
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1784–1795
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

1784

Unsupervised Extractive Summarization by Pre-training Hierarchical
Transformers

Shusheng Xu1∗, Xingxing Zhang2, Yi Wu1,3, Furu Wei2 and Ming Zhou2

1 IIIS, Tsinghua Unveristy, Beijing, China
2 Microsoft Research Asia, Beijing, China

3 Shanghai Qi Zhi institute, Shanghai China
xuss20@mails.tsinghua.edu.cn

{xizhang,fuwei,mingzhou}@microsoft.com
jxwuyi@gmail.com

Abstract

Unsupervised extractive document summariza-
tion aims to select important sentences from
a document without using labeled summaries
during training. Existing methods are mostly
graph-based with sentences as nodes and edge
weights measured by sentence similarities. In
this work, we find that transformer attentions
can be used to rank sentences for unsuper-
vised extractive summarization. Specifically,
we first pre-train a hierarchical transformer
model using unlabeled documents only. Then
we propose a method to rank sentences using
sentence-level self-attentions and pre-training
objectives. Experiments on CNN/DailyMail
and New York Times datasets show our model
achieves state-of-the-art performance on unsu-
pervised summarization. We also find in ex-
periments that our model is less dependent on
sentence positions. When using a linear combi-
nation of our model and a recent unsupervised
model explicitly modeling sentence positions,
we obtain even better results.

1 Introduction

Document summarization is the task of transform-
ing a long document into its shorter version while
still retaining its important content. Researchers
have explored many paradigms for summarization,
while the most popular ones are extractive summa-
rization and abstractive summarization (Nenkova
and McKeown, 2011). As their names suggest, ex-
tractive summarization generates summiries by ex-
tracting text from original documents, and abstrac-
tive summarization rewrites documents by para-
phrasing or deleting some words or phrases.

Most summarization models require labeled data,
where documents are paired with human written
summaries. Unfortunately, human labeling for sum-
marization task is expensive and therefore high

∗ Work done during the first author’s internship at
Microsoft Research Asia.

quality large scale labeled summarization datasets
are rear (Hermann et al., 2015) compared to grow-
ing web documents created everyday. It is also not
possible to create summaries for documents in all
text domains and styles. In this paper, we focus on
unsupervised summarization, where we only need
unlabeled documents during training.

Many attempts for unsupervised summariza-
tion are extractive (Carbonell and Goldstein, 1998;
Radev et al., 2000; Lin and Hovy, 2002; Mihal-
cea and Tarau, 2004; Erkan and Radev, 2004; Wan,
2008; Wan and Yang, 2008; Hirao et al., 2013;
Parveen et al., 2015). The core problem is to iden-
tify salient sentences in a document. The most
popular approaches among these work rank sen-
tences in the document using graph based algo-
rithms, where each node is a sentence and weights
of edges are measured by sentence similarities.
Then a graph ranking method is employed to es-
timate sentence importance. For example, Tex-
tRank (Mihalcea and Tarau, 2004) utilizes word
co-occurrence statistics to compute similarity and
then employs PageRank (Page et al., 1997) to rank
sentences. Sentence similarities in (Zheng and La-
pata, 2019) are measured with BERT (Devlin et al.,
2019) and sentences are sorted w.r.t. their centrali-
ties in a directed graph.

Recently, there has been increasing interest in de-
veloping unsupervised abstractive summarization
models (Wang and Lee, 2018; Fevry and Phang,
2018; Chu and Liu, 2019; Yang et al., 2020). These
models are mostly based on sequence to sequence
learning (Sutskever et al., 2014) and sequential
denoising auto-encoding (Dai and Le, 2015). Un-
fortunately, there is no guarantee that summaries
produced by these models are grammatical and
consistent with facts described original documents.

Zhang et al. (2019) propose an unsupervised
method to pre-train a hierarchical transformer
model (i.e., HIBERT) for document modeling. The

1785

hierarchical transformer has a token-level trans-
former to learn sentence representations and a
sentence-level transformer to learn interactions be-
tween sentences with self-attention. In Zhang et al.
(2019), HIBERT is applied to supervised extrac-
tive summarization. However, we believe that af-
ter pre-training HIBERT on large scale unlabeled
data, the self-attention scores in the sentence-level
transformer becomes meaningful for estimating
the importance of sentences. Intuitively, if many
sentences in a document attend to one particu-
lar sentence with high attention scores, then this
sentence should be important. In this paper, we
find that (sentence-level) transformer attentions (in
a hierarchical transformer) can be used to rank
sentences for unsupervised extractive summariza-
tion, while previous work mostly leverage graph
based (or rule based) methods and sentence simi-
larities computed with off-the-shelf sentence em-
beddings. Specifically, we first introduce two pre-
training tasks for hierarchical transformers (i.e.,
extended HIBERT) to obtain sentence-level self-
attentions using unlabled documents only. Then,
we design a method to rank sentences by using
sentence-level self-attentions and pre-training ob-
jectives. Experiments on CNN/DailyMail and New
York Times datasets show our model achieves state-
of-the-art performance on unsupervised summa-
rization. We also find in experiments that our
model is less dependent on sentence positions.
When using a linear combination of our model
and a recent unsupervised model explicitly mod-
eling sentence positions, we obtain even better
results. Our code and models are available at
https://github.com/xssstory/STAS.

2 Related Work

In this section, we introduce work on supervised
summarization, unsupervised summarization and
pre-training.

