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Abstract

Catastrophic forgetting in neural networks in-
dicates the performance decreasing of deep
learning models on previous tasks while learn-
ing new tasks. To address this problem,
we propose a novel Continual Learning Long
Short Term Memory (CL-LSTM) cell in Re-
current Neural Network (RNN) in this paper.
CL-LSTM considers not only the state of each
individual task’s output gates but also the cor-
relation of the states between tasks, so that
the deep learning models can incrementally
learn new tasks without catastrophically for-
getting previously tasks. Experimental results
demonstrate significant improvements of CL-
LSTM over state-of-the-art approaches on spo-
ken language understanding (SLU) tasks.

1 Introduction

The whole AI community has enjoyed a superior
performance boost from the emerging of deep learn-
ing technologies, thanks to the availability of big
data and computing technologies. One of the most
recent, realistic and emerged challenges for deep
learning models on streaming data is continual
learning capability. When new data is available,
re-training brand new models with all the old and
new data is the ideal way to achieve high perfor-
mance on both tasks. However, there are several
factors preventing saving old data for the entire
lifetime, such as the memory restriction and data
governance. When learning without all the old
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data, the performance on old tasks will drop dra-
matically, this phenomenon is called catastrophic
forgetting (Mcclelland et al., 1995).

Catastrophic forgetting occurs in neural net-
works due to the stability-plasticity dilemma (Abra-
ham and Robins, 2005), where the network requires
sufficient plasticity to capture new tasks, but large
weights variations may disrupt previous learned
representations. Continual learning methods are
proposed to prevent catastrophic forgetting, when
only a limited size of old data is available.

Several approaches have been proposed to solve
this problem in deep learning field (Awasthi and
Sarawagi, 2019; Rusu et al., 2016; Zhizhong Li,
2018; Kirkpatrick et al., 2016; Riemer et al., 2019;
Serra et al., 2018; Hou et al., 2018). A popular
trend is to use expandable networks to store/learn
old/new knowledge then acquire a task ID to select
one from all the tasks during the inference stage.
(Rusu et al., 2016; Mallya et al., 2018; Yoon et al.,
2017; Mallya and Lazebnik, 2017).

In contrast, only a few attempts have been made
to address catastrophic forgetting in natural lan-
guage forgetting (NLP) field. Elastic Weight Con-
solidation (EWC) (Kirkpatrick et al., 2016) has
been adapted to visual question answering (Greco
et al., 2019) and language modeling (Wolf et al.,
2019). Progressive Neural Network proposed in
reinforcement learning (Rusu et al., 2016) has been
adopted to semantic slot filling in (Shen et al.,
2019). A continual learning architecture prevent-
ing catastrophic forgetting via block-sparsity and
orthogonality constraints is presented in (Pasunuru
and Bansal, 2019) on diverse sentence-pair classifi-
cation tasks.
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Figure 1: Deep neural networks a) with requirement on
task IDs, and b) without requirement on task IDs, in
inference stage.

To our best knowledge, none of the previous
works in NLP considers the interactions between
tasks at the LSTM cell level. Moreover, the re-
quirement of task IDs in inference is infeasible
and impractical in the real scenarios as shown in
Fig. 1. Therefore, a novel Continual Learning Long
Short Term Memory (CL-LSTM) cell is proposed
to prevent catastrophic forgetting. The contribu-
tions of the paper are: (a) a novel LSTM cell
for continual learning is proposed. The proposed
CL-LSTM includes separate modules for differ-
ent tasks; (b) each task further has a broadcast
module to send its hidden states to all of the old
tasks, and a collect module to take hidden states
as inputs from all of the old tasks. Therefore, the
output gates of each task integrates information
from all tasks; (c) the proposed model doesn’t
require task IDs to perform inference, which is
more practical in real-world scenarios. We eval-
uate the proposed CL-LSTM on both slot fill-
ing and intent detection of spoken language un-
derstanding. Experimental results show that the
proposed CL-LSTM outperforms state-of-the-arts
by a large margin. Code is available at https:
//github.com/IBM-GCDO/EMNLP-CL-LSTM.

