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Abstract

Image captioning systems need to produce
texts that are not only true but also relevant
in that they are properly aligned with the cur-
rent issues. For instance, in a newspaper arti-
cle about a sports event, a caption that not only
identifies the player in a picture but also com-
ments on their ethnicity could create unwanted
reader reactions. To address this, we propose
Issue-Sensitive Image Captioning (ISIC). In
ISIC, the captioner is given a target image and
an issue, which is a set of images partitioned
in a way that specifies what information is rele-
vant. For the sports article, we could construct
a partition that places images into equivalence
classes based on player position. To model
this task, we use an extension of the Ratio-
nal Speech Acts model. Our extension is built
on top of state-of-the-art pretrained neural im-
age captioners and explicitly uses image par-
titions to control caption generation. In both
automatic and human evaluations, we show
that these models generate captions that are de-
scriptive and issue-sensitive. Finally, we show
how ISIC can complement and enrich the re-
lated task of Visual Question Answering.

1 Introduction

Image captioning systems have improved dramat-
ically over the last few years (Karpathy and Fei-
Fei, 2015; Vinyals et al., 2015; Hendricks et al.,
2016; Rennie et al., 2017; Anderson et al., 2018),
creating new opportunities to design systems that
are not just accurate, but also produce descrip-
tions that include relevant, characterizing aspects
of their inputs. Many of these efforts are guided by
the insight that high-quality captions are implicitly
shaped by the communicative goal of identifying
the target image up to some level of granularity
(Vedantam et al., 2017; Mao et al., 2016; Luo et al.,
2018; Cohn-Gordon et al., 2018).

In this paper, we seek to more tightly control the

Issues Target Caption

a small brown 
bird with a tan 
chest and a tan 
beak

this bird has a 
brown crown a 
white eyebrow 
and a rounded 
belly

What is the color of the bird?

What is the head pattern of the bird?

Figure 1: Examples highlighting the power of an issue-
sensitive image captioner. Four images are partitioned
in two ways, each capturing different issues by group-
ing them into equivalence classes. The first row con-
trasts the brown and grey color of the bird, and the sec-
ond contrasts the existence of white eyebrows. The tar-
get image is the same in both cases, but the partition
leads to different captions that key into the structure of
the input issue.

information that a pretrained captioner includes in
its output texts. Our focus is on generating captions
that are relevant to the current issues. To see how
important this can be, consider a newspaper article
covering the action in a sports event. In this context,
a caption that not only identified the player in a
picture but also commented on their ethnicity could
create unwanted reactions in readers, as it would
convey to them that such information was somehow
deemed relevant by the newspaper. On the other
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hand, in an article about diversity in athletics, that
same caption might seem entirely appropriate.

To push captioners to produce more relevant
texts, we propose the task of Issue-Sensitive Image
Captioning (ISIC). In ISIC, the captioner’s inputs
are image/issue pairs, where an issue is a set of
images partitioned in a way that specifies what in-
formation is relevant. In our first example above,
we might define a partition that grouped players
into equivalence classes based on their team po-
sitions, abstracting away from other facts about
them. For the second example, we might choose a
more fine-grained partition based on position and
demographic features. Given such inputs, the ob-
jective of the captioner is to produce a text that
both accurately and uniquely describes the cell of
the partition containing the target image. Figure 1
illustrates with examples from our own models and
experiments.

In defining the task this way, we are inspired
by Visual Question Answering (VQA; Antol et al.
2015), but ISIC differs from VQA in two crucial
respects. First, we seek full image captions rather
than direct answers. Second, our question inputs
are not texts, but rather issues in the semantic sense:
partitions on subsets of the available images. The
ISIC module reasons about the cells in these parti-
tions as alternatives to the target image, and our no-
tion of relevance is defined in these terms. Nonethe-
less, VQA and ISIC complement each other: issues
(as partitions) can be automatically derived from
available image captioning and VQA datasets (Sec-
tion 6), opening up new avenues for VQA as well.

Our models are built on top of pretrained im-
age captioners with no need for additional train-
ing or fine-tuning. This is achieved by extending
those models according to the Rational Speech Acts
model (RSA; Frank and Goodman 2012; Goodman
and Stuhlmüller 2013). RSA has been applied suc-
cessfully to many NLP tasks (Section 2.3). Our key
modeling innovation lies in building issues into
these models. In this, we are inspired by linguistic
work on question-sensitive RSA (Goodman and
Lassiter, 2015; Hawkins and Goodman, 2019).

Our central experiments are with the Caltech-
UC San Diego-Bird dataset (CUB; Welinder et al.
2010). This dataset contains extensive attribute an-
notations that allow us to study the effects of our
models in precise ways. Using CUB, we provide
quantitative evidence that our RSA-based models
generate captions that both richly describe the tar-

get image and achieve the desired kinds of issue-
sensitivity. We complement these automatic eval-
uation with a human evaluation in which partici-
pants judged our models to be significantly more
issue-sensitive than standard image captioners. Fi-
nally, we show how to apply our methods to larger
image captioning and VQA datasets that require
more heuristic methods for defining issues. These
experiments begin to suggest the potential value
of issue-sensitivity in other domains that involve
controllable text generation. We share code for
reproducibility and future development at https:
//github.com/windweller/Pragmatic-ISIC.

