
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2051–2061
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2051

End-to-End Speech Recognition and Disfluency Removal

Paria Jamshid Lou1 and Mark Johnson2,1

1Department of Computing, Macquarie University
2Oracle Digital Assistant, Oracle Corporation

1paria.jamshid-lou@hdr.mq.edu.au
2mark.mj.johnson@oracle.com

Abstract
Disfluency detection is usually an intermediate
step between an automatic speech recognition
(ASR) system and a downstream task. By con-
trast, this paper aims to investigate the task of
end-to-end speech recognition and disfluency
removal. We specifically explore whether it
is possible to train an ASR model to directly
map disfluent speech into fluent transcripts,
without relying on a separate disfluency detec-
tion model. We show that end-to-end models
do learn to directly generate fluent transcripts;
however, their performance is slightly worse
than a baseline pipeline approach consisting of
an ASR system and a specialized disfluency
detection model. We also propose two new
metrics for evaluating integrated ASR and dis-
fluency removal models. The findings of this
paper can serve as a benchmark for further re-
search on the task of end-to-end speech recog-
nition and disfluency removal in the future.

1 Introduction

Disfluency is a characteristic of spontaneous
speech which is not present in written texts. Dis-
fluencies include filled pauses (e.g. um and uh),
repetitions (e.g. the the), corrections (e.g. Show
me the flights . . . the early flights), parenthetical
asides (e.g. you know), interjections (e.g. well and
like), restarts (e.g. There’s a . . . Let’s go) and par-
tial words (e.g. wou- and oper-) which frequently
occur in spontaneous speech1 and reduce the read-
ability of speech transcripts (Liu et al., 2006). They
also pose a major challenge to downstream tasks
relying on the output of speech recognition sys-
tems, such as parsing and machine translation mod-
els (Johnson and Charniak, 2004; Wang et al., 2010;
Honnibal and Johnson, 2014). Since these models
are usually trained on fluent clean corpora, the mis-
match between the training data and the actual use

1Shriberg (1994) observed disfluencies once in every 20
words.

case decreases their performance. To tackle this
challenge of spontaneous speech, specialized disflu-
ency detection models are developed and applied as
a post-processing step to remove disfluencies from
the output of speech recognition systems (Zayats
et al., 2016; Wang et al., 2018; Dong et al., 2019).

One type of disfluency which is especially prob-
lematic for disfluency detection models is speech
repair. Shriberg (1994) defines three distinct parts
of a speech repair, referred to as reparandum, inter-
regnum and repair. As illustrated in the example
below, the reparandum to Boston is the part of the
utterance that is replaced and is usually followed by
an interruption point in the speech signal, the inter-
regnum uh I mean is an optional part of a disfluent
structure (that consists of a filled pause uh and a
discourse marker I mean) and the repair to Den-
ver replaces the reparandum. The fluent version is
obtained by deleting reparandum and interregnum
words.

I want a flight to Boston︸ ︷︷ ︸
reparandum

uh I mean︸ ︷︷ ︸
interregnum

to Denver.︸ ︷︷ ︸
repair

Disfluency detection is usually an intermediate
step between an ASR model and a downstream task.
This pipeline approach is complex to implement
and leads to higher inference latency. It also has the
potential problem of errors compounding between
components, e.g. recognition errors lead to larger
disfluency detection errors. End-to-end models, on
the other hand, are less prone to such problems.
More importantly, end-to-end models can leverage
paralinguistic features in speech signal that are not
available in pipeline systems. Speech carries extra
information beyond the words which might provide
useful cues to disfluency detection2. In this paper,

2Prosodic cues (e.g. pause) signal disfluencies by marking
the interruption point (Shriberg, 1994; Zayats and Ostendorf,
2019).



2052

we address the task of end-to-end speech recogni-
tion and disfluency removal. Specifically, we inves-
tigate whether it is possible to train an ASR model
end-to-end to directly map disfluent speech into flu-
ent transcripts, without an intermediate disfluency
detection step. Some previous work has attempted
disfluency detection as part of another task in an
end-to-end manner, e.g. joint disfluency detection
and constituency parsing (Jamshid Lou et al., 2019)
and direct translation from disfluent Spanish speech
to fluent English transcripts (Salesky et al., 2019).
However, to the best of our knowledge, this is the
first work that systematically investigates the task
of end-to-end ASR and disfluency removal, serving
as a starting point for future research into end-to-
end disfluency removal systems. In this paper, we
aim to answer the following questions:

• Can an ASR model directly generate fluent
transcripts from disfluent speech? We might
expect an end-to-end ASR model (without
an explicit disfluency detection component)
not to effectively detect disfluencies. How-
ever, we show that end-to-end ASR models
do learn to directly generate fluent tran-
scripts and their performance is comparable
to a baseline pipeline system (i.e. an ASR
model followed by a specialized disfluency
detection model).

• How does the choice of architecture impact
disfluency detection and removal in end-to-
end speech recognition? We compare the
performance of three neural-based end-to-end
ASR and disfluency removal models includ-
ing a Connectionist Temporal Classification
based model, an LSTM-based sequence-to-
sequence model and a Transformer sequence-
to-sequence model and show that a Trans-
former ASR model has the best perfor-
mance on disfluency removal.

• How can we systematically evaluate the per-
formance of an end-to-end ASR and disfluency
removal model? The existing evaluation met-
rics are designed to measure the performance
of a single task, namely speech recognition or
disfluency detection, but not both. We intro-
duce two new metrics measuring the disflu-
ency removal and word recognition perfor-
mance of an end-to-end model.

