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Abstract

We study relationships between spoken lan-
guage and co-speech gestures in context of
two key challenges. First, distributions of
text and gestures are inherently skewed mak-
ing it important to model the long tail. Sec-
ond, gesture predictions are made at a sub-
word level, making it important to learn rela-
tionships between language and acoustic cues.
We introduce Adversarial Importance Sam-
pled Learning (or AISLe), which combines ad-
versarial learning with importance sampling to
strike a balance between precision and cov-
erage. We propose the use of a multimodal
multiscale attention block to perform subword
alignment without the need of explicit align-
ment between language and acoustic cues. Fi-
nally, to empirically study the importance of
language in this task, we extend the dataset
proposed in Ahuja et al. (2020) with auto-
matically extracted transcripts for audio sig-
nals. We substantiate the effectiveness of our
approach through large-scale quantitative and
user studies, which show that our proposed
methodology significantly outperforms previ-
ous state-of-the-art approaches for gesture gen-
eration. Link to code, data and videos: https:
//github.com/chahuja/aisle

1 Introduction

Spoken language has gained more traction in the
past decade due to improvements in natural lan-
guage understanding and speech recognition. With
an eye on the future, technologies such as intelli-
gent personal assistants (e.g. Alexa, Siri, Cortana)
are likely to also include embodiment to take advan-
tage of the non-verbal communication that people
naturally use in face-to-face interactions. As a step-
ping stone in this direction, it is important to study
the relationship between spoken language (which
also includes acoustic information) and free form

gestures (which go beyond just a pre-defined dic-
tionary of gesture animations). In other words, how
can we automatically generate human body pose
(gestures) from language and acoustic inputs?

An important technical challenge in such a natu-
ral language processing task, is modeling the long
tail of the language-gesture distribution (see Figure
1). If not addressed directly, computational models
will likely focus on the common gestures (e.g beat
gestures) as a way to improve precision at the cost
of reduced coverage for less frequent words and
gestures (Ginosar et al., 2019). Hence, when learn-
ing these models, we need to not only be accurate
for gesture generation, but also handle coverage of
both linguistic and visual distributions (Pelachaud,
2009; Kucherenko et al., 2019). In other words, we
need models that can balance precision and cover-
age. Another technical challenge comes from the
differences in granularity between language and
gestures. Gestures can be triggered at the sub-word
level; for example, by a change of intonation in
acoustics. Thus, it is important to have sub-word
level alignment between language and acoustics to
generate the freeform gestures.

In this paper, we study the link between spo-
ken language and free form gestures. As a first
contribution, we propose Adversarial Importance
Sampled Learning(or AISLe), an approach whose
main novelty is to bring adversarial learning and
importance sampling together to improve cover-
age of the generated distribution without compro-
mising on the precision at no extra computational
cost. As a second contribution, we introduce the
use of neural cross-attention architecture (Vaswani
et al., 2017; Tsai et al., 2019) for gesture gener-
ation conditioned on spoken language. This idea
allows transformer blocks to help with subword
alignment between language and acoustic signals.
A third contribution is the extension of dataset pro-
posed in Ahuja et al. (2020) with automatically

https://github.com/chahuja/aisle
https://github.com/chahuja/aisle
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Figure 1: A toy representation of data distribution pdata as a histogram. Colours , , represent bins from the
mode, heavy tail and long tail of pdata respectively. The color coded envelope covering pdata is the distribution of
weights across bins (δy, δx) for the following resampling techniques: (a) No Resampling, (b) Static Resampling,
and (c) AISLe. While pdata is a multivariate distribution, we use a 1-dimensional histogram for the sake of
demonstration.

extracted transcripts for audio signals correspond-
ing to 250+ hours of freeform gesture information
and 25 speakers. Our experiments study the effec-
tiveness of our proposed method with a focus on
precision-coverage trade-off. These quantitative
experiments are complimented with important sub-
jective human studies as the englobing judges of
the generation quality.