Supervised Summarization Most summariza-
tion models require supervision from labeled
datasets, where documents are paired with human
written summaries. As mentioned earlier, extrac-
tive summarization aims to extract important sen-
tences from documents and it is usually viewed
as a (sentence) ranking problem by using scores
from classifiers (Kupiec et al., 1995) or sequential
labeling models (Conroy and O’leary, 2001). Sum-
marization performance of this class of methods are
greatly improved, when human engineered features

(Radev et al., 2004; Nenkova et al., 2006; Filatova
and Hatzivassiloglou, 2004) are replaced with con-
volutional neural networks (CNN) and long short-
term memory networks (LSTM) (Cheng and La-
pata, 2016; Nallapati et al., 2017; Narayan et al.,
2018; Zhang et al., 2018).

Abstractive summarization on the other hand
can generate new words or phrases and are mostly
based on sequence to sequence (seq2seq) learn-
ing (Bahdanau et al., 2015). To better fit in the
summarization task, the original seq2seq model is
extended with copy mechanism (Gu et al., 2016),
coverage model (See et al., 2017), reinforcement
learning (Paulus et al., 2018) as well as bottom-up
attention (Gehrmann et al., 2018). Recently, pre-
trained transformers (Vaswani et al., 2017) achieve
tremendous success in many NLP tasks (Devlin
et al., 2019; Liu et al., 2019). Pre-trained methods
customized for both extractive (Zhang et al., 2019;
Liu and Lapata, 2019) and abstractive (Dong et al.,
2019; Lewis et al., 2019) summarization again ad-
vance the state-of-the-art in supervised summariza-
tion. Our model also leverages pre-trained methods
and models, but it is unsupervised.

Unsupervised Summarization Compared to su-
pervised models, unsupervised models only need
unlabeled documents during training. Most unsu-
pervised extractive models are graph based (Car-
bonell and Goldstein, 1998; Radev et al., 2000; Lin
and Hovy, 2002; Mihalcea and Tarau, 2004; Erkan
and Radev, 2004; Wan, 2008; Wan and Yang, 2008;
Hirao et al., 2013; Parveen et al., 2015). For exam-
ple, TextRank (Mihalcea and Tarau, 2004) treats
sentences in a document as nodes in an undirected
graph, and edge weights are measured with co-
occurrence based similarities between sentences.
Then PageRank (Page et al., 1999) is employed to
determine the final ranking scores for sentences.
Zheng and Lapata (2019) builds directed graph
by utilizing BERT (Devlin et al., 2019) to com-
pute sentence similarities. The importance score
of a sentence is the weighted sum of all its out
edges, where weights for edges between the cur-
rent sentence and preceding sentences are negative.
Thus, leading sentences tend to obtain high scores.
Unlike Zheng and Lapata (2019), sentence posi-
tions are not explicitly modeled in our model and
therefore our model is less dependent on sentence
positions (as shown in experiments).

There are also an interesting line of work on un-
supervised abstractive summarization. Yang et al.

https://github.com/xssstory/STAS

1786

(2020) pre-trains a seq2seq Transformer by pre-
dicting the first three sentences of news documents
and then further tunes the model with semantic
classification and denoising auto-encoding objec-
tives. The model described in Wang and Lee (2018)
utilizes seq2seq auto-encoding coupled with adver-
sarial training and reinforcement learning. Fevry
and Phang (2018) and Baziotis et al. (2019) fo-
cus on sentence summarization (i.e., compression).
Chu and Liu (2019) proposes yet another denois-
ing auto-encoding based model in multi-document
summarization domain. However, the performance
of these unsupervised models are still unsatisfac-
tory compared to their extractive counterparts.

Pre-training Pre-training methods in NLP learn
to encode text by leveraging unlabeled text. Early
work mostly concentrate on pre-training word em-
beddings (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017). Later, sentence en-
coder can also be pre-trained with language model
(or masked language model) objectives (Peters
et al., 2018; Radford et al., 2018; Devlin et al.,
2019; Liu et al., 2019). Zhang et al. (2019) propose
a method to pre-train a hierarchical transformer en-
coder (document encoder) by predicting masked
sentences in a document for supervised summariza-
tion, while we focus on unsupervised summariza-
tion. In our method, we also propose a new task
(sentence shuffling) for pre-training hierarchical
transformer encoders. Iter et al. (2020) propose a
contrastive pre-training objective to predict relative
distances of surrounding sentences to the anchor
sentence, while our sentence shuffling task pre-
dicts original positions of sentences from a shuffled
docuemt. Besides, pre-training methods mentioned
above focus on learning good word, sentence or
document representations for downstream tasks,
while our method focuses on learning sentence
level attention distributions (i.e., sentence associ-
ations), which is shown in our experiments to be
very helpful for unsupervised summarization.

3 Model

In this section, we describe our unsupervised sum-
marization model STAS (as shorthand for Sentence-
level Transformer based Attentive Summarization).
We first introduce how documents are encoded in
our model. Then we present methods to pre-trained
our document encoder. Finally we apply the pre-
trained encoder to unsupervised summarization.

Figure 1: The architecture of our hierarchical encoder,
the token level Transformer encodes tokens and then
the sentence level Transformer learns final sentence
representations from representations at <s>.