2 Related Work

Disfluency removal is typically performed by train-
ing a specialized disfluency detection model on
disfluency labeled data and applying it as a sep-
arate component following an ASR model and
prior to a downstream task. The specialized dis-
fluency detectors (Zayats et al., 2016; Wang et al.,
2016; Jamshid Lou et al., 2018) are usually trained
on the Switchboard corpus (Marcus et al., 1999)
which is the largest available dataset with gold
(i.e. human-annotated) disfluency labels. State-of-
the-art disfluency detectors use Transformer mod-
els with pretrained contextualised word embed-
dings (e.g. BERT) (Tran et al., 2019; Jamshid Lou
et al., 2019; Dong et al., 2019; Wang et al., 2019a;
Jamshid Lou and Johnson, 2020). Multi-task
learning has been effective for disfluency detec-
tion, for example, a Transformer trained to jointly
detect disfluencies and find constituency parse
trees would leverage syntactic information and de-
tect disfluencies more accurately (Jamshid Lou
et al., 2019). Self-training and ensembling have
also shown to provide benefit to disfluency de-
tection (Jamshid Lou and Johnson, 2020). Self-
training on disfluent data provides benefits orthog-
onal to the pretrained contextualized embeddings
and mitigates the scarcity of gold disfluency la-
beled data. The BERT-based self-attentive parser
introduced in Jamshid Lou et al. (2019) is the cur-
rent state-of-the-art in disfluency detection; thus,
we use it as the “off-the-shelf” disfluency detector
in our pipeline approach, as explained in Section 5.

With the rise of end-to-end models, the conversa-
tional speech translation models that directly trans-
late disfluent speech into fluent texts have recently
attracted increasing attention (Salesky et al., 2019;
Ansari et al., 2020; Fukuda et al., 2020; Saini et al.,
2020). The most similar previous work to ours
is Salesky et al. (2019). They train a sequence-to-
sequence model (called fluent model) to directly
translate from disfluent Spanish speech to fluent
English transcripts without a separate disfluency
detection step. As a baseline, they train a model
(called disfluent model) on disfluent speech and
disfluent translations. To compare the performance
of the fluent and disfluent models, they score the
outputs against the fluent references using BLEU
and METEOR. Similar METEOR scores are re-
ported for both models, but BLEU scores are lower
with the disfluent model. They argue that the dis-
fluencies generated by the disfluent model lead



2053

to n-gram break-up in the fluent references and
consequently decrease the BLEU scores. They
conclude that higher BLEU scores in the fluent
model imply that it is better at generating fluent
translations. Although BLEU and METEOR are
standard metrics for evaluating machine transla-
tion systems, they are not designed to evaluate the
performance of end-to-end models in terms of dis-
fluency removal. Since many disfluent words are
copies of fluent words, the BLEU score of disflu-
ent transcripts (e.g. The the snack was delicious)
can be higher than that of fluent transcripts contain-
ing translation errors (e.g. The meal was delicious
against the fluent reference The snack was deli-
cious). Furthermore, these metrics are sensitive to
sequence length which makes them undesirable for
evaluating end-to-end models incorporating disflu-
ency removal. Fluent transcripts tend to contain
fewer tokens per sentence in comparison with dis-
fluent transcripts. By contrast, we introduce two
new metrics in this paper that systematically mea-
sure the fluency of the generated transcripts. We
also benchmark our end-to-end model against a
state-of-the-art pipeline approach to explicitly eval-
uate its disfluency detection performance.

3 Speech Recognition and Disfluency
Removal Models

We investigate three different ASR architec-
tures: Connectionist Temporal Classification
(CTC), LSTM-based and Transformer sequence-to-
sequence models. Each of these three ASR models
is trained twice: (i) in a pipeline approach where
the ASR model is trained to transcribe speech, fol-
lowed by an “off-the-shelf” specialized disfluency
detection model, (ii) in an end-to-end approach
where the ASR model is trained to jointly transcribe
speech and remove disfluencies, which we refer to
as an integrated ASR and disfluency model. The
ASR models for the two training regimes are iden-
tical in terms of architecture and the number of pa-
rameters. The only difference is their training data,
i.e. the pipeline ASR model is trained on disfluent
speech and disfluent transcripts while the end-to-
end ASR model is trained on disfluent speech and
fluent transcripts. Given the same speech utterance,
the same ASR architecture is trained to either pro-
duce (i) or (ii):

(i) I want a flight to Boston uh I mean to Denver

(ii) I want a flight to Denver

As input features to the ASR model, we prepro-
cess the speech signal by sampling the raw au-
dio waveform using a sliding window of 25ms
with stride 10ms. We extract 80-dimensional
log mel-filterbank coefficients plus three funda-
mental frequency features from the frames using
Kaldi (Povey et al., 2011). We train a CTC-based
ASR model, called Jasper (Li et al., 2019), using
the OpenSeq2Seq Toolkit3 (Kuchaiev et al., 2018).
Jasper contains 10 blocks of 1D-convolutional lay-
ers, each with 5 sub-blocks. A sub-block consists
of a 1D-convolutional operation, batch normaliza-
tion, clipped ReLU activation and dropout. There
is a residual connection between each block which
is added to the output of the last 1D-convolutional
layer in the block before the clipped ReLU acti-
vation and dropout. The optimizer used to train
the model is stochastic gradient descent with mo-
mentum and the loss is CTC (Graves et al., 2006).
At decoding time, a candidate list is generated us-
ing word-level 4-gram language models and beam
search with a width of 2048. For more details,
see Li et al. (2019).