2 Related Work

2.1 Neural Image Captioning

The task of image captioning crosses the usual
boundary between computer vision and NLP; a
good captioner needs to recognize coherent parts of
the image and describe them in fluent text. Karpa-
thy and Fei-Fei (2015) and Vinyals et al. (2015)
showed that large-capacity neural networks can get
traction on this difficult problem. Much subsequent
work has built on this insight, focusing on two as-
pects. The first is improving image feature quality
by using object-based features (Anderson et al.,
2018). The second is improving text generation
quality by adopting techniques from reinforcement
learning to directly optimize for the evaluation met-
ric (Rennie et al., 2017). Our work rests on these
innovations – our base image captioning systems
are those of Hendricks et al. (2016) and Rennie
et al. (2017), which motivate and employ these
central advancements.

There is existing work that proposes methods
for controlling image caption generation with at-
tributes. In general, these approaches involve mod-
els in which the attributes are part of the input,
which requires a dataset with attributes collected
beforehand. For instance, Mathews et al. (2015)
collected a small dataset with sentiment annotation
for each caption, Shuster et al. (2019) collected cap-
tions with personality traits, and Gan et al. (2017)
with styles (such as humorous and romantic). The
final metrics center around whether the human-
generated caption was reproduced, or around other
subjective ratings. By contrast, our method does
not require an annotated dataset for training, and
we measure the success of a model by whether it
has resolved the issue under discussion.

https://github.com/windweller/Pragmatic-ISIC
https://github.com/windweller/Pragmatic-ISIC
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2.2 Visual Question Answering

In VQA, the model is given an image and a nat-
ural language question about that image, and the
goal is to produce a natural language answer to
the question that is true of the image (Antol et al.,
2015; Goyal et al., 2017). This is a controllable
form of (partial) image captioning. However, in
its current form, VQA tends not to elicit linguisti-
cally complex texts; the majority of VQA answers
are single words, and so VQA can often be cast
as classification rather than sequence generation.
Our goal, in contrast, is to produce linguistically
complex, highly descriptive captions. Our task ad-
ditionally differs from VQA in that it produces a
caption in response to an issue, i.e., a partition of
images, rather than a natural language question. In
Section 4.2 and Section 6, we describe how VQA
and ISIC can complement each other.

2.3 The Rational Speech Acts Model

The Rational Speech Acts model (RSA) was devel-
oped by Frank and Goodman (2012) with impor-
tant precedents from Lewis (1969), Jäger (2007),
Franke (2009), and Golland et al. (2010). RSA
defines nested probabilistic speaker and listener
agents that reason about each other in communica-
tion to enrich the basic semantics of their language.
The model has been applied to a wide variety of di-
verse linguistic phenomena. Since RSA is a proba-
bilistic model of communication, it is amenable for
incorporation into many modern NLP architectures.
A growing body of literature shows that adding
RSA components to NLP architectures can help
them to capture important aspects of context depen-
dence in language, including referential description
generation (Monroe and Potts, 2015; Andreas and
Klein, 2016; Monroe et al., 2017), instruction fol-
lowing (Fried et al., 2018), collaborative problem
solving (Tellex et al., 2014), and translation (Cohn-
Gordon and Goodman, 2019).

Broadly speaking, there are two kinds of ap-
proaches to incorporating RSA into NLP systems.
One class performs end-to-end learning of the RSA
agents (Monroe and Potts, 2015; Mao et al., 2016;
White et al., 2020). The other uses a pretrained
system and applies RSA at the decoding stage (An-
dreas and Klein, 2016; Vedantam et al., 2017; Mon-
roe et al., 2017; Fried et al., 2018). We adopt this
second approach, as it highlights the ways in which
one can imbue a wide range of existing systems
with new capabilities.

2.4 Issue-Sensitivity in Language

Our extension of RSA centers on what we call
issues. In this, we build on a long tradition of lin-
guistic research on the ways in which language
use is shaped by the issues (often called Questions
Under Discussion) that the discourse participants
regard as relevant (Groenendijk and Stokhof, 1984;
Ginzburg, 1996; Roberts, 1996). Issues in this
sense can be reconstructed in many ways. We
follow Lewis (1988) and many others in casting
an issue as a partition on a space of states into
cells. Each cell represents a possible resolution of
the issue. These ideas are brought into RSA by
Goodman and Lassiter (2015) and Hawkins and
Goodman (2019). We translate those ideas into the
models for ISIC (Section 4), where an issue takes
the form of a partition over a set of natural images.

3 Task Formulation

In standard image captioning, the input i is an im-
age drawn from a set of images I, and the output
w is a sequence of tokens [w1, . . . , wn] such that
each wi ∈ V , where V is the vocabulary.

In ISIC, we extend standard image captioning
by redefining the inputs as pairs (C, i), where C
is a partition1 on a subset of elements of I and
i ∈

⋃
u∈C. We refer to the partitions C as issues,

for the reasons discussed in Section 2.4. The goal
of ISIC is as follows: given input (C, i), produce a
caption w that provides a true resolution of C for
i, which reduces to w identifying the cell of C that
contains i, as discussed in Section 2.4. Figure 2
presents an idealized example. (Figure 1 is a real
example involving CUB and an ISIC captioner; see
also Figure 3 and Figure 4 below.)