3.1 Document Modeling

Let D = (S1, S2, . . . , S|D|) denote a document,
where Si = (wi

0, w
i
1, w

i
2, . . . , w

i
|Si|) is a sentence

in D and wi
j is a token in Si. As a common

wisdom, we also add two special tokens (i.e.,
wi
0 = <s> and wi

|Si| = </s>) to Si, which
represents the begin and end of a sentence, respec-
tively. Transformer models (Vaswani et al., 2017),
which are composed of multiple self-attentive
layers and skip connections (He et al., 2016),
have shown tremendous success in text encoding
(Devlin et al., 2019). Due to the hierarchical
nature of documents, we encode the document D
using a hierarchical Transformer encoder, which
contains a token-level Transformer TransT and a
sentence-level Transformer TransS as shown in
Figure 1. Let || denote an operator for sequences
concatenation. TransT views D as a flat sequence
of tokens denoted as D = (S1 ||S2 || . . . ||S|D|).
After we apply TransT to D, we obtain
contextual representations for all tokens
(v1

0,v
1
1, . . . ,v

1
|S1|, . . . ,v

i
j , . . . ,v

|D|
0 , . . . ,v

|D|
|S|D||

).
We use the representation at each <s> token
as the representation for that sentence and
therefore representations for all sentences in D
are V = (v1

0,v
2
0, . . . ,v

|D|
0). The sentence-level

Transformer TransS takes V as input and learns
sentence representations given other sentences in
D as context:

H,A = TransS(V) (1)

where H = (h1,h2, . . . ,h|D|) and hi is the final
representation of Si; A is the self-attention matrix

1787

and Ai,j is the attention score from sentence Si
to sentence Sj . TransS contains multiple layers
and each layer contains multiple attention heads.
To obtain A, we first average the attention scores
across different heads and then across different lay-
ers. Our hierarchical document encoder is similar
to the hierarchical Transformer model described in
Zhang et al. (2019). The main difference is that our
token-level Transformer encodes all sentences in a
document as a whole rather than separately.

3.2 Pre-training

In this section, we pre-train the hierarchical doc-
ument encoder introduced in Section 3.1 using
unlabeled documents only. We expect that after
pre-training, the encoder would obtain the ability
of modeling interactions (i.e., attentions) among
sentences in a document. In this following, we in-
troduce two tasks we used to pre-train the encoder.

Masked Sentences Prediction The first task is
Masked Sentences Prediction (MSP) described in
Zhang et al. (2019). We randomly mask 15% of
sentences in a document and then predict the origi-
nal sentences. Let D = (S1, S2, . . . , S|D|) denote
a document and D̃ = (S̃1, . . . , S̃|D|) the document
with some sentences masked, where

S̃i =

{
Si 85% of cases

mask(Si) 15% of cases
(2)

mask(Si) is a function to mask Si, which in 80%
of cases replaces each word in Si with the [MASK]
token, in 10% of cases replaces Si with a random
sentence and in the remaining 10% of cases keep
Si unchanged. The masking strategy is similar to
that of BERT (Devlin et al., 2019), but it is applied
on sentence level. Let I = {i|S̃i = mask(Si)}
denote the set of indices for masked sentences and
O = {Si|i ∈ I} the original sentences correspond-
ing to masked sentences.

Supposing i ∈ I , we demonstrate how we pre-
dict the original sentence Si = (wi

0, w
i
1, . . . , w

i
|Si|)

given D̃. As shown in Figure 2, we first encode
D̃ using the encoder in Section 3.1 and obtain
H̃ = (h̃1, h̃2, . . . , h̃|D|). Then we use h̃i (i.e.,
the contextual representation of S̃i) to predict Si
one token at a time with a conditional Transformer
decoder TransDecM . We inject the information
of S̃i to TransDecM by adding h̃i after the self
attention sub-layer of each Transformer block in

Figure 2: An example of masked sentences predic-
tion. The third sentence in the document is masked
and the hierarchical encoder encodes the masked docu-
ment. We then use TransDecS to predict the original
sentence one token at a time.

TransDecM . Assuming wi
0:j−1 has been gener-

ated, the probability of wi
j given wi

0:j−1 and D̃ is

ĥi
j = TransDecM (wi

0:j−1, h̃i) (3)

p(wi
j |wi

0:j−1, D̃) = softmax(Woĥ
i
j) (4)

The probability of all original sentences given D̃ is

p(O|D̃) =
∏
Si∈O

|Si|∏
j=1

p(wi
j |wi

0:j−1, D̃) (5)

MSP is proposed in HIBERT (Zhang et al., 2019)
for supervised summarization, while we use MSP
and transformer attention for sentence ranking in
unsupervised summarization (Section 3.3). Note
that the goal and the way of using MSP in this work
is different from these in HIBERT.

Sentence Shuffling We propose a new task that
shuffles the sentences in a document and then select
sentences in the original order one by one. We
expect that the hierarchical document encoder can
learn to select sentences based on their contents
rather than positions.

Recall that D = (S1, S2, . . . , S|D|) is a docu-
ment, we shuffle the sentences in D and obtain
a permuted document D′ = (S′1, S

′
2, . . . , S

′
|D|)

where Si is the ith sentence in the original doc-
ument and there exists a sentence S′Pi

= Si in
the permuted document D′ (i.e., Pi ∈ [1, |D|] is
the position of Si in D′). In this task, we predict
P = (P1, P2, . . . , P|D|).

As shown in Figure 3, we first use the docu-
ment encoder in Section 3.1 to encode D′ and
yields its context dependent sentence representa-
tions H′ = (h′1,h

′
2, . . . ,h

′
|D|). Supposing that

P0, P1, P2, . . . , Pt−1 are known1, we predict Pt us-
ing a Pointer Network (Vinyals et al., 2015) with

1We set P0 = 0; h′0 is a zero vector.

1788

Figure 3: An example of Sentence Shuffling. The
sentences in the document are shuffled and then pass
through the hierarchical encoder, then a Pointer Net-
work with TransDecP as its decoder is adopted to pre-
dict the positions of original sentences in the shuffled
document.