2 Related Work

Language and Speech for Gesture Generation
An early study by Cassell et al. (2001) proposed
the behavior expression animation toolkit (BEAT)
that can select and schedule behaviors, such as
hand gestures, head nods and gaze, which was ex-
tended by applying behavior decision rules to the
linguistic information obtained from input text (Lee
and Marsella, 2006; Marsella et al., 2013; Lhom-
met et al., 2015; Lhommet and Marsella, 2016;
Xu et al., 2014). Rule based approaches were
replaced by deep conditional neural fields (Chiu
et al., 2015; Chiu and Marsella, 2014) and Hidden
Markov Models for prosody-driven head motion
generation (Sargin et al., 2008) and body motion
generation (Levine et al., 2009, 2010). These use
a dictionary of predefined animations, limiting the
diversity of generated gestures.

Moving forward, neural networks were em-
ployed to predict a sequence of frames for gestures
(Hasegawa et al., 2018), head motions (Sadoughi
and Busso, 2018) and body motions (Shlizerman
et al., 2018; Ahuja et al., 2019; Ginosar et al., 2019;
Ferstl et al., 2019) conditioned on a speech input
while Yoon et al. (2019) uses only a text input. Un-
like these approaches, Kucherenko et al. (2020)
rely on both speech and language for gesture gen-
eration. But their choice of early fusion to com-

bine the modalities ignores multi-scale correlations
(Tsai et al., 2019) between speech and language.

While publicly datasets of co-speech gestures
are available, they are either small (Sadoughi et al.,
2015; Tolins et al., 2016; Yoon et al., 2019) or do
not contain language information (Ginosar et al.,
2019; Joo et al., 2015; Lee et al., 2019), which moti-
vates for a dataset that resolves these shortcomings.

Distribution Coverage in Generative Modeling
Implicit generative models have seen a lot of
progress in the past decade with the introduc-
tion of GANs (Goodfellow et al., 2014; Yan and
Wang, 2017). Especially two aspects of distribu-
tion estimation, (1) conditional generation preci-
sion (Zhang et al., 2017; Ginosar et al., 2019; Isola
et al., 2017; Mirza and Osindero, 2014) and (2) cov-
erage of the entire underlying distribution (Sharma
and Namboodiri, 2018; Zhong et al., 2019; Tol-
stikhin et al., 2017; Arjovsky et al., 2017) have
gained traction.

To tackle the precision-coverage trade-off, meth-
ods have been introduced for out-of-distribution
detection but they do not work for implicit mod-
els like GANs (Nalisnick et al., 2019). These ap-
proaches have similarities to importance weighting
(Byrd and Lipton, 2018; Katharopoulos and Fleuret,
2018), which are often used for post-hoc debiasing
of the learnt model (Domke and Sheldon, 2018;
Grover et al., 2019; Turner et al., 2018), correct-
ing covariate shift (Shimodaira, 2000), label shift
(Lipton et al., 2018; Garg et al., 2020), imitation
learning (Murali et al., 2016; Kostrikov et al., 2018)
and curriculum learning (Jiang et al., 2015; Bengio
et al., 2009; Matiisen et al., 2019). Byrd and Lipton
(2018) observe that sub-sampling from unbalanced
categorical classes demonstrates a significant effect
on the network’s predictions. Importance sampling
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Figure 2: Overview of the key components of our
model. Starting at the dataset and going clockwise,
audio and transcripts go through sub-word alignment
in the generator Gθ and are decoded to generate a
freeform gesture animation. Next, the AISLe updates
the weighted sampler of the dataset based on the output
of the discriminator Dη to complete the loop.

in GANs (Diesendruck et al., 2019; Li et al., 2017;
Yi et al., 2019), which uses re-weighting of maxi-
mum mean discrepancy between source and target
distributions, has shown to improve the coverage
in cases of unbalanced datasets, but do not provide
insights on precision and coverage in the presence
of conditional inputs.