We build the encoder-decoder Sequence-
to-Sequence model with Bahdanau atten-
tion (Bahdanau et al., 2014) using the Espresso
Toolkit4 (Wang et al., 2019b). The Sequence-to-
Sequence model uses a 4-layer 2D-convolution,
followed by a 3-layer bidirectional LSTM as
an encoder and a 3-layer LSTM as a decoder.
We train the model using cross-entropy loss
and an Adam optimizer. We leverage shallow
fusion (Gülçehre et al., 2015) as a language model
integration technique. The decoder with shallow
fusion computes a weighted sum of two posterior
distributions over subword units from the speech
recognition model and from the neural language
model. For more details, see Wang et al. (2019b).

We also train a Transformer ASR model in-
spired by Mohamed et al. (2019) using the Fairseq
Toolkit5 (Ott et al., 2019). The Transformer re-
places the sinusoidal positional embeddings at the
encoder and the decoder with convolutional lay-
ers to capture the positional information. The en-
coder contains two 2D-convolutional blocks with
layer norms and ReLU after each convolutional
layer. Each convolutional block contains two con-
volutional layers followed by a 2D max pooling

3https://github.com/NVIDIA/OpenSeq2Seq
4https://github.com/freewym/espresso
5https://github.com/pytorch/fairseq

https://github.com/NVIDIA/OpenSeq2Seq
https://github.com/freewym/espresso
https://github.com/pytorch/fairseq


2054

layer with kernel sizes of 3 and 2, respectively.
The convolutional layers are used on top of 16
encoder transformer blocks with model hidden di-
mension 1024 and 16 attention heads. The decoder
includes three 1D-convolutional layers, each with a
kernel size of 3, and 6 decoder transformer blocks.
The Transformer layers learn the global sequential
structure of the input while the convolutional lay-
ers learn local relationships within a small context.
The training criterion is cross-entropy loss and the
model is optimized using adadelta. We employ
shallow fusion and standard beam search with a
beam size of 20 at decoding time. In order to have
a fair comparison with other models, we do not
pretrain the Transformer. For more details, see Ott
et al. (2019). The language models used in the
three ASR models are extracted from or trained on
the same data used for training the ASR models (i.e.
on fluent transcripts for the end-to-end models and
on disfluent transcripts for the pipeline models).

4 Evaluating Integrated ASR and
Disfluency Models

The performance of ASR models is usually eval-
uated in terms of word error rate (WER). WER
is calculated by finding an alignment between the
reference transcript (which is human-transcribed
speech) and ASR output so that a minimum number
of edits (i.e. substitutions, insertions and deletions)
are required for transcribing the ASR output to the
reference transcript. Given an alignment, WER is
the ratio between the number of incorrectly aligned
words and the total number of words in the refer-
ence transcript:

WER =
s+ i+ d

n
(1)

where s, i and d are the number of substitutions, in-
sertions and deletions and n is the total number of
words in the reference transcript. WER measures
the overall word recognition performance without
distinguishing between fluent and disfluent words.
Since the reference transcript contains both fluent
and disfluent words, a WER of zero on the full
transcript means that the system returned all of the
disfluent words as well as the fluent words, which
is not what an integrated system should do6. While
WER with respect to the full reference transcript
(containing both fluent and disfluent words) is not

6An integrated system is expected to recognize fluent
words and discard disfluent words in the output.

meaningful for integrated systems intended to pro-
duce fluent output, WER with respect to the fluent
subsequence is a meaningful measure of overall
system, since this is the intended output of an in-
tegrated system. However, since disfluencies only
comprise around 6% of the total words, the WER
score largely reflects how well fluent words are rec-
ognized, rather than how well the system handles
disfluencies. A system may score poorly on WER
even though it is perfect in terms of detecting dis-
fluencies because it fails to correctly recognize the
fluent words.

Specialized disfluency detection models are usu-
ally evaluated using edited f-score. Edited f-score
focuses more on detecting disfluent words, so it is
a decent metric for highly skewed data like Switch-
board. Calculating f-score, however, is not straight-
forward in end-to-end models as the model is ex-
pected to generate fluent outputs directly (rather
than tagging disfluencies in the output).

To address the limitations of the existing metric,
we introduce two new evaluation metrics7 which
assess the output of an integrated model in terms
of fluency and word recognition accuracy in Sec-
tion 4.1. We then demonstrate the problems as-
sociated with the standard ASR alignment algo-
rithm and how it can lead to undesirable align-
ments for evaluating integrated ASR and disflu-
ency models. As a solution, we modify standard
alignment weights to correctly align reference tran-
scripts (which may contain disfluencies) with inte-
grated model outputs in Section 4.2.

Figure 1: Ref is the reference transcript which is
human-transcribed speech with gold disfluency labels,
shown in red. E2E represents the output of an inte-
grated ASR and disfluency removal model.

4.1 Fluent and Disfluent Error Rate Scores
To overcome the limitations of WER, we use the
standard WER evaluation to evaluate fluent and
disfluent words separately. In this way, the quality
of integrated model outputs is evaluated in terms
of both fluency and word recognition. We calculate
the word error rate on fluent words (which we call
the fluent error rate or FER) as the number of sub-
stitutions sf , deletions df and insertions if among

7https://github.com/pariajm/
e2e-asr-and-disfluency-removal-evaluator

https://github.com/pariajm/e2e-asr-and-disfluency-removal-evaluator
https://github.com/pariajm/e2e-asr-and-disfluency-removal-evaluator


2055

Figure 2: Ref is the reference transcript which is human-transcribed speech with gold disfluency labels, shown
in red. Align 1 represents the alignment between the output of an integrated ASR and disfluency model and the
reference transcript generated by the standard alignment weights where equal costs are allocated for aligning fluent
and disfluent words. Align 2 is the desired alignment in order to make meaningful FER and DER evaluations.

fluent words divided by the total number of fluent
words nf in the reference transcript as below. For
example, FER is equal to 0.5 in Figure 1, which
is calculated on the fluent subset words shown in
black where sf = 2, if = 0, df = 1 and nf = 6.