Transformer as its decoder. Let TransDecP de-
note the transformer decoder in PointerNet, EPi is
the absolute positional embedding of Pi in origi-
nal document and pi the positional embedding of
Pi during decoding. The input of TransDecP is
the sum of sentence representations and positional
embeddings:

Mt−1=(h′P1
+p1+EP1 , . . . ,h

′
Pt−1

+pt−1+EPt−1)

The output ho
t summaries the sentences de-

permutated so far.

ho
t = TransDecP (Mt−1) (6)

Then the probability of selecting S′pt is estimated
with the attention (Bahdanau et al., 2015) between
ho
t and all sentences in D′ as follows:

p(Pt|P1:t−1,D′) =
exp(g(ho

t ,h
′
Pt
))∑

i exp(g(h
o
t ,h
′
i))

(7)

where g is a feed forward neural network with the
following parametrization:

g(ho
t ,h
′
i) = v>a tanh(Uah

o
t +Wah

′
i) (8)

where va ∈ Rd×1, Ua ∈ Rd×d, Wa ∈ Rd×d

are trainable parameters. Finally the probability
of positions of original sentences in the shuffled
document is:

p(P|D′) =
|D|∏
t=1

p(Pt|P0:t−1,D′) (9)

During training, for each batch of documents we
apply both the masked sentence prediction and sen-
tence shuffling tasks. One document D generates

a masked document D̃ and a shuffled document
D′. Note that 15% of sentences are masked in the
masked document D̃, and all sentences are shuffled
in the shuffled document D′. The whole model is
optimized with the following objective:

L(θ) = −
∑
D∈X

log p(O|D̃) + log p(P|D′)

where D is a document in the training document
set X .

3.3 Unsupervised Summarization
In this section, we propose our unsupervised extrac-
tive summarization method. Extractive summariza-
tion aims to select the most important sentences in
document. Once we have obtained a hierarchical
encoder using the pre-training methods in Section
3.2, we are ready to rank sentences and no addi-
tional fine-tuning is needed in this step.

Our first ranking criteria is based on the prob-
abilities of sentences in a document. Recall that
D = (S1, S2, . . . , S|D|) is a document and its prob-
ability is

p(D) =
|D|∏
i=1

p(Si|S1:i−1) ≈
|D|∏
i=1

p(Si|D¬Si) (10)

It is not straight forward to estimate p(Si|S1:i−1)
directly since document models in this work are
all bidirectional. However, we can estimate
p(Si|D¬Si) using the masked sentences prediction
task in Section 3.2. We therefore use p(Si|D¬Si)
to approximate p(Si|S1:i−1). Finding the most im-
portant sentence is equivalent to finding the sen-
tence with highest probability (i.e., p(Si|D¬Si)).
In the following we demonstrate how to estimate
p(Si|D¬Si). As in Section 3.2, we create D¬Si

by masking Si in D (i.e., replacing all tokens in
Si with [MASK] tokens). p(Si|D¬Si) can be es-
timated using Equation (5). To make the proba-
bilities of different sentences comparable, we nor-
malize them by their length. Then we obtain r̂i as
follows2 (also see Equation (5))

r̂i =
1

|Si|

|Si|∑
j=1

p(wi
j |wi

0:j−1,D¬Si) (11)

We also normalize r̂i across sentences (in a docu-
ment) and obtain our first ranking criteria r̃i:

r̃i =
r̂i∑|D|
j=1 r̂j

(12)

2We also tried the geometric average, but the effect is not
as good as the arithmetic average.

1789

In the second ranking criteria, we model the con-
tributions of other sentences to the current sentence
explicitly. We view a document D as a directed
graph, where each sentence in it is a node. The con-
nections between sentences (i.e., edge weights) can
be modeled using the self-attention matrix A of
the sentence level Transformer encoder described
in Section 3.1, which is produced by a pre-trained
hierarchical document encoder. We assume that a
sentence Sj can transmit its importance score r̃i to
an arbitrary sentence Si through the edge between
them. Let Aj,i denote the attention score from Sj
to Si. After receiving all transmissions from all
sentences, the second ranking score for Si is as
follows:

r′i =

|D|∑
j=1,j 6=i

Aj,i × r̃j (13)

The final ranking score of Si combines the score
from itself as well as other sentences:

ri = γ1 r̃i + γ2 r
′
i (14)

γ1 and γ2 are coefficients tuned on development
set. ri can be computed iteratively by assigning
ri to r̃i and repeating Equation (13) and Equation
(14) for T iterations. We find a small T (T ≤ 3)
works well according to the development set.

4 Experiments

In this section we assess the performance of STAS

on the document summarization task. We firstly
introduce datasets we used and then give our imple-
mentation details. Finally we compare our method
against previous methods.

4.1 Datasets
We evaluate STAS on two summarization datasets,
namely the CNN/DailyMail (CNN/DM; Hermann
et al. 2015) dataset and the New York Times (NYT;
Sandhaus 2008) dataset. CNN/DM is composed
of articles from CNN and Daily Mail news web-
sites, which uses their associated highlights as ref-
erence summaries. NYT dataset contains articles
published by the New York Times between Jan-
uary 1, 1987 and June 19, 2007 and summaries are
written by library scientists. For the CNN/DM
dataset, we follow the standard splits and pre-
processing steps used in supervised summariza-
tion3 (See et al., 2017; Liu and Lapata, 2019), and

3scripts available at https://github.com/nlpyang/PreSumm

the resulting dataset contains 287,226 articles for
training, 13,368 for validation and 11,490 for test.
Following Zheng and Lapata (2019), we adopted
the splits widely used in abstractive summarization
(Paulus et al., 2018) for the NYT dataset, which
ranks articles by their publication date and used the
first 589,284 for training, the next 32,736 for vali-
dation and the remaining 32,739 for test. Then, we
filter out documents whose summaries are shorter
than 50 words as in (Zheng and Lapata, 2019) and
finally retain 36,745 for training, 5,531 for valida-
tion and 4,375 for test.