2 Method

2.1 Preliminary: LSTM

As we know, LSTM (Long Short Term Mem-
ory) (Hochreiter and Schmidhuber, 1997) operates
as a parameterized function R that takes an input
vector xt with a state vector (ct−1, ht−1) and re-
turns a state vector (ct, ht) = R(xt, ct−1, ht−1).

M2c

M3cM3b

M2b
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M3

M1 h1(t)h1(t-1)

h2(t)h2(t-1)

h3(t)h3(t-1)
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Figure 2: CL-LSTM with three tasks. For the third
task, old modules are frozen (grey) and M3,M

c
3 ,M

b
3

(yellow) are trained for information sharing. h
(t)
out is

the aggregation of all hidden states.

Specifically, it incorporates a gating mechanism,
taking the form:

ft =W fxt + Ufht−1 + bf , (1)

it =W ixt + U iht−1 + bi, (2)

ot =W oxt + Uoht−1 + bo, (3)

c̃t =W cxt + U cht−1 + bc, (4)

where W s and Us are learnable matrices, bs are
biases. If we integrate W s and Us into one single
matrixW , combine bs into b, then by concatenating
xt and ht−1 together, we have:

[ft, it, ot, c̃t] =W [xt, ht−1] + b. (5)

The outputs ct and ht can be obtained from:

ct = σ(ft) ◦ ct−1 + σ(it) ◦ tanh(c̃t), (6)

ht = σ(ot) ◦ g(ct), (7)

where σ indicates the sigmoid function, ◦ repre-
sents the Hadamard product, g can be either tanh
or the identity function. In this paper, we are in-
terested in the hidden states: for a standard LSTM
cell with parameters {W, b} included within one
module M , the update of ht can be represented as:

ht =M(xt, ht−1). (8)

2.2 CL-LSTM
As discussed above, model parameters {W, b} in
the standard LSTM cell keep updating once the

https://github.com/IBM-GCDO/EMNLP-CL-LSTM
https://github.com/IBM-GCDO/EMNLP-CL-LSTM
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given cell starts to learn the new task, which makes
it difficult to avoid catastrophic forgetting. To mit-
igate this phenomena, we propose a novel cell
named CL-LSTM as illustrated in Fig. 2, which
is mainly composed of the following components:

Task-oriented Modules. Assuming that the
model is going to learn K tasks sequentially. The
training data is X = {X1, X2, ..., XK}, where Xk

denotes the training dataset for the kth task. There
are Ck different classes included in task k. When
the first task comes, CL-LSTM starts with a sin-
gle module M1 = {W1, b1}. M1 is updated like a
standard LSTM with the training data x ∈ X1:

h
(t)
1 =M1(x

(t), h
(t−1)
1 ), t ∈ {1, 2, · · · , T}, (9)

where h(t)1 is the hidden state at timestamp t, T
represents the length of sequential data x, c(t)1 is
updated by Eq. 6. When starting to work on a
new task k > 1, parameters of old tasks (M<k)
are frozen and new module Mk = {Wk, bk} is
created. This design allows the model to keep old
information in an expandable way.

Hidden State Sharing Modules. We design a
communication mechanism to allow the informa-
tion sharing in hidden states across different tasks.
Specifically, when it goes to task k > 1, a broad-
cast module M b

k = {W b
k , b

b
k} is created to send

hidden states of task k to all previous (< k) mod-
ules. On the reverse information flow, a collect
module M c

k = {W c
k , b

c
k} is created for task k to

collect all hidden states from all previous modules.
For any 1 ≤ j ≤ k, the hidden states of module j
are updated by:

h
(t)
j = Mj(x

t, h
(t−1)
j ) +

∑
1≤i<j

Mc
j (h

(t−1)
i )+

∑
j<l≤k

Mb
l (h

(t−1)
l ), t ∈ {1, 2, · · · , T},

(10)

where h(t)j is the updated hidden state of module j
with additional information sharing. Note that at
task k, M c

j and M b
j are frozen for all j < k. The

intuition of broadcast and collect module is: when
learning a new task k, M c

k can learn how to ag-
gregate weighted previous knowledge to accelerate
and improve the knowledge learning of task k. And
via M b

k , the knowledge of task k can broadcast to
previous modules, facilitating the task separations
as well as enhancing the performance of old tasks.