In principle, we could try to learn this kind of
issue sensitivity directly from a dataset of exam-
ples ((C, i),w). We do think such dataset could be
collected, as discussed briefly in Section 7. How-
ever, such datasets would be very large (each image
needs to collect |C| number of captions), and our
primary modeling goal is to show that such datasets
need not be created. The issue-sensitive pragmatic
model we introduce next can realize the goal of
ISIC without training data of this kind.

1A set of sets X is a partition of a set X iff u ∩ v = ∅ for
all u, v ∈ X and

⋃
u∈X = X .
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{{ } { } { }}
“A red square”

{{ } { } { }}
“A small square”

Target CaptionIssue

Figure 2: Two idealized examples highlighting the desired behavior for ISIC. A single set of images is partitioned
in two ways. The top row groups them by color and shape, whereas the bottom row groups them by size and shape.
A successful system for ISIC should key into these differences: for the same target image, its captions should
reflect the partition structure and identify which cell the target belongs to, as in our examples. A caption like “A
square” would be inferior in both contexts because it doesn’t convey which cell the target image belongs to.

4 Models

4.1 Neural Pragmatic Agents
The models we employ for ISIC define a hierarchy
of increasingly sophisticated speaker and listener
agents, in ways that mirror ideas from Gricean prag-
matics (Grice, 1975) about how meaning can arise
when agents reason about each other in both pro-
duction and comprehension (see also Lewis 1969).

Our base agent is a speaker S0(w | i). In linguis-
tic and psychological models, this agent is often
defined by a hand-built semantics. In contrast, our
S0 is a trained neural image captioning system. As
such, they are learned from data, with no need to
hand-specify a semantic grammar or the like.

The pragmatic listener L1(i | w) defines a dis-
tribution over states i given a message w. The
distribution is defined by applying Bayes’ rule to
the S0 agent:

L1(i | w) =
S0(w | i)P (i)∑

i′∈I S0(w | i′)P (i′)
(1)

where P (i) is a prior over states i (always flat in
our work). This agent is pragmatic in the sense that
it reasons about another agent, showing behaviors
that align with the Gricean notion of conversational
implicature (Goodman and Frank, 2016).

We can then define a pragmatic speaker using a
utility function U1, in turn defined in terms of L1:

U1(i,w) = logL1(i | w) (2)

S1(w | i) =
exp (αU1(i,w)− cost(w))∑
w′ exp (αU1(i,w′)− cost(w′))

(3)

Here, α is a parameter defining how heavily S1
is influenced by L1. The term cost(w) is a cost
function on messages. In other work, this is often

specified by hand to capture analysts’ intuitions
about complexity or markedness. In contrast, our
version is entirely data-driven: we specify cost(w)
as − log(S0(w | i)).

4.2 Issue-Sensitive Speaker Agents
The agent in (3) has been widely explored and
shown to deliver a powerful notion of context de-
pendence (Andreas and Klein, 2016; Monroe et al.,
2017). However, it is insensitive to the issues C
that characterize ISIC. To make this connection,
we extend (3) with a term for these issues:

UC
1 (i,w,C) = log

(∑
i′∈I

δ[C(i)=C(i′)]L1(i
′ | w)

)
(4)

SC
1 (w | i,C) ∝ exp

(
αUC

1 (i,w,C)− cost(w)
)

(5)

where δ[C(i)=C(i′)] is a partition function, returning
1 if i and i′ are in the same cell in C, else 0. This
is based on a similar model of Kao et al. (2014).
We use C(i) to denote the cell to which image i
belongs under C (a slight abuse of notation, since
C is a set of sets).

The construction of the partitions C is deliber-
ately left open at this point. In some settings, the
set of images I will have metadata that allows us to
construct these directly. For example, in the CUB
dataset, we can use the attributes to define intuitive
partitions directly – e.g., the partition that groups
images into equivalence classes based on the beak
color of the birds they contain. The function can
also be parameterized by a full VQA model A. For
a given question text q and image i, A defines a
map from (q, i) to answers a, and so we can par-
tition a subset of I based on equivalence classes
defined by these answers a.
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4.3 Penalizing Misleading Captions
The agent in (5) is issue-sensitive in that it favors
messages that resolve the issue C. However, it does
not include a pressure against hyper-specificity;
rather, it just encodes the goal of identifying parti-
tion cells. This poses two potential problems.

The first can be illustrated using the top row of
Figure 2. All else being equal, our agent (5) would
treat “‘A red square” and “A small red square” as
equally good captions, even though the second
includes information that is intuitively gratuitous
given the issue. This might seem innocent here,
but it can raise concerns in real environments, as
we discussed in Section 1 in connection with our
newspaper article examples.

The second problem relates to the data-driven
nature of the systems we are developing: in being
hyper-specific, we observed that they often men-
tioned properties not true of the target but rather
only true of members of their equivalence classes.
For example, in Figure 2, the target could get incor-
rectly described with “A large red square” because
of the other member of its cell.