We segment sentences using the Stanford
CoreNLP toolkit (Manning et al., 2014). Sentences
are then tokenized with the UTF-8 based BPE tok-
enizer used in RoBERTa and GPT-2 (Radford et al.,
2019) and the resulting vocabulary contains 50,265
subwords. During training, we only leverage arti-
cles in CNN/DM or NYT; while we do use both
articles and summaries in validation sets to tune
hyper-parameters of our models.

We evaluated the quality of summaries from dif-
ferent models using ROUGE (Lin, 2004). We re-
port the full length F1 based ROUGE-1, ROUGE-2,
ROUGE-L on both CNN/DM and NYT datasets.
These ROUGE scores are computed using the
ROUGE-1.5.5.pl script4.

4.2 Implementation Details

The main building blocks of STAS are Transform-
ers (Vaswani et al., 2017). In the following, we
describe the sizes of them using the number of lay-
ers L, the number of attention heads A, and the
hidden size N . As in (Vaswani et al., 2017; Devlin
et al., 2019), the hidden size of the feed-forward
sublayer is always 4H . STAS contains one hierar-
chical encoder (see Section 3.1) and two decoders,
where they are used for the masked sentences pre-
diction and sentence shuffling pre-training tasks
(see Section 3.2). The token-level encoder is ini-
tialized with the parameters of RoBERTaBASE (Liu
et al., 2019)5 and we set L = 12, H = 768, A =
12. The sentence-level encoder and the two de-
coders are shallower and we all adopt the setting
L = 6, H = 768, A = 12.

We trained our models with 4 Nvidia Tesla V100
GPUs and optimized them using Adam (Kingma
and Ba, 2015) with β1 = 0.9, β2 = 0.999. Since
the encoder is partly pre-trained (initialized with

4https://shorturl.at/nAG49
5We also tried RoBERTaLARGE and obtained worse results.

1790

RoBERTa) and the decoders are initialized ran-
domly, we set a lager learning rate for decoders.
Specifically, we used 4e-5 for the encoder and
4e-4 for the decoders. Since CNN/DM is larger
than NYT, we employed a batch size of 512 for
CNN/DM and 64 for NYT (to ensure a sufficient
number of model updates)6. Limited by the posi-
tional embedding of RoBERTa, all documents are
truncated to 512 subword tokens. We trained our
models on both CNN/DM and NYT for 100 epochs.
It takes around one hour training on the CNN/DM
and 30 minutes on the NYT for each epoch. The
best checkpoint is at around epoch 85 on CNN/DM
and epoch 65 on NYT according to validation sets.

When extracting the summary for a new docu-
ment during test time, we rank all sentences using
Equation (14) and select the top-3 sentences as
the summary. When selecting sentences on the
CNN/DM dataset, we find that trigram blocking
(i.e., removing sentences with repeating trigrams to
existing summary sentences) (Paulus et al., 2018)
can reduce the redundancy, while trigram blocking
does not help on NYT.

4.3 Results

Our main results are shown in Table 1. The first
block includes several recent supervised models
for document summarization. REFRESH (Narayan
et al., 2018) is an extractive model, which is trained
by globally optimizing the ROUGE metric with re-
inforcement learning. PTR-GEN (See et al., 2017)
is a sequence to sequence based abstractive model
with copy and coverage mechanism. Liu and Lap-
ata (2019) initialize encoders of extractive model
(BertSumExt) and abstractive model (BertSumAbs)
with pre-trained BERT.

We present the results of previous unsupervised
methods in the second block. LEAD-3 simply se-
lects the first three sentences as the summary for
each document. TEXTRANK (Mihalcea and Tarau,
2004) views a document as a graph with sentences
as nodes and edge weights using the sentence simi-
larities. It selects top sentences as summary w.r.t.
PageRank (Page et al., 1999) scores. PACSUM
(Zheng and Lapata, 2019) is yet another graph-
based extractive model using BERT as sentence fea-
tures. Sentences are ranked using centralities (sum
of all out edge weights). They made the ranking
criterion positional sensitive by forcing negative

6We used gradient accumulation technique (Ott et al.,
2019) to increase the actual batch size.

edge weights for edges between the current sen-
tence and its preceding sentences. Adv-RF (Wang
and Lee, 2018) and TED (Yang et al., 2020) are
all based on unsupervised seq2seq auto-encoding
with additional objectives of adversarial training,
reinforcement learning and seq2seq pre-training to
predict leading sentences.