Hidden States and Outputs. At kth task, we
have k hidden states at timestamp t: h

(t)
i , i ∈

Dataset ATIS SNIPS WR RT MV
Train 4,478 13,084 30,521 6,894 8,797
Valid 500 700 8,621 1,521 2,443
Test 893 700 4,181 766 978
# Slot 119 71 28 17 25
# Intent 22 7 12 1 1

Table 1: Dataset statistics on train, valid, test sets, and
number of slot and intent labels.

{1, 2, · · · , k}. To avoid using task ID to select
different modules for different tasks during infer-
ence, we directly feed the input data to all modules
and aggregate the knowledge from ∀k ≤ K tasks,
an unique output hidden state h(t)outk

is obtained by:

h
(t)
outk

= h
(t)
1 + h

(t)
2 + · · ·+ h

(t)
k . (11)

Note that different from standard LSTM, here h(t)outk
is the summation of all modules’ hidden states.

3 Experiments

In this section, CL-LSTM is evaluated on Spoken
Language Understanding (SLU) tasks in continual
learning framework. SLU mainly includes two
goals: slot filling and intent detection. Slot filling
is a sequence labelling problem which maps each
sentence to a sequence of slot labels with the same
length, while intent detection is a classification
problem where each sentence has one intent label.

3.1 Datasets

We evaluate the performance of the proposed CL-
LSTM on five datasets (Table 1): Airline Travel In-
formation Systems (ATIS) (Hemphill et al., 1990),
Snips (Coucke et al., 2018), Weather Reminder
(WR) (Wea), MIT Corpus Movie (MV) (MIT, a)
and MIT Corpus Restaurant (RT) (MIT, b). ATIS,
Snips and WR datasets have both slot and intent
labels while RT and MV have slot labels only.

3.2 Experimental Settings

Two experimental settings are proposed to fully
utilize these multi-goal datasets to evaluate catas-
trophic forgetting in continual learning.

Exp1: in order to perform both slot fill-
ing and intent detection simultaneously, each
method is evaluated on three tasks sequentially:
ATIS→SNIPS→WR, where each dataset is a task.

Exp2: in order to use all the datasets, each
method is evaluated on five tasks for slot filling only
with task order: ATIS→SNIPS→WR→RT→MV.
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When training a new task, only N exemplars
(training samples) from previous tasks are kept.

3.3 Training Details

We use houtk = {h(1)outk
, h

(2)
outk

, ..., h
(T )
outk
} for slot

filling, and the final state h(T )
outk

for intent detec-
tion. Specifically, the predictions (pslot, pintent)
are made by adding fully connect layers Fslot and
Fintent to sequential hidden outputs houtk and final
hidden outputs h(T )

outk
, respectively:

pslot = Fslot(houtk), (12)

pintent = Fintent(h
(T )
outk

). (13)

Model parameters are updated with cross-entropy
loss. Fslot,Fintent are always trainable to allow
information sharing among different tasks.

3.4 Evaluation Metrics

F1-score and classification accuracy are reported
for slot filling and intent detection, respectively.
Semantic accuracy as defined in (Schuster and Pali-
wal, 1997) is used to evaluate the combined perfor-
mance of both slot filling and intent detection.

In order to evaluate the overall model perfor-
mance, after training the last task, averaged metrics
are computed on the test datasets of all the tasks.
Average metrics show models’ effectiveness on pre-
venting catastrophic forgetting, since performance
drop on old tasks will lead to a lower average.