3 Problem Statement

The goal of this cross-modal translation task is
to generate a series of freeform gestures that are
aligned with the spoken sentence (see Figure 2). By
free form gestures, we refer to a sequence of joint
positions (a.k.a. poses) of the upper human body
including neck, torso, arms, hands and fingers. On
our way to achieving this goal we work towards
solving two challenges: (1) generating gestures
from the long-tail of the language-gesture distri-
bution while maintaining high precision of these
generated gestures and, (2) sub-word level align-
ment of language, acoustic cues and gestures to
account for the differences in frame rates between
among these modalities.

Formally, we are given a sentence ofK language
tokens Xw =

[
xw0 , x

w
1 , . . . x

w
K−1

]
which has a dy-

namic frame rate -i.e. each token has a variable

time duration dependent on its context- as com-
pared to the fixed frame rate of a sequence of
speech features, Xa =

[
xa0, x

a
1, . . . x

a
T−1

]
. We

want to predict a sequence of T gesture poses
Yp =

[
yp0 , y

p
1 , . . . y

p
T−1

]
that co-occur with Xa

and Xw. Here ypt ∈ RJ×2 are the xy-coordinates
for tth frame for J joints of the body skeleton.

This problem can be formalized as learning a
true conditional probability distribution pdata(y|x)
of output y = Yp, given input x = {Xa,Xw} con-
sisting of text and speech. We write this in form of
a generator function Gθ with trainable parameters
θ as:

Ŷp = Gθ(X
a,Xw) (1)

= Gdec (Gattn (Gaenc(X
a), Gwenc(X

w))))
(2)

where Ŷp are generated poses from the learnt con-
ditional distribution pθ(y|x), which is an approx-
imation of pdata. Gaenc and Gwenc are the acoustic
and language encoders, Gattn is the multimodal
attention block and Gdec is the pose decoder.

All our experiments are in an adversarial set-up
to alleviate the challenge of overly smooth genera-
tion (Ginosar et al., 2019) caused by the reconstruc-
tion lossLrec = EYp,Xa,Xw‖Yp−Gθ(Xa,Xw)‖1.
The generated pose sequence Ŷp is fed as a signal
for the adversarial discriminator Dη, which tries
to classify the true pose Yp from the generated
pose Ŷp. This is jointly trained with the generator,
which learns to fool the discriminator by generating
realistic poses. This adversarial loss (Goodfellow
et al., 2014) is written as:

Ladv = EYp logDη (Yp)
+EXa,Xw log (1−Dη(Gθ (Xa,Xw))

(3)
The model is jointly trained to optimize the over-

all loss function L(y, x),

max
η

min
θ
Lrec + Lmix + Ladv (4)

where Lmix is a loss for training mixture of gener-
ators and defined in Section 4.3.

4 Model

In this section, we present our Adversarial Im-
portance Sampled Learning (or AISLe) paradigm
which is designed to improve coverage while learn-
ing accurate relationships between spoken lan-
guage and gestures. This contribution is described



1887

Figure 3: Distribution of the generated gestures with average absolute velocity as the statistic for three different
speakers. The support (or coverage) of the distribution is denoted with the colour coded lines at the top of each
plot. Larger overlap of a model’s distribution with the ground truth distribution is desirable.

in Section 4.1. Our second contribution is the
application of a transformer architecture to the
problem of sub-word alignment between language
and acoustic features. This model Multimodal
Multi-Scale Transformer (MMS-Transformer) is
presented in Section 4.2. The remaining compo-
nents of our full model; pose decoder Gdec, lan-
guage encoder Gwenc and acoustic encoder Gaenc are
presented in Section 4.3. The key contributions are
illustrated in Figure 2 and can be summarized by
optimizing the overall loss function L(y, x) with
AISLe in Algorithm 1.

