequences are fed into the BERT model, and
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two feature vectors encoded by BERT are convexly
interpolated as per a given mixing ratio. Then, the
mixed vector is fed into the Softmax layer to gen-
erate output probability distribution. In this step,
the output of the model should predict the ratio be-
tween two classes instead of a single correct label.
In specific, our mixup model architecture can be
formulated as:

x̃ = λf(xi)[CLS] + (1− λ)f(xj)[CLS]
ỹ = λyi + (1− λ)yj ,

where f[CLS] denotes the classification embedding
of the last layer activation in BERT.

3.3.2 Confidence Penalty Loss (CPL)
We applied an additional calibration technique not
only in the model architecture but also on the loss
function as a regularization term. As Pereyra et al.
(2017) proposed, we applied the penalizing term
of low entropy output distribution to our model.
As mentioned earlier, the output distribution of the
uncalibrated model is biased towards 0 and 1. In
other words, the output of the uncalibrated model
has a low entropy value. Thus, the incorporation
of negative entropy to the original loss function
can enable the functioning as a regularization term
for calibration in the training step. More precisely,
when the output probability distribution is written
as pθ(y|x), the entropy of the output probability
distribution can be expressed as:

H(pθ(ỹ|x̃)) = −
∑
i

pθ(ỹi|x̃) log(pθ(ỹi|x̃)),

where i indicates the index of each class. The final
classification loss of our model is defined as the
weighted sum of the standard classification loss
and negative entropy,

J(θ) = −
∑

pθ(ỹ|x̃)− βH(pθ(ỹ|x̃))

with the hyper-parameter β, which controls the
strength of the penalty for over-confidence.

Even though the original BERT applied dropout
on the classification layer, we excluded dropout be-
cause the overlap of the regularization method may
cause underfitting. By incorporating a confidence
penalty loss term, we expect the model to avoid
over-confidence and achieve even better generaliza-
tion as the effect of regularization.

3.4 Self-training
Self-training is a kind of semi-supervised learning
method, which allows for the labeled dataset to

Initial BioBERT
①

In-domain
Pre-trained
BioBERT②

PubMed
sentences

(2) Mixup & 
CPL training

Mixup trained
BioBERT③

ChemProt
data

PubMed
sentences

Pseudo-labeled
Top-ranked

PubMed sentences
ChemProt

data

In-domain
Pre-trained
BioBERT②

Final mixup
trained

BioBERT④

(1) Unlabeled
Pre-training

(3) Prediction 
& extraction

(4) Mixup & 
CPL training

In-domain 
pre-training

Calibration

Self-training & 
Calibration

Figure 3: Overall workflow of self-training with the
calibrated model. 1) An initial BioBERT is pre-trained
with protein-chemical co-occurred unlabeled sentences.
2) A pre-trained BioBERT is fine-tuned by mixup train-
ing and CPL using ChemProt data. 3) The output prob-
abilities of PubMed unlabeled sentences are predicted
with the third model, and top-k sentences are extracted
and then pseudo-labeled. 4) The BioBERT model is
fine-tuned by mixup training and augmented data, gen-
erating the final model. Circled numbers are used to
distinguish the different models.

be enlarged using unlabeled data within a similar
domain (Triguero et al., 2015). The basic principle
of self-training is to label some of the unlabeled
data through a model trained with labeled data.
When a certain level of performance is guaranteed,
unlabeled data predicted with a high probability
in the classifier is likely to have a corresponding
label. Thus, such data can be used as pseudo-
labeled data, even if it contains slight noise. Fur-
thermore, the calibrated model may show a more
reliable prediction probability than that of the over-
confident model and even derive more qualified
pseudo-labeled data.

In this study, we used 8.2 million gene–chemical
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Models # of augmented data F1-score(%) ECE OE

BioBERT only 0 77.15 0.0841 0.0827
Our model (k=0) 0 78.34 0.0298 0
Our model (k=200) 9000 78.83 0.0232 0.0005
Our model (k=400) 18000 78.42 0.0128 0.0021
Our model (k=600) 27000 78.30 0.0102 0.0051

Table 2: Calibration performance of our proposed models.

Figure 4: Histogram of output probabilities. Left: Normal BioBERT model pre-trained with in-domain sentence.
Middle: Mixup trained model with confidence penalty loss. Right: Self-trained final model.