3.5 Baseline Models

Four baseline methods including fine-tuning,
joint training, Learning Without Forgetting
(LWF) (Zhizhong Li, 2018) and EWC (Kirkpatrick
et al., 2016) are used to compare with the pro-
posed CL-LSTM. Specifially, fine-tuning loads
trained model on previous task to initialize model
parameters; Joint training trains with the training
data of all the tasks in each experiment and serves
as the upper bound; LWF is a state-of-the-art con-
tinual learning method which can be adapted to lan-
guage understanding tasks; EWC has been adapted
to natural language understanding tasks such as
visual question answering and language modeling.

3.6 Implementation Details

To perform a fair comparison, a bidirectional
LSTM (Bi-LSTM) is used as the model structure
for these baseline methods. All models are imple-
mented with TensorFlow 1.13.1. During training,

Method 50 100 200 300 500
Joint Training 89.91 89.91 89.91 89.91 89.91
Fine-tune 65.85 72.24 78.69 82.23 85.31
LWF 65.51 73.48 79.38 82.03 84.30
EWC 61.22 67.22 76.99 79.42 82.55
CL-LSTM− 71.29 78.38 83.00 84.65 87.36
CL-LSTM 74.74 79.96 83.97 85.54 87.68
CL-LSTM+ 74.43 79.81 83.88 85.20 87.73

Table 2: Results of Exp1 on F1-score along with ex-
emplar size from 50 to 500 samples.

Method 50 100 200 300 500
Joint Training 95.05 95.05 95.05 95.05 95.05
Fine-tune 76.15 81.55 86.20 88.24 91.19
LWF 78.26 81.43 86.40 87.16 90.23
EWC 76.94 81.55 86.27 88.02 90.21
CL-LSTM− 78.69 82.12 85.56 87.63 90.76
CL-LSTM 79.10 82.49 86.48 87.91 91.15
CL-LSTM+ 78.84 81.79 87.59 88.58 91.23

Table 3: Results of Exp1 on intent accuracy along with
exemplar size from 50 to 500 samples.

each sentence is a sequences of words, and we
convert each word into a 128 dimensional word
embeddings before feeding into the LSTM cell.
We set number of neurons to be 64 for the LSTM
cell, Mk is a [128+ 64, 64× 4] matrix for both the
baseline Bi-LSTM and CL-LSTM. For CL-LSTM,
the broadcast module M b

k and collect module M c
k

are [64, 64 × 4] matrices. Fslot and Fintent are
fully connected layers take 64-dimensional h(·)outk
as input, and output vectors with dimensions same
as the number of slot labels and intent labels, re-
spectively.

All models are trained with Adam optimisa-
tion (Kingma and Ba, 2014) method. The learn-
ing rate is initially set to be 0.001 and updated
with a decay rate of 0.05. For each task, model
is trained for 100 epochs, and the best performed
model on the current task is selected. Besides, us-
ing Ubuntu-18.04.1 system with 2 GPUs (NVIDIA
V100-SXM2-16gb), CL-LSTM takes (i) 8 hours
to run 100 epochs for 3 tasks experiment; (ii) 20
hours to run 100 epochs for 5 tasks experiment.

3.7 Experimental Results

For Exp1, experimental results on F1-score, intent
accuracy and semantic accuracy along with the
exemplar size are shown in Table 2∼4, respectively.
Note that the results of joint training are invariant
to the number of exemplar size since it refers to the
training with all the training data of all the tasks.

We also evaluate another two versions of the
proposed CL-LSTM which are CL-LSTM− and
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Method 50 100 200 300 500
Joint Training 76.92 76.92 76.92 76.92 76.92
Fine-tune 40.46 49.53 55.08 60.23 67.57
LWF 40.79 48.23 56.85 59.93 66.24
EWC 37.84 43.01 54.05 56.52 61.69
CL-LSTM− 45.73 54.92 62.59 64.08 70.37
CL-LSTM 50.46 57.84 63.81 65.36 70.99
CL-LSTM+ 50.36 56.96 63.67 64.91 71.00

Table 4: Results of Exp1 on semantic accuracy along
with exemplar size from 50 to 500 samples.