4.1 Adversarial Importance Sampled
Learning (or AISLe)

To improve coverage, we want to be sure that the
learnt distribution pθ(y|x) is a good approximation
of the underlying distribution pdata(y|x), includ-
ing the long tail. Our intuition to solve this prob-
lem is to have our model give adaptive importance
to the long tail of the gesture distribution while
still allowing access to the more likely regions (i.e.
modes) of the distribution (see Figure 1). This can
be achieved by introducing a multiplicative weight
factor wη(x) = pθ(ỹ|x)

pdata(ỹ|x) to the expected loss func-
tion,

E
x∼p(.)

E
y∼pdata(.|x)
ỹ∼pθ(.|x)

pθ(ỹ|x)

pdata(ỹ|x)
L(y, x) (5)

where L(y, x) is the overall loss function and p(x)
is the marginal distribution of the input (i.e. lan-
guage and acoustics). At a high level, as training
progresses, if the generated sample has more likeli-
hood of being generated by the learnt distribution

than the true data distribution, it is given more
importance. As this process reaches a desired equi-
librium, where pθ

p−→ pdata, wη(x) will approach 1
and revert back to the unweighted loss function.

We first derive this weighted function, then show
howwη can be estimated practically in tandem with
the adversarial setup of our problem without any
additional computational cost, Finally, we tie it all
up with an algorithm for AISLe.
Deriving the Weighted Loss Function: Unlike
prior work (Katharopoulos and Fleuret, 2018;
Diesendruck et al., 2019), we derive the weighted
cost function in Equation 5 using first principles.
As illustrated in Figure 1, we divide the support
of pdata into a grid of multi-dimensional bins of
size (δy, δx) ∈ Rdim(y)+dim(x) where dim(.) gives
dimensions of a variable. If (δy, δx) is sufficiently
small, it is a reasonable assumption that all samples
(i.e. pair of poses and spoken words) in this bin
will be close to each other. Hence, if the model was
to see some, and not all of the samples in this bin,
it would still be able to learn the dynamics between
poses and spoken words. As bins in the mode of the
distribution have more samples than bins in the tail,
the model would learn from samples in the tail less
often if we optimize over an unweighted loss func-
tion given by Ex∼p(.) Ey∼pdata(.|x) L(y, x). This is
visually illustrated by the weights proportional to
bin frequency in Figure 1(a).

To counteract this imbalance, we first perform a
static rebalance of the expected cost by assigning
the same weight to each bin as shown in Figure 1(b).
This encourages that equal number of samples are
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drawn from each bin while training,

E
x∼p(.)

E
y∼pdata(.|x)
ỹ∼pθ(.|x)

1

pdata(ỹ|x)
L(y, x) (6)

Second, the importance of each bin is propor-
tional to the likelihood of generated sample belong-
ing to the proposal distribution pθ, i.e. if a sample
is more likely to have been generated by pθ than
pdata, then the model has yet to learn the corre-
sponding bin. Multiplying pθ to the numerator in
Equation 6 gives us Equation 5. This appears as
adaptive weighting across the support of the data
distribution as shown in Figure 1(c).
Estimation of Importance Weights: We follow
a likelihood-free approach (Grover et al., 2019;
Turner et al., 2018) to estimate wη by computing
the outputs of the discriminator Dη. Rewriting wη
in Equation 5 as,

wη(x) =
1−Dη(Gθ(x))

Dη(Gθ(x))
(7)

As Dη is learnt while optimizing L(y, x) and is
computed for every training iteration, there is
no additional computational cost in estimating
weights while training. The estimated importance
weights are used for data duplication while training
(Diesendruck et al., 2019), which is an equivalent
alternative to optimize weighted loss functions. We
illustrate the weight update cycle in Algorithm 1.