We propose to address both these issues with a
second utility term U2:

U2(w, i,C) = H(L1(i
′ | w) · δ[C(i)=C(i′)]) (6)

where H is the information-theoretic entropy. This
encodes a pressure to choose utterances which re-
sult in the L0 spreading probability mass as evenly
as possible over the images in the target image cell.
This discourages very specific descriptions of any
particular image in the target cell, thereby solving
both of the problems we identified above.

We refer to this agent as SC+H
1 . Its full specifi-

cation is as follows:

SC+H
1 (w | i,C) ∝
exp (α ((1− β)U1 + βU2)− cost(w)) (7)

where β ∈ [0, 1] is a hyperparameter that allows us
to weight these two utilities differently.

4.4 Reasoning about Alternative Captions
A pressing issue which arises when computing
probabilities using (3), (5), and (7) is that the nor-
malization constant includes a sum over all possible
captions w′. In the present setting, the set of pos-
sible captions is infinite (or at least exponentially
large in the maximum caption length), making this
computation intractable.

There are two solutions to this intractability pro-
posed in the literature: one is to use S0 to sample a
small subset of captions from the full space, which
then remains fixed throughout the computation (An-
dreas and Klein, 2016; Monroe et al., 2017). The
drawback of this approach is that the diversity of
captions that the S1 can produce is restricted by the
S0. Since our goal is to generate captions which
may vary considerably depending on the issue, this
is a serious limitation.

The other approach is to alter the model so that
the RSA reasoning takes place greedily during the
generation of each successive word, word piece, or
letter in the caption, so that the possible “utterances”
at each step are drawn from a relatively small set
of options to avoid exponential increase in search
space (Cohn-Gordon et al., 2018). We opt for this
incremental formulation and provide the full details
on this model in Appendix A.

5 CUB Experiments

5.1 Preliminaries

Dataset The Caltech UC San Diego-Bird (CUB)
dataset contains 11,788 images for 200 species of
North American birds (Welinder et al., 2010). Each
image contains a single bird and is annotated with
fine-grained information about the visual appear-
ance of that bird, using a system of 312 attributes
(all of them binary) devised by ornithologists. The
attributes have a property::value structure, as in
has wing color::brown, and are arranged hierarchi-
cally from high-level descriptors (e.g., bill) to very
specific low-level attributes (e.g., belly pattern).
Appendix B provides a detailed example.

Reed et al. (2016) annotated each image in CUB
with five captions. These captions were generated
by crowdworkers who did not have access to the
attribute annotations, and thus they vary widely in
their alignment with the CUB annotations.

Constructing CUB Partitions CUB is ideal for
testing our issue-sensitive captioning method be-
cause we can produce partitions directly from the
attributes. For example, has wing color::brown
induces a binary partition into birds with brown
wings and birds with non-brown wings, and
has wing color alone induces a partition that
groups birds into equivalence classes based on
their wing-color values. We selected the 17 most
frequently appearing attributes, which creates 17
equivalence classes to serve as our issues.
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a small bird with a white breast 
and belly brown wings and tail 
and a pointed beak

Bill Shape

Tail Pattern a small brown and white bird 
with a long beak and long tail 
feathers

this bird has a brown 
crown a white 
eyebrow and a brown 
and white breast

Target Issue-sensitive CaptionIssues Base Caption

this is a bird with a white belly 
brown back and a brown head

this is a grey bird 
with a red head and 
a red beak

Belly Color

this is a reddish orange bird 
with black and white wings and 
a red crown

Crown Color

Figure 3: Captions for CUB. The left-hand cell in the ‘Issues’ column contains the target image, and right-hand
cell is the union of the distractor cells. The ‘Base Caption’ texts are those produced by our S0 model, and the
‘Issue-sensitive Caption’ texts were produced by SC+H

1 .

Base Captioning System We trained a model re-
leased by Hendricks et al. (2016) with the same
data-split scheme, where we have 4,000 images for
training, 1,994 images for validation, and 5,794
images for testing. The model is a two-layer
long short-term memory model (Hochreiter and
Schmidhuber, 1997) with 1000-dimensional hid-
den size and 1000-dimensional word embeddings.
We trained for 50 epochs with a batch size of 128
and learning rate 1e−3. The final CIDEr score for
our model is 0.52 on the test split. We use greedy
decoding to generate our captions.

Feature-in-Text Classifier In order to examine
the effectiveness of our issue-sensitive captioning
models, we need to be able to identify whether the
generated caption contains information regarding
the issue. Even though each CUB image has a
complete list of features for its bird, we must map
these features to descriptions in informal text. For
this, we require a text classifier. Unfortunately, it
is not possible to train an effective classifier on
the CUB dataset itself. As we noted above, the
caption authors did not have access to the CUB at-
tribute values, and so their captions tend to mention
very different information than is encoded in those
attributes. Furthermore, even if we did collect en-
tirely new captions with proper attribute alignment,
the extreme label imbalances in the data would
remain a challenge for learning.

To remedy this, we use a sliding window text
classifier. First, we identify keywords that can de-
scribe body parts (e.g. “head”, “malar”, “cheek-
patch”) and extract their positions in the text. Sec-
ond, we look for keywords related to aspects (e.g.,
“striped”, “speckled”); if these occur before a body-
part word, we infer that they modify the body part.
Thus, for example, if “scarlet and pink head” is in

the caption, then we infer that it resolves an issue
about the color of the bird’s head.