Models F1-score(%) Accuracy(%) Confidence(%) ECE OE

BioBERT (our experiment) 77.15 89.92 98.31 0.0841 0.0827
BioBERT+PT 77.68 90.40 98.44 0.0806 0.0793
BioBERT+PT+mixup 77.92 90.18 97.70 0.0754 0.0737
BioBERT+PT+CPL 78.18 90.57 88.14 0.0241 0
BioBERT+PT+mixup+CPL 78.34 90.54 87.53 0.0298 0
BioBERT+PT+mixup+CPL+ST
(Proposed model)

78.83 90.13 87.90 0.0232 0.0005

Table 3: Results of ablation study. (PT: Pre-training, CPL: Confidence penalty loss, ST: Self-training)

Models P(%) R(%) F(%)

BERT 74.01 70.79 72.36
BioBERT (paper) 76.63 76.74 76.68
BioBERT (our exp.) 77.64 76.82 77.15
Lim and Kang (2018) 74.80 56.00 64.10
Sun et al. (2019c) 77.08 76.06 76.56

Our best model 77.76 80.10 78.83

Table 4: Comparison between our proposed models
and other models on the basis of classification perfor-
mance.

co-occurred sentences from PubMed, extracted pre-
viously as unlabeled data. We first fine-tuned our
model with the labeled data (ChemProt) and then
performed the prediction of unlabeled data using

the fine-tuned model. After the prediction, we ex-
tracted the examples with top-k probability per 1
million examples for every label except for ‘false’.
We excluded this label because the label distribu-
tion of ChemProt dataset is biased to ‘false’. Fi-
nally, we fine-tuned a new model with original and
pseudo-labeled data. Figure 3 shows the overall
workflow of the self-training process involving the
calibrated model.

4 Results

4.1 Experimental Setup and
Hyperparameters

We use a BERT-base-cased network with a
BioBERT weight pre-trained using PubMed and
PMC as the sentence encoder. Same as the original
BERT-base model, our model contains 110 million
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parameters. Each pre-training and fine-tuning ex-
periment is performed using an NVIDIA Titan Xp
12GB GPU. It takes about four hours to fine-tune
our model with only ChemProt data, and it takes
1.5 hours more for the increase of 9,000 sentences
for self-training. The length of the sentence fed
into the sentence encoder model is set to 200, since
< 1% of ChemProt sentences exceed the length of
200. During mixup training, we generated three
additional examples per sentence via random sam-
pling of the sentence and mixup ratio with uniform
distribution. We set the weight of the confidence
penalty loss (β) to 0.3 because the model showed
the best calibration in the development set with
β = 0.3 in the grid search on [0.1, 0.3, 0.5]. The
hyper-parameter tuning results in the development
set are shown in the Appendix section.

4.2 Calibration evaluation

To evaluate the calibration performance of our ap-
proach, we compared each of our techniques on the
basis of the ECE and over-confidence error (OE),
which is defined by Thulasidasan et al. (2019). The
OE is formulated as:

OE =

M∑
m=1

|Bm|
n

[conf(Bm)× max(conf(Bm)− acc(Bm), 0)]

As shown in Table 2, the models trained using
mixup training and confidence penalty are cali-
brated better than normal BioBERT models. No-
tably, self-training also improved the calibration
ability, as reflected by the ECE values. Thulasi-
dasan et al. (2019) reported that mixing the la-
bels during mixup training can function as label
smoothing, and they emphasized that label smooth-
ing plays a crucial role in terms of calibration. The
augmentation of additional labeled sentences via
self-training also implies that label-smoothened
mixup examples are augmented. Thus, a self-
trained model with a higher k showed better cal-
ibration results. However, performances of mod-
els with k > 200 were degraded, and the perfor-
mance of the model with k = 600 performed worse
than that of the model with k = 0 . This might be
because the augmentation of too much data may
include irrelevant sentences into the training set,
which can distort the characteristics of the original
data. This means that the determination of k during
self-training presents a trade-off between classifi-
cation performance and calibration performance.

Additionally, Figure 4 visualizes the qualitative cal-
ibration effect of our approach.

4.3 Ablation study

To observe how each technique contributed to the
overall performance improvement, we conducted
an ablation study. We ablated in-domain pre-
training, mixup training, confidence penalty loss,
and self-training progressively, the results of which
are shown in Table 3. The in-domain pre-training
improved classification performance compared to
BioBERT, but it did not show improvement in
terms of calibration. Similar to the results shown
by Guo et al. (2019) and Thulasidasan et al. (2019),
mixup training improved both the F1-score and
calibration score. Regularization with confidence
penalty loss also yielded significant improvement
in terms of both classification and calibration, and
the simultaneous application of mixup and CPL
also showed positive results. As mentioned earlier,
the application of self-training on the calibrated
model enhanced performance overall, except for
the aspect concerning over-confidence of error.