FER =
sf + if + df

nf
(2)

We define the word error rate on disfluent words
(which we call the disfluent error rate or DER) as
anything other than a deletion (i.e. substitutions sd,
insertions id and copies cd) among disfluent words
divided by the total number of disfluent words nd

in the reference transcript as below. For instance,
DER is equal to 0.4 in Figure 1, which is calculated
on the disfluent subset words shown in red where
sd = 0, id = 0, cd = 2, and nd = 5.

DER =
sd + id + cd

nd
(3)

For calculating FER and DER, we need to align
the reference transcripts (i.e. human-transcribed
speech with gold disfluency labels) to the integrated
model outputs, which are expected to be fluent.
The aligner used for this purpose is explained in
the following section.

4.2 Aligning Integrated Model Output to
Reference Transcripts

In this section, we first describe the standard ASR
alignment algorithm and explain why it sometimes
finds misleading alignments of the output from
integrated ASR and disfluency systems. We then
suggest a modification to the standard edit distance
alignment weights so that they lead to meaningful
alignments between the reference transcript and the
integrated model output.

4.2.1 Problems with Standard ASR
Alignment

To illustrate the problems with standard ASR align-
ment algorithms, consider Figure 2, where the out-
puts from an integrated model have been aligned
with the reference transcripts using two different
alignment weights. The first alignment, indicated
as Align 1, is generated by the Sclite Toolkit.
Sclite8 is a standard toolkit for evaluating ASR
outputs which finds an alignment using dynamic
programming algorithms such that a copy, deletion,
insertion and substitution cost 0, 3, 3 and 4, re-
spectively. Align 2, on the other hand, is what we
expect an aligner to produce in order to have mean-
ingful FER and DER evaluations. As shown in
Align 1, the fluent words in the outputs of the inte-
grated system are aligned with the disfluent words
in the reference transcripts rather than the fluent
words. Since we expect the reference transcript
to contain both fluent and disfluent words and the
output of an integrated system to discard the dis-
fluencies, the standard alignment weights fail to
properly align the integrated model output to the
reference transcript. Align 1 and Align 2 have the
same alignment cost with the standard weights, so
an aligner using the standard weights has no reason
to prefer one over the other. The problem that arises
here is that since many disfluent words are copies
of fluent words, if the same cost is used to align
fluent and disfluent words, the alignment will be
ambiguous (i.e. there will be multiple alignments
with the same cost). Thus, to force the aligner to
prefer aligning null (i.e. deletions) for disfluent
words and copy for fluent words, we modify the
alignment weights so the intuitively correct align-
ment scores better, and so will be chosen by the
alignment algorithm.

8https://github.com/usnistgov/SCTK

https://github.com/usnistgov/SCTK


2056

Figure 3: Ref is the reference transcript which is human-transcribed speech with gold disfluency labels, shown
in red. Align refers to the alignment between the integrated ASR and disfluency model output and the reference
transcript generated by the modified alignment weights where different costs are allocated for aligning fluent and
disfluent words.

4.2.2 Alignment Weights for Integrated ASR
and Disfluency Models

We use two sets of weights for finding an alignment
between the reference and the integrated model
output. We use the standard alignment weights de-
scribed in Section 4.2.1 for aligning fluent words,
and slightly modify the weights to discourage align-
ing disfluent words in the reference transcript with
words in the integrated model output. For the flu-
ent region, a correct alignment operation is a copy
while for the disfluent region, a correct alignment
is a deletion. As shown in Table 1, the alignment
cost is slightly higher for inserting, copying and
substituting a disfluent word and slightly lower for
deleting a disfluent word. Having a higher align-
ment cost for disfluent words results in a preference
to align the words in integrated model outputs with
fluent words as illustrated in Figure 3. Ambigui-
ties can still arise even if disfluent words have a
higher alignment cost than fluent words. However,
these ambiguities do not affect the disfluency eval-
uation scores as our disfluency evaluation scores
only depend on whether a word is disfluent or not.

Operation Fluent Disfluent

Copy (c) 0 0 + 10−7

Insertion (i) 3 3 + 10−7

Deletion (d) 3 3− 10−7

Substitution (s) 4 4 + 10−7

Table 1: The two sets of weights used to align disfluent
and fluent words separately.

In summary, although WER is a standard metric
for evaluating ASR models, it is insufficient for
evaluating integrated ASR and disfluency systems
as it measures the overall word recognition accu-
racy, and does not specifically focus on how well
the end-to-end system handles disfluencies. Alter-

natively, we propose a modified alignment strategy
with different weights for fluent and disfluent word
alignments. Thus, it is possible to calculate word
error rate on fluent and disfluent regions separately.
Our new evaluation metrics and alignment weights
are useful for aligning and evaluating any system
trained to remove disfluency in its output.

5 Experiments

We train our ASR models on two corpora of En-
glish conversational telephone speech: (i) Switch-
board-1 Release 2 (SWBD) (Godfrey and Holli-
man, 1993) and (ii) Fisher Part 1 (Cieri et al., 2004)
and Part 2 (Cieri et al., 2005). Switchboard-1 Re-
lease 2 is a collection of about 2,400 telephone
conversations (260 hours of speech), of which
1,126 conversations were hand-annotated with dis-
fluencies as part of the Penn Treebank Release
3 dataset (Marcus et al., 1999), which we refer
to as gold data. The original release of Switch-
board does not contain time-alignment annotations
which are required for preparing the ASR training
data. Mississippi State University researchers ran a
clean-up project on Switchboard-1 Release 2 and
produced accurate time alignments9 which we use
for speech segmentation.