Algorithm 1: Adversarial Importance Sam-
pled Learning

initialization;
wη(ỹ)← 1,∀ỹ;
datasetSampler.updateWeights(wη);
for count in numEpochs do

for xbatch in datasetSampler do
wη(batch)← 1−Dη(Gθ(xbatch))

Dη(Gθ(xbatch)) ;
...
Model Training;

end
# keep weights around 1;

wη ← wη−mean(wη)

std(wη)
+ 1 ;

# clip weights to lie in (0.1, 10) ;
wη ← clip(wη, 0.1, 10) ;
datasetSampler.updateWeights(wη);

end

4.2 Multimodal Multiscale Attention Block

To address the challenge of sub-word alignment,
we take inspiration from recent work self-attention
(Vaswani et al., 2017) and cross-attention models
(Tsai et al., 2019) to alleviate the need of explicit
alignment between audio and language embed-
dings. Note that these modalities provide compli-
mentary information for gesture prediction: audio
estimates rhythm, pauses and speed of the gestures
(i.e. beat gestures) while language can be helpful
for iconic or metaphoric gestures (Cassell, 2001).
A multimodal attention mechanism can make use
of sub-word information from the audio to drive
well-timed and meaningful gesture animation.

Consider a temporal sequence of audio embed-
dings Gaenc(X

a) = Za ∈ RT×ha and language
embeddings Gwenc(X

w) = Zw ∈ RN×hw . We de-
fine audio query as Qa = ZaWQa , language key
as Kw = ZwWKw and language values as Vw =
ZwWVw . Here WQa ∈ Rha×h, WKw ∈ Rhw×h
and WVw ∈ Rhw×h are trainable weights. Sub-
word information from audio is learnt via a cross
modal attention CM.

Zaw = CM(Za,Zw) = softmax
(
QaKwT

√
ha

)
Vw

(8)
Unlike (Tsai et al., 2019), we precede cross-

modal attention with a layer of self attention
(Vaswani et al., 2017) which learns correlations
between the low-level language features before
assessing sub-word information from the audio
modality. After cross-modal attention, we add layer
normalization (Ba et al., 2016) followed by a point-
wise feedforward layer along with residual connec-
tions as described in (Vaswani et al., 2017; Tsai
et al., 2019; Devlin et al., 2018). Zaw is now the
same scale as the audio input and hence is con-
catenated with Za. This completes the multimodal
multiscale attention block Gattn.

4.3 Other Network Components

Decoder Gdec: The decoder Gdec takes aligned
multimodal representations from Gattn to generate
output pose sequences. We start with a 1D U-Net
(Ronneberger et al., 2015) following suit in (Gi-
nosar et al., 2019) to get Z = U-Net([ZawZa]). In
addition, the distribution of gestures contains mul-
tiple modes. Hence, to prevent mode collapse we
use mixture-model guided sub-generators (Ahuja
et al., 2020; Hao et al., 2018; Arora et al., 2017;
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Models Expressivity Naturalness Relevance Timing

S2G (Ginosar et al., 2019) 24.6 ± 3.1 22.1 ± 1.8 22.4 ± 1.7 27.6 ± 1.7
Gesticulator (Kucherenko et al., 2020) 31.9 ± 2.0 32.1 ± 1.7 31.4 ± 1.8 31.1 ± 1.7

Ours w/o Gattn 35.0 ± 2.3 29.2 ± 1.7 30.9 ± 1.8 30.8 ± 1.7
Ours w/o AISLe 35.8 ± 2.9 35.7 ± 1.7 33.7 ± 1.7 32.1 ± 1.7

Ours 38.9 ± 1.7 36.7 ± 1.6 37.1 ± 1.7 35.3 ± 1.7

Table 1: Human perceptual study comparing our model with prior work and strong baselines over four criteria
measuring quality of co-speech gestures. we report the preference scores (higher is better) of a model as com-
pared to the ground truth gestures. 90% confidence intervals around the mean performance and calculated by a
bootstrapped t-test are also reported.

Hoang et al., 2018),

Ŷp =
M∑
m=1

φmGm(Z) (9)

where ∀m,Gm is the sub-generator function and
φm is the corresponding mixture model prior.
While training, the true value of φm can be esti-
mated based on which sub-distribution the pose
belongs to. At inference time, we do not have the
ground truth pose to make such estimation. Instead,
we train a classification network H to estimate φm
at inference time based on the input embedding
Z. H is optimized via a mode regularization loss
Lmix = EΦ,ZCCE(Φ, H(Z)), where CCE is cate-
gorical cross-entropy and Φ = [φ1, .., φM ].