4.4 Performance Comparison

We compared the classification performance of our
model with that of several chemical–protein rela-
tionship extraction models. As shown in Table 4,
BioBERT experimented by us showed a slightly
higher F1 score than that of BioBERT. As the other
hyper-parameters were the same as those of the
original conditions, it appears that there was a slight
improvement in performance owing to the increase
in the input sequence length (128 in the case of
BioBERT). Our models outperformed BioBERT—
the current state-of-the-art model in ChemProt. As
shown in Table 3, the mixup+CPL model, trained
with only the original ChemProt dataset, also per-
formed better than BioBERT.

5 Conclusion

In this study, we propose a calibrated deep neural
network-based relationship extraction model for
chemical–protein interactions. We applied mixup
training—which can both augment the training ex-
amples and calibrate the model—on the BioBERT
model. We also incorporated the low entropy pe-
nalizing term in the loss function, as a regulariza-
tion term during training. This led to significant
improvement in terms of both classification and
calibration performance. Moreover, we applied
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self-training on our model to augment the training
data and boost the performance, as our model is
well-calibrated; it returned reliable output proba-
bilities. Consequently, our model outperformed
the other chemical–protein relationship extraction
models and achieved state-of-the-art performance
regarding the Biocreative VI ChemProt task.

In this work, we applied our training process
on the biomedical domain, especially on chemical–
protein relation extraction, because a large set of
unlabeled data can be found from PubMed in the
biomedical domain. This process can be applied
to any NLP classification problems with unlabeled
data sets. We can apply the proposed method to
other tasks such as CoLA or SST-2 in the GLUE
benchmark (Wang et al., 2018) since there are a
large set of unlabeled data for ungrammatical sen-
tences or movie reviews. The application of our
method to other domains will be our future work.
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A Appendices

To find the best weight of the confidence penalty
loss (β), we measured performance of the proposed
model using a development set of ChemProt data
for three values of β = [0.1, 0.3, 0.5]. Three repli-
cates were performed for each β, and we calculated
the mean and variance of each β. The results are
shown in Table A1. Since the confidence penalty
loss was incorporated to the loss function for en-
hancing calibration, we chose β = 0.3, which
showed the best calibration performance.

To show the significant improvement in terms of
classification performance, we report the mean and
standard deviation values of every experiment in
the ablation study. Table A2 shows the statistics of
all metrics in the ablation study.

The max, min and std of F-scores of our pro-
posed model are 79.92, 78.18 and 0.59, respec-
tively, while those of BioBERT are 77.36, 76,91
and 0.18. The max, min and std precision of our
proposed model are 80.08, 75.64 and 1.56 while
those of BioBERT are 78.64, 76.18 and 0.83. The
max, min and std recall of our proposed model are
81.84, 78.73 and 1.00 while those of BioBERT are
77.76, 76.13 and 0.62. Although the improvement
of the precision by our model is relatively small,
recall and F-score were more improved. The min
values of recall and F- score of our model are larger
than the max values of the BioBERT, showing su-
periority of our method.
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β F1-score (%) Variance Accuracy (%) Confidence (%) ECE OE

0.1 81.13 1.340× 10−5 91.14 96.36 0.0522 0.0503
0.3 81.19 1.705× 10−5 91.05 87.6 0.0344 0
0.5 82.27 7.698× 10−7 91.37 78.13 0.1622 0

Table A1: Results of hyperparameter search using the development set.

Model
P (%) R (%) F (%) Acc. (%) Conf(%) ECE OE

mean std. mean std. mean std. mean std. mean std. mean std. mean std.

BioBERT 77.64 0.83 76.82 0.62 77.15 0.18 89.92 0.12 98.31 0.08 0.0841 0.0013 0.0827 0.0013
BioBERT+PT 79.18 1.08 76.43 0.71 77.68 0.39 90.40 0.22 98.44 0.11 0.0806 0.002 0.0793 0.002

BioBERT+PT+
mixup

78.46 0.65 77.49 0.69 77.92 0.53 90.18 0.18 97.70 0.07 0.0754 0.0015 0.0737 0.0015

BioBERT+PT+
CPL

79.96 0.77 76.61 0.83 78.18 0.46 90.57 0.09 88.14 0.13 0.0241 0.0015 0 0

BioBERT+PT+
mixup+CPL

80.36 1.19 76.58 0.57 78.34 0.52 90.54 0.20 87.52 0.12 0.0298 0.002 0 0

BioBERT+PT+
mixup+CPL+ST

77.76 1.56 80.10 1.00 78.83 0.59 90.13 0.39 87.90 1.16 0.0232 0.0101 0.0005 0.0011

Table A2: Results of ablation study. (PT: Pre-training, CPL: Confidence penalty loss, ST: Self-training)