Fisher Part 1 and 2 are a collection of 11,700 tele-
phone conversations (total 2,000 hours of speech),
which contain time-aligned transcripts, but no dis-
fluency annotations. To identify the disfluencies
in the Fisher data and the portion of the SWBD
data with no gold disfluency labels, we use an
“off-the-shelf” state-of-the-art disfluency detection
model10 (Jamshid Lou et al., 2019). We call the
automatically annotated data silver data. The dis-
fluency detection model used to obtain silver data
is a BERT-based self-attentive parser that jointly

9http://www.openslr.org/5/
10https://github.com/pariajm/

joint-disfluency-detector-and-parser

http://www.openslr.org/5/
https://github.com/pariajm/joint-disfluency-detector-and-parser
https://github.com/pariajm/joint-disfluency-detector-and-parser


2057

1
Ref . . . the rights of that individual are been have been you know impugned . . .
Pipe . . . the rights of that individual or ben have been you know immune . . .
E2E . . . the rights of that individual have been you know impuned . . .

2
Ref . . . I actually my dad’s my dad’s almost ninety . . .
Pipe . . . I yeah cause my dad’s almost ninety . . .
E2E . . . actually my dad’s almost ninety . . .

3
Ref I’ve been to a couple o- I’ve been to a few games before
Pipe I bent a couple I’ve been to a few games before
E2E I’ve been to a few games before

4
Ref So from from that standpoint it’s pretty small it’s pretty small
Pipe So from that standpoint it’s pretty small
E2E So from that standpoint it’s pretty small it’s pretty small

5
Ref It’s I I’m sure there’s a lot of differences in the way in the way it’s done now and then
Pipe I’m sure there’s a lot of differences in the way it’s done now and then
E2E I’m sure there’s a lot of differences in the way in the way it’s done now and then

Table 2: Some examples from the SWBD dev set and corresponding transcripts. Ref is the reference transcript
which is human-transcribed speech with gold disfluency labels, shown in red. E2E represents the output of the
end-to-end Transformer ASR and disfluency removal model. Pipe refers to the output of the pipeline Transformer
ASR and “off-the-shelf” disfluency detection model.

finds a constituency parse tree and detects disflu-
encies in speech transcripts. Different versions of
the parser are available; we use the parser trained
on the Penn Treebank Release 3 Switchboard cor-
pus with partial words kept in the data for which
they reported an f-score of 94.4 on the SWBD
dev set. We remove all disfluent words (tagged as
“EDITED” and “INTJ”), as well as partial words
(words tagged “XX” and words ending in “-”)
and punctuation from the SWBD and Fisher data.
We use the standard data splits for training our
models as well as the language models (Charniak
and Johnson, 2001): training data consists of the
sw[23].text files11 and fe 03 ∗.txt, dev
data consists of the sw4[5-9].text files and
test data consists of the sw4[0-1].text files.

We consider a pipeline approach as our baseline
and apply the “off-the-shelf” disfluency detection
model to the output of the baseline ASR models.
As our evaluation metrics, we report WER, FER
and DER for the end-to-end and the pipeline mod-
els. Since the goal of an integrated system is to find
only the fluent words, we evaluate WER only on flu-
ent words. For calculating FER and DER, we align
the output of the integrated models and the output
of the pipeline ASR and disfluency detector to the

11The “off-the-shelf” disfluency detection model has been
trained on the standard SWBD training split.

reference transcripts with gold disfluency labels.
We report DER results for detecting edited disflu-
encies, interjections and partial words. In order to
have a fair comparison, we report all the results of
the paper on the subset of the Switchboard dev and
test sets with gold disfluency labels.

6 Results

We compare the performance of our integrated
ASR and disfluency models (trained on fluent tran-
scripts) to the baseline pipeline models consisting
of the ASR models (trained on disfluent transcripts)
combined with the “off-the-shelf” disfluency detec-
tion model. As shown in Table 3, the WER of end-
to-end models is higher than that of the pipeline
models, indicating that word recognition is gener-
ally more difficult when the ASR model is trained
on disfluent speech and fluent transcripts.

FER measures the (fluent) word recognition per-
formance of the model while DER reflects how well
the model performs in terms of disfluency detection
and removal. The baseline ASR models (without
disfluency detection) have the lowest error rate on
fluent areas (i.e. FER). However, when we apply
the “off-the-shelf” disfluency detection model on
the output of the baseline ASR models, FER sig-
nificantly increases, indicating that errors made by
the “off-the-self” disfluency detection model harm



2058

the detection of fluent words. The fluent error rate
of the end-to-end models is lower than the pipeline
models. Comparing the disfluent error rate of the
end-to-end and baseline models, we realize that
simply training an ASR model on disfluent speech
and fluent transcripts significantly decreases the
number of disfluencies in the output12. However,
this is not sufficient for outperforming the baseline
pipeline models on detecting and removing disflu-
encies, indicating that more complex architectures
or mechanisms are required for effective end-to-
end ASR and disfluency detection. The pipeline
models have access to more information (i.e. the
annotated disfluencies) than the end-to-end models;
however, it is not clear if or how it would improve
system performance. Of the three end-to-end mod-
els, the Transformer has the best performance on
disfluency removal which we speculate is due to
the self-attention mechanism which has been previ-
ously shown effective in detecting disfluencies in
speech transcripts (Tran et al., 2019; Jamshid Lou
et al., 2019; Dong et al., 2019; Wang et al., 2019a).
We also compare the end-to-end ASR and disflu-
ency removal models with the pipeline ASR and
disfluency detection on the Switchboard test set, as
demonstrated in Table 4.