Language Encoder Gwenc: In order to utilize the
semantic and contextual information of language,
we fine-tune BERT for the task of gesture genera-
tion (Devlin et al., 2018) using an existing imple-
mentation with pre-trained weights (Wolf et al.,
2019). The contextual dependence allows the
model to be exposed to semantic differences in
the meaning of the same word. These embeddings
at model contextual dependence only at the word
level leaving sub-word level dynamics to the multi-
modal attention block Gattn.

Audio Encoder Gaenc: For audio embeddings,
we use a Temporal Convolutional Network (or
TCNs), which has shown to perform well in speech-
conditioned pose generation task (Ginosar et al.,
2019; Ahuja et al., 2019). In our experiments, we
use an audio encoder based on Temporal Convolu-
tion Networks consisting of a convolution layer, fol-
lowed by batch normalization (Ioffe and Szegedy,
2015), and ReLU (Nair and Hinton, 2010). We use
a similar TCN network for the discriminator Dη

1.
1We refer the readers to the appendix for exact implemen-

tation and hyperparameters.

5 Experiments

5.1 Baseline Models

Speech2Gesture (Ginosar et al., 2019):
Speech2Gesture does not use the text modality (i.e.
no multimodal attention block) and any form of
re-sampling while training.
Gesticulator (Kucherenko et al., 2020): Unlike
MMS-Transformer , Gesticulator has a set of fully
connected layer followed by autoregressive fully
connected layers which are FiLM conditioned
(Perez et al., 2018). In addition to audio and text,
features of duration of each word (i.e. start, end,
percentage completed and so on) are used as inputs.
To align audio and text, each token (i.e. text) is
replicated to match its duration, hence performing
an explicit alignment between text and audio.
Ablation Models: Components AISLe and
Gattn are removed from the model one at a time
to measure its contribution in gesture generation
for the first set of ablation models. Static Rebal-
ancing (Equation 6), which is one step before
AISLe, is also used as an ablation model. Finally,
top k% highest velocity regions (or tails) are used
as a sub-sampled dataset. This is a manual method
of importance sampling high velocity gestures.

5.2 Evaluation Metrics

Human Perceptual Study: We conduct a human
perceptual study on Amazon Mechanical Turk
(AMT) to measure human preference towards gen-
erated animations on four criteria, (1) naturalness,
(2) expressivity, (3) timing and (4) relevance. We
show a pair of videos with skeletal animations to
the annotators. One of the animations is from the
ground-truth set, while the other is a generation
from our proposed model or a baseline. With un-
limited time and for each criterion, users have to
choose one video which they felt was better. We
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Coverage ↓ Precision ↑
Model Modality FID W1 (vel.) W1 (acc.) PCK F1

S2G (Ginosar et al., 2019) A 68.1 12.5 15.8 0.374 0.189
Gesticulator (Kucherenko et al., 2020) A + T 49.5 20.6 27.2 0.350 0.268

Ours A + T 27.8 7.3 10.6 0.376 0.317
Ours w/o AISLe A + T 55.3 12.4 22.2 0.375 0.312

Ours w/o Gattn A + T 34.8 8.1 11.3 0.363 0.298

Table 2: Quantitative comparison of our model as compared to existing work, and ablations with one component
missing at a time. Comparisons in shows the impact of AISLe on coverage, while shows the impact of Gattn
in our model on precision

Figure 4: Precision Coverage Tradeoff for all mod-
els. Lighter areas represent high PCK and low FID
which is favourable for the model. Contour lines cor-
responds constant values of PCK

FID . We show impacts
of AISLe, Gattn and dataset subsampling with dotted
lines traversing the PCK-FID plane, with our model en-
joying the best of both worlds.

run this study for randomly selected with 20 pairs
of videos per model per speaker from the held-out
set, giving a total of 1500 sample points for each
model. We refer the readers to the appendix for
more details of the setup.