This classifier is an important assessment tool
for us, so it needs to be independently validated.
We meet this need using our human study in Sec-
tion 5.4, which shows that our classifier is ex-
tremely accurate and, more importantly, not biased
towards our issue-sensitive models.

5.2 Evaluating Attribute Coverage

We begin by assessing the extent to which our issue-
sensitive pragmatic models produce captions that
are more richly descriptive of the target image than
a base neural captioner S0 and its simple pragmatic
variant S1. For CUB, we can simply count how
many attributes the caption specifies according to
our feature-in-text classifier. More precisely, for
each image and each model, we generate captions
under all resolvable issues, concatenate those cap-
tions, and then use the feature-in-text classifier to
obtain a list of attributes, which we can then com-
pare to the ground truth for the image as given by
the CUB dataset.

For S0 and S1, the captions do not vary by issue,
whereas our expectation is that they do vary for
SC
1 and SC+H

1 . To further contextualize the perfor-
mance of the issue-sensitive agents, we additionally
define a model S0 Avg that takes as inputs the av-
erage of all the features from all the images in the
current partition, and otherwise works just like S0.
This introduces a rough form of issue-sensitivity, al-
lowing us to quantify the value of the more refined
approach defined by SC

1 and SC+H
1 . Appendix D

provides full details on how these models were
optimized.

Table 1 reports on this evaluation. Precision for
all models is very high; the underlying attributes in
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Precision Recall F1

S0 96.1 16.6 28.3
S0 Avg 94.0 32.7 48.5
S1 93.9 29.6 45.0
SC
1 94.8 44.3 60.4
SC+H
1 94.7 50.8 66.2

Table 1: Attribute coverage results.

CUB are very comprehensive, so all high-quality
captioners are likely to do well by this metric. In
contrast, the recall scores vary substantially, and
they clearly favor the issue-sensitive models, re-
vealing them to be substantially more descriptive
than S0 and S1. Figure 3 provides examples that
highlight these contrasts: whereas the S0 caption
is descriptive, it simply doesn’t include a number
of attributes that we can successfully coax out of
an issue-sensitive model by varying the issue.

The results also show that SC
1 and SC+H

1 pro-
vide value beyond simply averaging image features
in C, as they both outperform S0 Avg. However, it
is noteworthy that even the rough notion of issue-
sensitivity embodied by S0 Avg seems beneficial.

Table 2 summarizes attribute coverage at the
level of individual categories, for our four primary
models. We see that the issue-sensitive models are
clear winners. However, the entropy term in SC+H

1

seems to help for some categories but not others,
suggesting underlying variation in the categories
themselves.

5.3 Evaluating Issue Alignment

Our previous evaluation shows that varying the
issue has a positive effect on the captions generated
by our issue-sensitive models, but it does not assess
whether these captions resolve individual issues in
an intuitive way. We now report on an assessment
that quantifies issue-sensitivity in this sense.

The question posed by this method is as follows:
for a given issue C, does the produced caption
precisely resolve C? We can divide this into two
sub-questions. First, does the caption resolve C,
which is a notion of recall. Second, does the cap-
tion avoid addressing issues that are distinct from
C, which is a notion of precision. The recall pres-
sure is arguably more important, but the precision
one can be seen as assessing how often the cap-
tion avoids irrelevant and potentially distracting
information, as discussed in Section 4.3.

Issues S0 S1 SC
1 SC+H

1

wing pattern 3.9 22.1 28.7 14.9
belly pattern 7.6 19.4 32.0 39.8
breast pattern 7.6 17.0 30.8 35.2
nape color 6.0 18.1 31.2 49.2
upper tail color 1.3 24.5 30.6 22.6
under tail color 1.5 26.3 33.1 22.9
back color 5.1 24.9 32.6 66.7
leg color 6.2 51.0 45.6 7.4
throat color 16.4 46.2 66.0 69.8
crown color 49.5 50.4 77.4 90.4
bill shape 47.7 43.7 71.1 91.8
eye color 24.4 54.1 61.3 53.3
wing color 39.2 70.5 82.7 77.4
bill color 38.7 64.1 80.4 74.2
breast color 42.8 61.1 77.4 90.4
belly color 56.6 65.7 81.3 93.3
bill length 60.3 55.8 84.3 95.5

Table 2: F1 scores for each body part. The issue-
sensitive models are superior for all categories except
‘leg color’.

Precision Recall F1

S0 10.5 21.1 15.5
S0 Avg 12.1 29.0 17.0
S1 11.2 21.7 14.8
SC
1 18.7 42.5 25.9
SC+H
1 16.6 46.6 24.5

Table 3: Issue alignment results.

Table 3 reports on this issue-sensitive evaluation,
with F1 giving the usual harmonic mean between
our versions of precision and recall. Overall, the
scores reveal that this is a very challenging prob-
lem, which traces to the fine-grained issues that
CUB supports. Our SC+H

1 agent is nonetheless
definitively the best, especially for recall.