model WER FER DER
CTC (base) 12.4 10.2 93.5
CTC (pipe) 12.4 13.5 20.2
CTC (E2E) 13.6 11.1 22.6

Seq2Seq (base) 8.7 7.7 95.0
Seq2Seq (pipe) 8.7 9.1 18.8
Seq2Seq (E2E) 10.5 8.9 21.8

Transformer (base) 9.5 8.5 94.6
Transformer (pipe) 9.5 10.2 18.6
Transformer (E2E) 11.2 9.4 20.2

Gold Transcripts + DF - 2.2 16.8

Table 3: Word error rate (WER) with respect to the
fluent transcript, fluent error rate (FER) and disfluent
error rate (DER) on the SWBD dev set. “Gold Tran-
scripts + DF” = the gold transcripts followed by the
“off-the-shelf” disfluency detector (DF), “base” = the
baseline ASR (trained on disfluent transcripts), “pipe”
= the baseline ASR + DF, “E2E” = end-to-end ASR and
disfluency removal (trained on fluent transcripts).

12Using the fluent transcripts to train constrains the model
not to generate filled pauses such as uh, hm, um and so on.

model WER FER DER
CTC (base) 12.5 11.8 94.7
CTC (pipe) 12.5 13.1 23.3
CTC (E2E) 14.3 12.4 26.2

Seq2Seq (base) 11.2 10.4 95.2
Seq2Seq (pipe) 11.2 11.6 22.6
Seq2Seq (E2E) 12.2 10.1 25.6

Transformer (base) 11.2 10.5 95.2
Transformer (pipe) 11.2 12.1 22.2
Transformer (E2E) 13.8 11.6 24.0

Gold Transcripts + DF - 2.7 17.7

Table 4: Word error rate (WER) with respect to the
fluent transcripts, fluent error rate (FER) and disfluent
error rate (DER) on the SWBD test set. “Gold Tran-
scripts + DF” = the gold transcripts followed by the
“off-the-shelf” disfluency detector (DF), “base” = the
baseline ASR (trained on disfluent transcripts), “pipe”
= the baseline ASR + DF, “E2E” = end-to-end ASR and
disfluency removal (trained on fluent transcripts).

Model Rep. Cor. Res. All

CTC 23.6 33.5 36.0 28.9
Seq2Seq 22.5 29.5 35.1 27.1
Transformer 22.1 25.8 35.1 25.0

Table 5: Disfluent error rate (DER) of three end-to-end
ASR and disfluency removal models for different types
of disfluency on a subset of the SWBD dev set contain-
ing 145 disfluent structures — including 76 repetitions
(Rep.), 58 corrections (Cor.) and 11 restarts (Res.).

To further investigate the disfluency removal per-
formance of the three end-to-end models, we ran-
domly select 100 sentences from the Switchboard
dev set containing disfluencies. We categorize dis-
fluencies into repetition, correction and restart ac-
cording to the Shriberg (1994) typology of speech
repairs. Repetitions are repairs where the reparan-
dum and repair portions of the disfluency are iden-
tical, while corrections are where the reparandum
and repairs differ (which are much harder to detect).
Restarts are where the speaker abandons a sentence
and starts a new one (i.e. the repair is empty). As
Table 5 shows, the end-to-end Transformer model
outperforms the other models in detecting all types
of disfluency. It particularly has better performance
on corrections, which are the more challenging dis-



2059

fluency types in comparison with repetitions.

6.1 Qualitative Analysis

We conduct a qualitative analysis on the Switch-
board dev set to characterize the disfluencies that
the pipeline model cannot detect but the end-to-end
model can and vice versa. We provide representa-
tive examples in Table 2. ASR errors usually lead
to disfluency detection errors in the pipeline model
(see #1-3). On the other hand, the end-to-end model
sometimes fails at detecting repetitions which are
the most common type of disfluency. While the
specialized disfluency detector is good at detecting
repetitions in speech transcripts, it seems that iden-
tifying repetitions in speech signal is non-trivial for
the end-to-end model (see #4 and #5).

7 Conclusion

We showed WER is insufficient for evaluating end-
to-end ASR and disfluency removal systems and
alternatively introduced two metrics reflecting how
well end-to-end systems handle disfluencies. We
also showed the disfluency removal performance of
end-to-end models is comparable to that of pipeline
ASR and specialized high-performance disfluency
models. The best end-to-end system uses a Trans-
former, that’s what the best “off-the-shelf” disflu-
ency detection system does, too. In the future, we
aim to retrain the “off-the-shelf” disfluency detec-
tor on ASR outputs using cross-validation. It is in-
teresting to investigate how modifying the training
loss would affect disfluency detection in end-to-end
models. We also intend to augment the end-to-end
Transformer model with special mechanisms which
have been previously shown effective for disfluency
detection in speech transcripts.

Acknowledgements

We would like to thank the anonymous reviewers
for their insightful comments and suggestions. This
research was supported by a Google award through
the Natural Language Understanding Focused Pro-
gram, by a CSIRO’s DATA61 Top-up Scholarship,
and under the Australian Research Councils Dis-
covery Projects funding scheme (project number
DP160102156).