Method 50 100 200 300 500
Joint Training 75.86 75.86 75.86 75.86 75.86
Fine-tune 39.82 52.50 54.52 57.03 68.04
LWF 38.42 51.83 54.15 57.14 68.42
EWC 46.90 55.69 62.42 67.08 71.25
CL-LSTM 48.26 53.34 55.62 60.77 70.82
CL-LSTM+ 49.49 52.80 55.85 61.84 71.75

Table 5: Results of Exp2 on F1-score along with ex-
emplar size from 50 to 500 samples.

CL-LSTM+. CL-LSTM− is an ablated model,
where hidden state sharing modules are not in-
cluded and only task-oriented modules are used.
CL-LSTM+ is a more complicated design, where
different broadcast and collect modules are created
for every pair of tasks, please refer to Supplemen-
tary for more details.

Experimental results show that CL-LSTM and
CL-LSTM+ outperform state-of-the-art methods
(fine-tuning, LWF and EWC models). The re-
sults in Table 4 also show that the proposed CL-
LSTM models outperform baseline methods on
semantic accuracy by a margin of 3.42% when
exemplar size is 500, and 9.67% when exemplar
size is 50. As semantic accuracy evaluates joint
performance of slot filling and intent detection, it
indicates that CL-LSTM is promising for continual
learning, especially with limited size of exemplars.

For Exp2 in Table 5, we observe CL-LSTM has
best performance with the most and least exem-
plars, while EWC shows advantages in other cases.
Compare to the results in Table 2∼4, EWC is prob-
lematic when it has to maintain the weights for
both slot filling and intent detection. In addition,
CL-LSTM is orthogonal to EWC, so EWC can be
applied on top of CL-LSTM to further improve the
performance.

3.8 Ablation Study

As listed in Table 2∼4, the ablated model CL-
LSTM− outperforms fine-tuning, LWF and EWC
models on most of the metrics, showing that
freezing previous modules can keep old knowl-

module task 0 task 1 task 2 avg
h0 43.85 0 0 14.62
h1 48.18 28.32 0 25.50
h2 41.41 9.77 46.47 32.55

Table 6: Semantic accuracies of using each module’s
output as prediction in Exp1 setting.

edge. However, both of the CL-LSTM and CL-
LSTM+ are better than CL-LSTM−, illustrating
that rather than a simple aggregation (Eq. 11), the
information sharing between tasks (Eq. 10) bene-
fits both old and new tasks, which is important in
continual learning. Using only one broadcast and
one collect module for each task instead of spe-
cific models for every pair of tasks, performance
of CL-LSTM is comparable to CL-LSTM+, show-
ing that a simplified broadcast/collect design may
avoid over-fitting, especially in fewer tasks.

3.9 Analysis of Module Aggregation

In Eq. 11, the output of each module h(t)i are aggre-
gated into an unified output h(t)outk

. The benefit of
this design is that the fusion frees the dependence
on task IDs during inference. A detailed analysis
is provided here to further illustrate the superior
performance of using h(t)outk

, by comparing to mod-

els that directly use h(t)i as the output. Specifically,
after training our model on ATIS→SNIPS→WR
with Eq. 11, we predict on test sets of task 0,1,2
with hi = {h(1)i , ..., h

(T )
i } separately, the semantic

accuracies for 50 exemplars are shown in Table 6.
We can see: 1) hi only has predictive power for
task ≤ i (as hi is trained with task ≤ i data, then
being frozen); 2) Compared to hi, our hout has bet-
ter average semantic accuracy (CL-LSTM achieves
50.46% in table 4 for 3 tasks), which shows that
hout takes the advantage of information aggrega-
tion. Note that the recurrent architecture makes
it possible for accuracy of hout greater than maxi-
mum accuracy among hi, i = 0, 1, 2.

4 Conclusion

In this paper, we propose a novel CL-LSTM cell
to alleviate catastrophic forgetting problem in con-
tinual learning frameworks. Experimental results
have demonstrated that adding broadcast and col-
lect modules can help keeping old knowledge as
well as learning new knowledge. Superior perfor-
mance is achieved by CL-LSTM over other related
works on spoken language understanding tasks.
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