5.4 Human Evaluation

We conducted a human evaluation of our models
primarily to assess their issue sensitivity, but also
to validate the classifier we used in the previous
automatic evaluations.

Study Design We randomly sampled 110 images.
For each, we have five conditions: our four RSA
agents and the human captions from CUB. The
items were arranged in a Latin Square design to
ensure that no participant saw two captions for
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Caption Source Percentage Size

S0 20.9 273
S1 24.5 273
SC
1 42.1 273
SC+H
1 44.0 273

Human 33.3 273

Table 4: Percentage of captions that contain an an-
swer to the question according to our human evalua-
tion. By Fisher’s exact test, both issue-sensitive models
(SC

1 , SC+H
1 ) are different from issue-insensitive mod-

els (S0, S1) and humans (p < 0.05), but we do not have
evidence for a difference between the issue-insensitive
models.

Caption Source Accuracy Size

S0 94.5 273
S1 90.1 273
SC
1 92.7 273
SC+H
1 94.9 273

Human 90.5 273

Table 5: Classifier accuracy according to our human
evaluation.

the same image and every participant saw an even
distribution of conditions. We recruited 105 par-
ticipants using Mechanical Turk. Each item was
completed by exactly one participant. We received
1,365 responses in total.

Participants were presented with a question text
and a caption and asked to use the caption to select
an answer to the question or indicate that the cap-
tion did not provide an answer. (No images were
shown, of course, to ensure that only the caption
was used.) For additional details, see Appendix C.

Issue Sensitivity Table 4 shows the percentage
of captions that participants were able to use to
answer the questions posed. The pragmatic models
are clearly superior. (The human captions are not
upper-bounds, since they were not created relative
to issues and so cannot vary by issue.)

Classifier Fairness We can also use our human
evaluation to assess the fairness of the feature-in-
text classifier (Section 5.1) that we used for our
automatic evaluations. To do this, we say that the
classifier is correct for an example x if it agrees
with the human response for x. Table 5 presents
these results. Not only are accuracy values very
high, but they are similar for S0 and SC+H

1 .

6 MS COCO and VQA 2.0

The annotations in the CUB dataset allow us to
generate nuanced issues that are tightly connected
to the content of the images. It is rare to have this
level of detail in an image dataset, so it is important
to show that our method is applicable to less con-
trolled, broader coverage datasets as well. As a first
step in this direction, we now show how to apply
our method using the VQA 2.0 dataset (Goyal et al.,
2017), which extends MS COCO (Lin et al., 2014)
with the question and answer annotations needed
for VQA. While MS COCO does have instance-
level annotations, they are mostly general category
labels, so the attribute-dependent method we used
for CUB isn’t effective here. However, VQA of-
fers a benefit: one can now control captions by
generating issues from questions.

Dataset MS COCO contains 328k images that
are annotated with instance-level information. The
images are mostly everyday objects and scenes. A
subset of them (204,721 examples) are annotated
with whole image captions. Antol et al. (2015) built
on this resource to create a VQA dataset, and Goyal
et al. (2017) further extended that work to create
VQA 2.0, which reduces certain linguistic biases
that made aspects of the initial VQA task artifi-
cially easy. VQA 2.0 provides 1,105,904 question
annotations for all the images from MS COCO.

Constructing Partitions To generate issues, we
rely on the ground-truth questions and answers in
the VQA 2.0 dataset. Here, each image is already
mapped to a list of questions and corresponding
answers. Given an MS COCO image and a VQA
question, we identify all images associated with
that question by exact string match and then par-
tition these images into cells according to their
ground-truth answers. Exactly the same procedure
could be run using a trained VQA model rather
than the ground-truth annotations in VQA 2.0.

Base Captioning System We use a pretrained
state-of-the-art Transformer model with self-
critical sequence training (Rennie et al., 2017).
This has 6 Transformer layers with a 2048-
dimensional hidden states, 512-dimensional input
embeddings, and 8 attention heads at each layer.
We use image features extracted by Anderson et al.
(2018). The model achieves a CIDEr score of 1.29
for the test split. We use beam search (with beam
size 5) to generate our captions.
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Target Issue-sensitive Caption

What position is this man playing? a pitcher winding 
throwing ball on top of a 
field

What color is the wall?

Base Caption

a baseball player 
throwing a ball on a 
field

a glass vase with a red 
wall with a chandelier

a vase with flowers 
in it on a table

What color is the sky? a black and white 
photo of an airplane 
in the sky

an airplane taking 
off from an airport 
runway

How many toilets are there?
a bathroom with a 
tub and a toilet and 
a window

a bathroom with two 
toilets and a tub

Question Text Issues

Figure 4: Captions for MS COCO with issues determined by VQA 2.0. The left-hand cell in the ‘Issues’ column
contains the target image, and right-hand cell is the union of the distractor cells. The ‘Base Caption’ texts are those
produced by our S0 model, and the ‘Issue-sensitive Caption’ texts were produced by SC+H

1 .