References
Ebrahim Ansari, Amittai Axelrod, Nguyen Bach,

Ondřej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir

Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
Turchi, Alexander Waibel, and Changhan Wang.
2020. Findings of the IWSLT 2020 evaluation cam-
paign. In Proceedings of the 17th International Con-
ference on Spoken Language Translation (IWSLT),
pages 1–34, Online.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv e-prints,
abs/1409.0473.

Eugene Charniak and Mark Johnson. 2001. Edit de-
tection and parsing for transcribed speech. In Pro-
ceedings of the 2nd Meeting of the North American
Chapter of the Association for Computational Lin-
guistics on Language Technologies (NAACL), pages
118–126, Stroudsburg, USA.

Christopher Cieri, David Graff, Owen Kimball, Dave
Miller, and Kevin Walker. 2004. Fisher English
Training Speech Part 1 Transcripts LDC2004T19.
Published by: Linguistic Data Consortium, Philadel-
phia, USA.

Christopher Cieri, David Graff, Owen Kimball, Dave
Miller, and Kevin Walker. 2005. Fisher English
Training Speech Part 2 Transcripts LDC2005T19.
Published by: Linguistic Data Consortium, Philadel-
phia, USA.

Qianqian Dong, Feng Wang, Zhen Yang, Wei Chen,
Shuang Xu, and Bo Xu. 2019. Adapting translation
models for transcript disfluency detection. In Pro-
ceedings of the 2019 AAAI Conference on Artificial
Intelligence, pages 6351–6358, Honolulu, USA.

Ryo Fukuda, Katsuhito Sudoh, and Satoshi Nakamura.
2020. NAIST’s machine translation systems for
IWSLT 2020 conversational speech translation task.
In Proceedings of the 17th International Conference
on Spoken Language Translation (IWSLT), pages
172–177, Online.

John Godfrey and Edward Holliman. 1993.
Switchboard-1 Release 2 LDC97S62. Published by:
Linguistic Data Consortium, Philadelphia, USA.

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: Labelling unsegmented se-
quence data with recurrent neural networks. In Pro-
ceedings of the International Conference on Ma-
chine Learning (ICML), pages 369–376, Pittsburgh,
USA.

Çalar Gülçehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loı̈c Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv e-prints, abs/1503.03535.

https://doi.org/10.18653/v1/2020.iwslt-1.1
https://doi.org/10.18653/v1/2020.iwslt-1.1
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://www.aclweb.org/anthology/N01-1016
https://www.aclweb.org/anthology/N01-1016
https://catalog.ldc.upenn.edu/LDC2004S13
https://catalog.ldc.upenn.edu/LDC2004S13
https://catalog.ldc.upenn.edu/LDC2005S13
https://catalog.ldc.upenn.edu/LDC2005S13
https://doi.org/10.1609/aaai.v33i01.33016351
https://doi.org/10.1609/aaai.v33i01.33016351
https://doi.org/10.18653/v1/2020.iwslt-1.21
https://doi.org/10.18653/v1/2020.iwslt-1.21
https://catalog.ldc.upenn.edu/LDC97S62
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535


2060

Matthew Honnibal and Mark Johnson. 2014. Joint in-
cremental disfluency detection and dependency pars-
ing. Transactions of the Association for Computa-
tional Linguistics (TACL), 2(1):131–142.

Paria Jamshid Lou, Peter Anderson, and Mark Johnson.
2018. Disfluency detection using auto-correlational
neural networks. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4610–4619, Brussels,
Belgium.

Paria Jamshid Lou and Mark Johnson. 2020. Im-
proving disfluency detection by self-training a self-
attentive model. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 3754–3763, Online.

Paria Jamshid Lou, Yufei Wang, and Mark Johnson.
2019. Neural constituency parsing of speech tran-
scripts. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (NAACL-HLT), pages 2756–2765, Min-
neapolis, USA.

Mark Johnson and Eugene Charniak. 2004. A TAG-
based noisy channel model of speech repairs. In Pro-
ceedings of the 42nd Annual Meeting on Association
for Computational Linguistics (ACL), pages 33–39,
Barcelona, Spain.

Oleksii Kuchaiev, Boris Ginsburg, Igor Gitman, Vi-
taly Lavrukhin, Jason Li, Huyen Nguyen, Carl
Case, and Paulius Micikevicius. 2018. Mixed-
precision training for NLP and speech recognition
with OpenSeq2Seq. arXiv e-prints, abs/1805.10387.

Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan
Leary, Oleksii Kuchaiev, Jonathan M. Cohen, Huyen
Nguyen, and Ravi Teja Gadde. 2019. Jasper: An
end-to-end convolutional neural acoustic model. In
Proceedings of the 19th Annual Conference of the In-
ternational Speech Communication Association (In-
terspeech), pages 71–75, Graz, Austria.

Yang Liu, Elizabeth Shriberg, Andreas Stolckeand,
Dustin Hillard, Mari Ostendorf, and Mary Harper.
2006. Enriching speech recognition with automatic
detection of sentence boundaries and disfluencies.
IEEE Transactions on Audio, Speech, and Language
Processing, 14(5):1526–1540.

Mitchell Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-3
LDC99T42. Published by: Linguistic Data Consor-
tium, Philadelphia, USA.

Abdelrahman Mohamed, Dmytro Okhonko, and Luke
Zettlemoyer. 2019. Transformers with con-
volutional context for ASR. arXiv e-prints,
abs/1904.11660.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. FAIRSEQ: A fast, extensible

toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics (NAACL) (Demonstrations), pages 48–53, Min-
neapolis, USA.

Daniel Povey, Arnab Ghoshal, et al. 2011. The Kaldi
Speech Recognition Toolkit. In Proceedings of
IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding (ASRU), Hawaii, USA.