PACSUM is based on the BERT (Devlin et al.,
2019) initialization. RoBERTa (Liu et al., 2019),
which extends BERT with better training strate-
gies and more training data, outperforms BERT
on many tasks. We therefore re-implemented
PACSUM and extended it with both BERT and
RoBERTa initialization (i.e., PACSUM (BERT)
and PACSUM (RoBERTa))7. On CNN/DM, our
re-implementation PACSUM (BERT) is compara-
ble with Zheng and Lapata (2019). The results
of PACSUM (BERT) and the RoBERTa initialized
PACSUM (RoBERTa) are almost the same. Per-
haps because it relies more on position informa-
tion rather than sentence similarities computed by
BERT or RoBERTa. STAS outperforms all unsu-
pervised models in comparison on CNN/DM and
the difference between STAS and all other unsu-
pervised models are significant with a 0.95 con-
fidence interval according to the ROUGE script.
In the following, all significant tests on ROUGE
are measured with a 0.95 confidence interval using
the ROUGE script. Since STAS does not model
sentence positions explicitly during ranking, while
PACSUM does, we linearly combine the ranking
scores of STAS and PACSUM (i.e., STAS + PAC-
SUM)8. The combination further improves the per-
formance.

On NYT, the trend is similar. STAS is slightly
better than PACSUM although not significantly bet-
ter (STAS is siginificantly better than all the other
unsupervised models in comparison). Interestingly,
there are also no significant differences between
STAS and two supervised models (REFRESH and
PTR-GEN). STAS + PACSUM even significantly
outperforms the supervised REFRESH. The signif-
icant tests above all utilize the ROUGE script.

Examples of gold summaries and system out-
puts of REFRESH (Narayan et al., 2018), STAS
and PACSUM (Zheng and Lapata, 2019) on the

7We re-implemented PACSUM, because the training code
of PACSUM is not available.

8We first normalize sentence scores in each document for
both STAS and PACSUM. In the combination, weight for STAS
is 0.9 and weight for PACSUM is 0.1 (tuned on validation
sets).

1791

Method CNN/DM NYT
R-1 R-2 R-L R-1 R-2 R-L

REFRESH (Narayan et al., 2018) 41.30 18.40 37.50 41.30 22.00 37.80
PTR-GEN (See et al., 2017) 39.50 17.30 36.40 42.70 22.10 38.00
BertSumExt (Liu and Lapata, 2019) 43.25 20.24 39.63 – – –
BertSumAbs (Liu and Lapata, 2019) 41.72 19.39 38.76 – – –
LEAD-3 40.50 17.70 36.70 35.50 17.20 32.00
TEXTRANK (tf-idf) 33.20 11.80 29.60 33.20 13.10 29.00
TEXTRANK (skip-thought) 31.40 10.20 28.20 30.10 9.60 26.10
TEXTRANK (BERT) 30.80 9.60 27.40 29.70 9.00 25.30
PACSUM (Zheng and Lapata, 2019) 40.70 17.80 36.90 41.40 21.70 37.50
PACSUM (BERT) * 40.69 17.82 36.91 40.67 21.09 36.76
PACSUM (RoBERTa) * 40.74 17.82 36.96 40.84 21.28 37.03
Adv-RF (Wang and Lee, 2018) 35.51 9.38 20.98 – – –
TED (Yang et al., 2020) 38.73 16.84 35.40 37.78 17.63 34.33
STAS 40.90 18.02 37.21 41.46 21.80 37.57
STAS + PACSUM 41.26 18.18 37.48 42.42 22.66 38.50

Table 1: Results on CNN/DM and NYT test sets using ROUGE F1. * means our own re-implementation. Results
of TEXTRANK (tf-idf), TEXTRANK (skip-thought) and TEXTRANK (BERT) are reported in (Zheng and Lapata,
2019) and they use tf-idf, skip-thought vectors (Kiros et al., 2015) and BERT as sentence features, respectively.

Settings valid set test set
R-1 R-2 R-L R-1 R-2 R-L

MSP 41.61 18.30 37.92 40.76 17.78 37.03
MSP+SS (STAS) 41.67 18.47 38.00 40.90 18.02 37.21
r̃ = 1/|D| 41.58 18.43 37.89 40.74 17.88 37.04
r′ = 0 33.92 12.93 30.99 33.30 12.61 30.33

Table 2: Ablation study on CNN/DM validation and
test sets using ROUGE F1.

CNN/DM dataset can be found in appendix B.

4.4 Analysis

Ablation Study In Section 3.2, we proposed two
pre-training tasks. Are they are all useful for
summarization? As shown in Table 2, when we
only employ the masked sentences prediction task
(MSP), we can obtain a ROUGE-2 of 17.73, which
is already very close to the result of PACSUM (see
Table 1). When we add the sentence shuffling task
(denoted as MSP+SS (STAS)), we improves the per-
formance over MSP. Note that we can not use only
the sentence shuffling task (SS), because the first
term in our sentence scoring equation (see Equa-
tion (14)) depends on the probabilities produced by
decoder in the MSP task.

In section 3.3, we propose two criteria to score
sentences (see the two terms in Equation (14)). The
effects of them are shown in the second block of
Table 2. Since the attention based criterion r′ re-
lies on sentence probability based criterion r̃, we
cannot remove r̃ and instead we set r̃ = 1

D to see
the effect of r̃. As a result, ROUGE-2 decreases by
0.14, which indicates that r̃ is necessary for ranking.
Also note that when setting r̃ = 1

D , our method is

valid set test set
R-1 R-2 R-L R-1 R-2 R-L

w/ Ai,j 33.66 12.78 30.75 33.02 12.48 30.08
w/ Aj,i 41.67 18.47 38.00 40.90 18.02 37.21

Table 3: Aj,i v.s. Ai,j on CNN/DM validation and test
sets using ROUGE F1.

equivalent to PageRank using sentence level atten-
tion scores as edge weights. Instead of iterating
until convergence as in the original PageRank al-
gorithm, we find a small iteration number (T ≤ 3)
is sufficient. To study the effect of the attention
based criterion r′, we set r′ = 0, which means sen-
tences are ranked using sentence probability based
criterion r̃. We can see that the performance drops
dramatically by 5 ROUGE-2.