Example Captions We show some examples for
MS COCO in Figure 4. We chose these to highlight
the potential of our model as well as remaining chal-
lenges. In datasets like this, the captioning model
must reason about a large number of diverse issues,
from objects and their attributes to more abstract
concepts like types of food, sports positions, and
relative distances (“How far can the man ride the
bike?”; answer: “Far”). Our model does key into
some abstract issues (e.g., “black and white photo”
in row 2 of Figure 4), but more work needs to be
done. Figure 4 also suggests shortcomings concern-
ing over-informativity (e.g., the mention of a tub in
response to an issue about toilets).

7 Conclusion

We defined the task of Issue-Sensitive Image Cap-
tioning (ISIC) and developed a Bayesian pragmatic
model that allows us to address this task success-
fully using existing datasets and pretrained image
captioning systems. We see two natural extensions
of this approach that might be explored.

First, the method we proposed can be used as a
method for assessing the quality of the underlying
caption model. Using a dataset with issue annota-
tions, if the model trained over the plain captions
is more issue-sensitive, then it is better at decom-
posing the content of an image by its objects and
abstract concepts.

Second, one could extend our notion of issue-
sensitivity to other domains. As we saw in Sec-
tion 6, questions (as texts) naturally give rise to
issues in our sense where the domain is sufficiently
structured, so these ideas might find applicability in
the context of question answering and other areas

of controllable natural language generation.
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A Incremental Pragmatic Reasoning

The normalization terms of S1, SC
1 , and SC+H

1 all
require a sum over all messages, rendering them
intractable to compute.

We now describe a variant of the S1 which per-
forms pragmatic reasoning incrementally. This
method extends in an obvious fashion to SC

1 and
SC+H
1 .
We begin by noting that a neural captioning

model, at decoding time, generates a caption w
one segment at a time (depending on the architec-
ture, this segment may be a word, word piece, or
character). We write w = (w1 . . . wn), where wi

is the ith segment.
Concretely, a trained neural image captioner

can be specified as a distribution over the subse-
quent segment given the image and previous words,
which we write as S0(wn+1 | i, [w1 · · ·wn]). This
allows us to define incremental versions of L1 and
S1, as follows:

L1(i | wn+1, [w1 . . . wn]) ∝
S0(wn+1 | i, [w1 . . . wn])P (i) (8)

U1(i, wn+1, [w1, wn]) =

logL1(i | wn+1, [w1 . . . wn]) (9)

S1(wn+1 | i, [w1 . . . wn]) ∝
exp(αU1(i, wn+1, [w1, wn])− cost(wn+1))

(10)

Here, we define the cost as the negative log-
likelihood of the S0 producing wn+1 given the im-
age i and previous segments [w1 . . . wn]. We can
then obtain a caption-level model, which we term
SINC
1 by contrast to the S1 defined in (3):

SINC
1 (w | i) =

n∏
i=1

S1(wi | [w1 . . . wi−1], i)

(11)

SINC
1 (w | i) then serves as a tractable approxima-

tion of the caption-level S1(w | i), and the same
approach is easily extended to SC

1 and SC+H
1 .
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B CUB Attribute Annotation Example

Attribute Annotation

Has_Bill_Shape::All-purpose

Has_Wing_Color::Brown

Has_Wing_Color::Rufous

Has_Back_Color::Brown

Has_Head_Pattern::Eyebrow

Has_Size::Small

Figure A1: A Carolina Wren from CUB. There can be
multiple aspects per body part. Some general descrip-
tors (e.g., size) do not have fine-grained aspects.

C Human Study Design

Our study involved 110 randomly sampled images
from CUB. For each, we have five conditions: orig-
inal human caption, S0 (base image caption model),
S1, SC

1 , and SC+H
1 . The items were arranged in a

Latin Square design to ensure that no participant
saw two captions for the same image and every par-
ticipant saw an even distribution of conditions. We
recruited 105 participants using Mechanical Turk.
Each participant completed 13 items, and each item
was completed by exactly one participant. We re-
ceived a total of 1,365 responses. No participants
or responses were excluded from our analyses.

In an instruction phase, participants were shown
labeled images of birds to help with specialized
terminology and concepts in the CUB domain. Be-
fore beginning the study, they were shown three
examples of our task (Figure A2). These examples
were chosen to familiarize participants with the un-
derlying semantics of the captions. For example,
if caption gives an ambiguous generic description
like “the bird has a white body”, it does not provide
enough information to answer questions about the
color of specific body parts, even though it does
mention a color.

Following the example phase, we included a
short trial phase of two example items, shown in
Figure A3. We required participants to complete
this trial before they started the study itself. We
provided feedback immediately (“Wrong” or “’Cor-
rect’) after they made selections in this phase.

Finally, an example item is given in Figure A4.
Each annotation is structured in terms of a ques-
tion (we rephrase issues in CUB as a question:
has wing color is rephrased as What is the wing
color?). Since the CUB attribute annotations con-
sist of a property::value structure, we take the val-
ues associated with the property as our answer op-
tions.

D Optimization Details

Computing infrastructure Our experiment on
CUB and MSCOCO is conducted on an NVIDIA
TITAN X (Pascal) with 12196 MB graphic mem-
ory.

Computing time Since we do not re-train our
model, we report the inference time for our algo-
rithm. Running our SC+H

1 on CUB test examples
(5,794 images) takes about 40–50 minutes on a sin-
gle GPU with specs listed above. For MS COCO,
it takes substantially longer (about 1 minute per
image) due to the more complex Transformer base
image captioning model.