Precision: To measure the accuracy of the gener-
ated gesture we use two metrics, (1) Probability of
Correct Keypoints (PCK) (Andriluka et al., 2014;
Simon et al., 2017): the values are averaged over
α = 0.1, 0.2 as suggested in (Ginosar et al., 2019)
and (2) Mode Classification F1: if the generated
pose (Ŷ p) lies in the same cluster as the ground
truth, it was sampled from the correct mode. F1

measure, for this classification task, is used to mea-
sure correctness of gesture generation.
Coverage: to measure the coverage of the gener-
ated distribution we use two metrics, (1) Fréchet
Inception Distance (FID): distance between distri-
butions of generated and ground truth poses(Heusel
et al., 2017). (2) Wasserstein-1 distances (or
W1): distance between distribution of generated
and ground truth average velocity. The same dis-
tance is calculated for average acceleration.

5.3 Pose, Audio, Transcripts and Style
(PATS) dataset

We extend the Pose, Audio, Transcripts and Style
(PATS) dataset (Ahuja et al., 2020) with automati-
cally extracted transcripts for audio signals to study
the effect of language and speech on co-speech
gesture generation. It offers data for 25 speakers
with diverse gestures and linguistic content (Ahuja
et al., 2020; Ginosar et al., 2019). Specifically, it
contains 15 talk show hosts, 5 lecturers, 3 YouTu-
bers, and 2 televangelists, providing a total of 251
hours of video clips, with a mean of 10.7 seconds
and a standard deviation of 13.5 seconds per clip.

5.3.1 Dataset Features
Aligned Transcriptions: As manual transcriptions
are often not aligned and not readily available, we
use Google Automatic Speech Recognition (Chiu
et al., 2018) to collect subtitles and aligned timings
of each spoken word. The average Word Error
Rate of the transcriptions, calculated on the set of
available transcriptions (i.e. subtitles), using the
Fisher-Wagner algorithm is 0.29 (Navarro, 2001).
Pose: Each speaker’s pose is represented via skele-
tal keypoints collected via OpenPose (Cao et al.,
2018) following the approach in Ginosar et al.
(2019). It consists of of 52 coordinates of an indi-
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Coverage ↓ Precision ↑
Model FID W1 (vel.) W1 (acc.) PCK F1

Ours 27.8 7.3 10.6 0.376 0.317
Ours w/o AISLe w/ Static Rebalancing 33.7 12.2 21.6 0.378 0.314

Ours w/o AISLe w/ top 100% 55.3 12.4 22.2 0.375 0.312
Ours w/o AISLe w/ top 50% 25.8 5.2 7.6 0.357 0.303
Ours w/o AISLe w/ top 25% 25.7 6.8 9.2 0.329 0.285
Ours w/o AISLe w/ top 10% 31.9 6.9 8.6 0.319 0.269

Table 3: Quantitative comparison of AISLe in our model with strong rebalancing baselines. Comparisons in
demonstrate the impact of adaptive sampling in AISLe on coverage, while demonstrates robustness of AISLe in
precision

vidual’s major joints for each frame at 15 frames
per second, which we rescale by holding the length
of each individual’s shoulder constant.
Audio: Following prior work (Kucherenko et al.,
2019; Ginosar et al., 2019), we represent audio
features as spectrograms, which is a rich input rep-
resentation shown to be useful for gesture genera-
tion.