Aj,i v.s. Ai,j In Equation (13), we compute r′i
with Aj,i (attention score from Sj to Si). The intu-
ition of using Aj,i is that a sentence is important
if the interpretation of other important sentences
depends on it. However, an alternative is to use
Ai,j . It shows in Table 3 that Aj,i is indeed better.

Sentence Position Distribution We also ana-
lyze how extractive sentences by different models
are distributed in documents? We compare STAS

against LEAD-3, PACSUM and ORACLE using
the first 12 sentences in all documents on CNN/DM
test set. ORACLE is the upper bound for extractive
models. Extractive summaries of ORACLE are
generated by selecting a subset of sentences in a
document, which maximize ROUGE score (Nalla-
pati et al., 2017). As shown in Figure 4, we can see

1792

Figure 4: Proportion of extracted sentences by different
unsupervised models against their positions.

that sentences selected by ORACLE are smoothly
distributed across all positions, while LEAD-3 only
selects the first 3 sentences. Compared to STAS, the
sentence distribution of PACSUM is closer to that
of LEAD-3 and STAS produces a sentence distribu-
tion that is more similar to that of ORACLE. The
observation above indicates that our model relies
less on sentence positions compared to PACSUM.
We further computed the Kullback Leibler diver-
gence between the sentence position distribution of
an unsupervised model and the distribution of OR-
ACLE and we denote it as KL(·||ORC). We found
KL(PACSUM||ORC) = 0.614 is much large than
KL(STAS||ORC) = 0.098, indicating STAS is bet-
ter correlated with ORACLE. We introduce the
sentence shuffling task to encourage STAS to se-
lect sentences based on their contents rather than
their positions only (see Section 3.2). After we
remove the sentence shuffling task from STAS dur-
ing pre-training (see MSP in Figure 4), there is
a clear trend that leading sentences are more fre-
quently selected. Moreover, KL(STAS||ORC) <
KL(MSP||ORC) = 0.108. By introducing the
sentence shuffle task, sentence positional distribu-
tion of STAS is closer to that of ORACLE.

valid set test set
R-1 R-2 R-L R-1 R-2 R-L

MSP 41.61 18.30 37.92 40.76 17.78 37.03
MSP+(a) 40.93 17.73 37.27 40.15 17.25 36.46
MSP+(b) 37.59 14.71 33.95 36.91 14.26 33.25
MSP+SS 41.67 18.47 38.00 40.90 18.02 37.21

Table 4: Compare SS with other two different methods
which remove sentence positions. (a) remove the sen-
tence level positional embedding; (b) for each sentence
in the token level, use a positional embedding from po-
sitional 0. Results are reported on CNN/DM.

Why Sentence Shuffling? Since the Sentences
Shuffling task aims to make STAS less dependent
on sentence positions. However, there are poten-
tially simpler methods to remove sentence posi-
tion information. For example, (a) we can remove
the sentence-level positional embedding and (b)
for each sentence in the token level, we can use a
positional embedding from positional 0. Results
in Table 4 indicates that upon the MSP objective,
strategies (a) and (b) hurt the performance of MSP
significant, while SS improves over MSP. It may
because positional embeddings, whether on token
or sentence level, are important (at least for the
MSP task). One advantage of SS over (a) and (b)
is that it can make our model less dependent on
positions (see Section 4.4) and retain the power of
positional embeddings and the MSP objective at
the same time.

5 Conclusions

In this paper, we find that (sentence-level) trans-
former attention (in a hierarchical transformer) can
be used to rank sentences for unsupervised ex-
tractive summarization, while previous work lever-
age graph based (or rule based) methods and sen-
tence similarities computed with off-the-shelf sen-
tence embeddings. We propose the sentence shuf-
fling task for pre-training hierarchical transformers,
which helps our model to select sentences based on
their contents rather than their positions only. Ex-
perimental results on CNN/DM and NYT datasets
show that our model outperforms other recently
proposed unsupervised methods. The sentence po-
sition distribution analysis shows that our method is
less dependent on sentence positions. When com-
bined with recent unsupervised model explicitly
modeling sentence positions, we obtain even better
results. In the next step, we plan to apply our mod-
els to unsupervised abstractive summarization.

Acknowledgments

We gratefully acknowledge Hao Zheng for the
technical advice during our re-implementation of
PACSUM (Zheng and Lapata, 2019). We would
also like to thank the anonymous reviewers for their
insightful feedback.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly

1793

learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015.

Christos Baziotis, Ion Androutsopoulos, Ioannis
Konstas, and Alexandros Potamianos. 2019. SEQˆ3:
Differentiable sequence-to-sequence-to-sequence
autoencoder for unsupervised abstractive sentence
compression. In Proceedings of the 2019 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 673–681, Minneapolis, Minnesota.
Association for Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 484–494, Berlin, Germany. As-
sociation for Computational Linguistics.

Eric Chu and Peter J. Liu. 2019. Meansum: A neural
model for unsupervised multi-document abstractive
summarization. In ICML.

John M Conroy and Dianne P O’leary. 2001. Text sum-
marization via hidden markov models. In Proceed-
ings of the 24th annual international ACM SIGIR
conference on Research and development in infor-
mation retrieval, pages 406–407.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in neural informa-
tion processing systems, pages 3079–3087.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In Advances in Neural Informa-
tion Processing Systems, pages 13042–13054.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of artificial intelligence re-
search, 22:457–479.