Hyperparameters We did not conduct a hyper-
parameter search. We manually set hyperparame-
ters for our RSA-based models. The hyperparam-
eters include rationality α, entropy penalty β, and
number of examples in a partition cell. The hyper-
parameters are chosen by small scale trial-and-error
on validation data. We looked at the generated cap-
tions for 4 or 5 validation images of each model,
and we decreased or increased our hyperparame-
ters so that the generated captions for these images
were coherent, grammatical, and issue-sensitive
(when applicable). In Table A1, we report the hy-
perparameters we used for each RSA model.

Model Cell Size α β

S1 40 3 —
SC
1 40 10 —
SC+H
1 40 10 0.4

Table A1: Hyperparameter for each RSA model.

Validation performance We report the perfor-
mance on the validation set in Figure A2 and Fig-
ure A3, which contains 1,994 images. Even though
the absolute numbers are slightly different from
our result from the test set, the general trend still
holds: issue-sensitive models significantly outper-
form issue-insensitive models.

Precision Recall F1

S0 95.6 16.1 27.5
S1 93.6 27.8 42.9
SC
1 94.8 41.6 57.8
SC+H
1 94.4 43.7 59.7

Table A2: Attribute coverage results for validation set.
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Figure A2: Example phase of the MTurk study

Figure A3: Trial phase of the MTurk study
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Figure A4: An annotation item from the MTurk study. In this example, the correct answer is “curved (up or
down)”.

Precision Recall F1

S0 10.8 28.1 15.6
S1 11.0 20.8 14.4
SC
1 18.5 41.0 25.5
SC+H
1 14.8 42.4 22.0

Table A3: Issue alignment results for validation set.

E More Examples in CUB

We randomly sampled two test-set images (Fig-
ure A5 amd Figure A6) to show qualitatively how
well our issue-sensitive caption model does com-
pared to other models. To increase readability in
these figures, we gloss issues as question texts.
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Image ID: 121.Grasshopper Sparrow - Grasshopper Spar-
row 0078 116052.jpg
Human caption: Small bird black tan and white feathers
with a speck of yellow above beak.
S0 caption: This bird has a white belly and breast with a
speckled appearance on its back.
What is the eye/eyering/eyebrow color?
S1 caption: A small tan and tan patterend bird with light
belly.
SC
1 caption: This is a littl brown bird with black stripes

on the crown and superciliary.
SC+H
1 caption: This is a bird with a white belly and a

black and white spotted back.
What is the beak color?
S1 caption: This bird has a white belly with dark spots
spots and a short pointy beak.
SC
1 caption: This is a white and grey bird with an orange

eyebrow and orange feet.
SC+H
1 caption: This is a small bird with a white belly and

a brown back.
What is the breast color?
S1 caption: A tan and tan sparrow connects to a white
belly with tints of tan.
SC
1 caption: A small bird with a white belly and throat

and a spotted brown back and head.
SC+H
1 caption: This bird has a white belly and breast

with a brown crown and short pointy bill.
What is the belly color?
S1 caption: A small light brown and white bird with dark
eyes and a short red-tipped bill.
SC
1 caption: This bird has a white belly and breast with a

speckled appearance elsewhere.
SC+H
1 caption: A small bird with a white belly and breast

and a light brown crown and nape.
What is the beak length?
S1 caption: A small round bird with multicolored tan and
tan feathers.
SC
1 caption: This is a brown and tan speckled bird with a

small beak and long tail feathers.
SC+H
1 caption: This bird has a speckled belly and breast

with a short pointy bill.

Figure A5: Issue-sensitive and Issue-insensitive cap-
tions for an image of a Grasshopper Sparrow. To in-
crease readability in these figures, we gloss issues as
question texts.

Image ID: 030.Fish Crow - Fish Crow 0073 25977.jpg
Human caption: A large all black bird with a fluffy throat
and thick round beak.
S0 caption: This bird is completely black with a long blunt
bill.
What is the crown color?
S1 caption: An all black crow black shiny black bill legs
feet and body.
SC
1 caption: This bird is all black with a long hooked bill

and a think wingspan.
SC+H
1 caption: This is a mostly completely solid color

bird with a black crown and a pointed bill.
What is the beak color?
S1 caption: An all black crow black shiny black beak legs
legs to shiny crow.
SC
1 caption: An all black crow with strong thick down-

ward downward curved black beak and black legs.
SC+H
1 caption: This is a small pointy bird with a medium

sized beak and is mostly black with a short beak.
What is the breast color?
S1 caption: An all black crow black bill legs feet and
body.
SC
1 caption: This stoutly black bird has strong legs and a

long black beak.
SC+H
1 caption: This bird has a short black bill a white

throat and a dark brown crown.
What is the belly color?
S1 caption: An all jet black shiny black beak.
SC
1 caption: A solid black crow with strong claws and a

trinagular jet-black belly.
SC+H
1 caption: This bird has a short bill a white belly and

a a black crown.

Figure A6: Issue-sensitive and Issue-insensitive cap-
tions for an image of a Fish Crow. To increase readabil-
ity in these figures, we gloss issues as question texts.