6 Results and Discussions

First, we study the effect of different components of
our model on coverage and precision. We follow
this up with the quantitative effects of dataset sub-
sampling. Finally, we conclude with a discussion
on the need of a precision-coverage trade-off for co-
speech gesture generation. All models are trained
separately for each of 25 speakers in PATS dataset
and we report scores averaged over all speakers for
comparison.
Comparison with previous baselines: We focus
first on the human perceptual study in Table 1, since
it is arguably the most important metric. We see
a significantly2 larger preference for our model
as compared to S2G and Gesticulator for all four
criteria. Specifically, expressivity sees the largest
jump, indicating improved coverage in the gener-
ated gestures. A similar trend is seen on the objec-
tive scores for coverage in Table 2 which indicates
a possible correlation between high coverage and
human-judged expressivity of gestures. Interest-
ingly, PCK score for S2G is not significantly dif-
ferent from ours, indicating that a simple accuracy
metric may not be sufficient to judge performance
in a co-speech gesture generation task.
Impact of AISLe on Coverage: Incorporating

2significance refers to statistical significance inferred using
a 90% confidence interval estimated by a 2-sided t-test

AISLe while training a generative model shows
significant gains for coverage metrics in Table 3

. We observe that the use of Static Rebalancing
(Equation 6) instead, which is an extreme version
of AISLe, is better than not resampling at all. How-
ever, it is unable to reach the performance of AISLe
on coverage metrics. A similar trend can be seen
in the perceptual study scores in Table 1, where the
addition of AISLe makes the generations preferable
for most criteria. We also note that, while AISLe
generates significant gains for coverage metrics, it
still maintains the same level of precision as com-
pared to Static Rebalancing.

Next, we visually compare the distribution of the
generated gestures. We use average velocity of the
body as a statistic as motion (or energy (Pelachaud,
2009)), which is one of the key indicators of natu-
ralistic gestures. In Figure 3, we observe that our
model( ) is able to (nearly) generate the velocity
distribution of the ground truth. Models without
AISLe shift the velocity of the generated distribu-
tion closer to zero indicating more gestures were
generated with no or little motion, unlike the true
data distribution (compare and ).

Impact of Gattn on precision: Removal of Mul-
timodal Multiscale Attention Block (Gattn) from
our model results in significant performance dip
of precision metrics in Table 2 . Relevance of
generated gestures to the corresponding spoken
language also suffers a significant decrease without
Gattn in Table 1. These support our hypothesis
that a representation which explicitly learns sub-
word attentions between text and audio is a better
predictor of the corresponding gestures.

Impact of a Sub-sampled dataset on Precision
and Coverage: We find, in Table 3 , that pruning
the dataset to select samples which have a high
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average velocity (or Ours w/o AISLe w/ top x%),
is a simple way of improving the support of the
generated distribution. While this approach of re-
sampling is a strong baseline for distribution cov-
erage, it reduces the generalizability of the model
-i.e. sharp decrease in PCK and F1 scores- probably
due to the missing low velocity examples during
training which is undesirable.
Precision Coverage Trade-off: We observe that
models without AISLe may have comparable PCK
scores to our model but have significantly worse
coverage and hence are not close to the true ges-
ture distribution. Furthermore, models with static
rebalancing have improved FID scores, but fail to
generalize over precision. In Figure 4, the lighter
regions have better PCK and FID scores indicating
both high precision and high coverage of a given
model. It would make the evaluation more robust,
if we consider precision and coverage as a trade-off
instead of two independent criteria. We observe
that employing AISLe and Gattn helps our model

( ) to enjoy the best of both worlds by striking a
balance between precision and coverage.

7 Conclusions

In this paper, we studied the relationship between
spoken language and free-form gestures. First, we
introduced Adversarial Importance Sampled Learn-
ing, which combines adversarial learning with im-
portance sampling to strike a balance between pre-
cision and coverage at no extra computational cost.
Second, this work also introduced the use of trans-
formers for gesture generation conditioned on spo-
ken language. Third, we extended the PATS dataset
in (Ahuja et al., 2020) by extracting transcripts for
audio signals to study the effect of language in
co-speech gesture generation. We substantiated
the effectiveness of our approach through large-
scale quantitative and user studies and show signif-
icant improvements over previous state-of-the-art
approaches on both precision and coverage.
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