Thibault Fevry and Jason Phang. 2018. Unsuper-
vised sentence compression using denoising auto-
encoders. In Proceedings of the 22nd Conference on
Computational Natural Language Learning, pages
413–422, Brussels, Belgium. Association for Com-
putational Linguistics.

Elena Filatova and Vasileios Hatzivassiloglou. 2004.
Event-based extractive summarization. In Text
Summarization Branches Out, pages 104–111,
Barcelona, Spain. Association for Computational
Linguistics.

Sebastian Gehrmann, Yuntian Deng, and Alexander
Rush. 2018. Bottom-up abstractive summarization.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 4098–4109, Brussels, Belgium. Association
for Computational Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in neural information
processing systems, pages 1693–1701.

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013. Single-
document summarization as a tree knapsack prob-
lem. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1515–1520, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Dan Iter, Kelvin Guu, Larry Lansing, and Dan Jurafsky.
2020. Pretraining with contrastive sentence objec-
tives improves discourse performance of language
models. arXiv preprint arXiv:2005.10389.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/N19-1071
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.18653/v1/P16-1046
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/K18-1040
https://doi.org/10.18653/v1/K18-1040
https://doi.org/10.18653/v1/K18-1040
https://www.aclweb.org/anthology/W04-1017
https://doi.org/10.18653/v1/D18-1443
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://www.aclweb.org/anthology/D13-1158
https://www.aclweb.org/anthology/D13-1158
https://www.aclweb.org/anthology/D13-1158

1794

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. In Proceedings
of the 18th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 68–73.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Chin-Yew Lin and Eduard Hovy. 2002. From single to
multi-document summarization. In Proceedings of
the 40th annual meeting of the association for com-
putational linguistics, pages 457–464.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Tomas Mikolov, Kai Chen, Gregory S. Corrado, and
Jeffrey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR, abs/1301.3781.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. In Thirty-First AAAI Conference on Artificial
Intelligence.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759, New Orleans, Louisiana.
Association for Computational Linguistics.

Ani Nenkova and Kathleen McKeown. 2011. Auto-
matic summarization. Foundations and Trends in
Information Retrieval, 5(2–3):103–233.

Ani Nenkova, Lucy Vanderwende, and Kathleen McKe-
own. 2006. A compositional context sensitive multi-
document summarizer: exploring the factors that in-
fluence summarization. In Proceedings of the 29th
annual international ACM SIGIR conference on Re-
search and development in information retrieval,
pages 573–580.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Larry Page, Sergey Brin, Rajeev Motwani, and Terry
Winograd. 1997. Pagerank: Bringing order to the
web. Technical report, Stanford Digital Libraries
Working Paper.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the web. Technical report,
Stanford InfoLab.

Daraksha Parveen, Hans-Martin Ramsl, and Michael
Strube. 2015. Topical coherence for graph-based ex-
tractive summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1949–1954, Lisbon, Portu-
gal. Association for Computational Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Dragomir R Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Celebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam,
Danyu Liu, et al. 2004. Mead-a platform for mul-
tidocument multilingual text summarization.(2004).
LREC, Lisbon, Portugal.

https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010
https://doi.org/10.18653/v1/N18-1158
https://doi.org/10.18653/v1/N18-1158
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/D15-1226
https://doi.org/10.18653/v1/D15-1226
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202

1795

Dragomir R. Radev, Hongyan Jing, and Malgorzata
Budzikowska. 2000. Centroid-based summarization
of multiple documents: sentence extraction, utility-
based evaluation, and user studies. In NAACL-ANLP
2000 Workshop: Automatic Summarization.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in neural in-
formation processing systems, pages 2692–2700.

Xiaojun Wan. 2008. An exploration of document im-
pact on graph-based multi-document summarization.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
755–762, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Xiaojun Wan and Jianwu Yang. 2008. Multi-document
summarization using cluster-based link analysis. In
Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 299–306.

Yaushian Wang and Hung-Yi Lee. 2018. Learning
to encode text as human-readable summaries using
generative adversarial networks. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 4187–4195, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Zi-Yi Yang, Chenguang Zhu, Robert Gmyr, Michael
Zeng, and Xuedong Huang. 2020. Ted: A pretrained
unsupervised summarization model with theme
modeling and denoising. ArXiv, abs/2001.00725.

Xingxing Zhang, Mirella Lapata, Furu Wei, and Ming
Zhou. 2018. Neural latent extractive document sum-
marization. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 779–784, Brussels, Belgium. Association
for Computational Linguistics.

Xingxing Zhang, Furu Wei, and Ming Zhou. 2019. HI-
BERT: Document level pre-training of hierarchical
bidirectional transformers for document summariza-
tion. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 5059–5069, Florence, Italy. Association for
Computational Linguistics.

Hao Zheng and Mirella Lapata. 2019. Sentence cen-
trality revisited for unsupervised summarization. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6236–6247, Florence, Italy. Association for Compu-
tational Linguistics.

https://www.aclweb.org/anthology/W00-0403
https://www.aclweb.org/anthology/W00-0403
https://www.aclweb.org/anthology/W00-0403
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://www.aclweb.org/anthology/D08-1079
https://www.aclweb.org/anthology/D08-1079
https://doi.org/10.18653/v1/D18-1451
https://doi.org/10.18653/v1/D18-1451
https://doi.org/10.18653/v1/D18-1451
https://doi.org/10.18653/v1/D18-1088
https://doi.org/10.18653/v1/D18-1088
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1628
https://doi.org/10.18653/v1/P19-1628