Nikhil Saini, Jyotsana Khatri, Preethi Jyothi, and Push-
pak Bhattacharyya. 2020. Generating fluent trans-
lations from disfluent text without access to fluent
references: IIT Bombay@IWSLT2020. In Proceed-
ings of the 17th International Conference on Spoken
Language Translation (IWSLT), pages 178–186, On-
line.

Elizabeth Salesky, Matthias Sperber, and Alexander
Waibel. 2019. Fluent translations from disfluent
speech in end-to-end speech translation. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT), pages 2786–2792, Minneapolis, USA.

Elizabeth Shriberg. 1994. Preliminaries to a theory
of speech disfluencies. Ph.D. thesis, Department
of Psychology, University of California, Berkeley,
USA.

Trang Tran, Jiahong Yuan, Yang Liu, and Mari Osten-
dorf. 2019. On the role of style in parsing speech
with neural models. In Proceedings the 19th Annual
Conference of the International Speech Communi-
cation Association (Interspeech), pages 4190–4194,
Graz, Austria.

Feng Wang, Wei Chen, Zhen Yang, Qianqian Dong,
Shuang Xu, and Bo Xu. 2018. Semi-supervised dis-
fluency detection. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics
(COLING), pages 3529–3538, Santa Fe, USA.

Shaolei Wang, Wanxiang Che, Qi Liu, Pengda Qin,
Ting Liu, and William Yang Wang. 2019a. Multi-
task self-supervised learning for disfluency detec-
tion. arXiv e-prints, abs/1908.05378.

Shaolei Wang, Wanxiang Che, and Ting Liu. 2016. A
neural attention model for disfluency detection. In
Proceedings of the 26th International Conference on
Computational Linguistics (COLING), pages 278–
287, Osaka, Japan.

Wen Wang, Gokhan Tur, Jing Zheng, and Necip Fazil
Ayan. 2010. Automatic disfluency removal for
improving spoken language translation. In Pro-
ceedings of 2010 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages
5214–5217, Dallas, USA.

Yiming Wang, Tongfei Chen, Hainan Xu, Shuoyang
Ding, Hang Lv, Yiwen Shao, Nanyun Peng, Lei Xie,
Shinji Watanabe, and Sanjeev Khudanpur. 2019b.

https://www.aclweb.org/anthology/Q14-1011
https://www.aclweb.org/anthology/Q14-1011
https://www.aclweb.org/anthology/Q14-1011
https://aclweb.org/anthology/D18-1490
https://aclweb.org/anthology/D18-1490
https://doi.org/10.18653/v1/2020.acl-main.346
https://doi.org/10.18653/v1/2020.acl-main.346
https://doi.org/10.18653/v1/2020.acl-main.346
https://doi.org/10.18653/v1/N19-1282
https://doi.org/10.18653/v1/N19-1282
https://www.aclweb.org/anthology/P04-1005
https://www.aclweb.org/anthology/P04-1005
https://arxiv.org/abs/1805.10387
https://arxiv.org/abs/1805.10387
https://arxiv.org/abs/1805.10387
https://doi.org/10.21437/Interspeech.2019-1819
https://doi.org/10.21437/Interspeech.2019-1819
https://ieeexplore.ieee.org/document/1677974
https://ieeexplore.ieee.org/document/1677974
https://catalog.ldc.upenn.edu/LDC99T42
https://catalog.ldc.upenn.edu/LDC99T42
https://arxiv.org/abs/1904.11660
https://arxiv.org/abs/1904.11660
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/2020.iwslt-1.22
https://doi.org/10.18653/v1/2020.iwslt-1.22
https://doi.org/10.18653/v1/2020.iwslt-1.22
https://www.aclweb.org/anthology/N19-1000
https://www.aclweb.org/anthology/N19-1000
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.443.7755&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.443.7755&rep=rep1&type=pdf
https://www.isca-speech.org/archive/Interspeech_2019/abstracts/3122.html
https://www.isca-speech.org/archive/Interspeech_2019/abstracts/3122.html
https://www.aclweb.org/anthology/C18-1299
https://www.aclweb.org/anthology/C18-1299
https://arxiv.org/abs/1908.05378
https://arxiv.org/abs/1908.05378
https://arxiv.org/abs/1908.05378
https://www.aclweb.org/anthology/C16-1027
https://www.aclweb.org/anthology/C16-1027
https://ieeexplore.ieee.org/document/5494999
https://ieeexplore.ieee.org/document/5494999


2061

Espresso: A fast end-to-end neural speech recogni-
tion toolkit. In 2019 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU), pages
136–143, Singapore, Singapore.

Vicky Zayats and Mari Ostendorf. 2019. Giving at-
tention to the unexpected: Using prosody innova-
tions in disfluency detection. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL-HLT), pages
86–95, Minneapolis, USA.

Victoria Zayats, Mari Ostendorf, and Hannaneh Ha-
jishirzi. 2016. Disfluency detection using a bidirec-
tional LSTM. In Proceedings of the 16th Annual
Conference of the International Speech Communi-
cation Association (Interspeech), pages 2523–2527,
San Francisco, USA.

https://ieeexplore.ieee.org/document/9003968
https://ieeexplore.ieee.org/document/9003968
https://doi.org/10.18653/v1/n19-1008
https://doi.org/10.18653/v1/n19-1008
https://doi.org/10.18653/v1/n19-1008
https://www.isca-speech.org/archive/Interspeech_2016/pdfs/1247.PDF
https://www.isca-speech.org/archive/Interspeech_2016/pdfs/1247.PDF

